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Abstract We study the relative properties of (b, c)-inverses with respect to a ring endomorphism.

A new class of generalized inverses named α-(b, c)-inverse is introduced and studied in a more

general setting. We show by giving an example that (b, c)-inverses behave quite differently from

α-(b, c)-inverses. The condition that an α-(b, c)-invertible element is precisely a (b, c)-invertible

element is investigated. We also study the strongly clean decompositions for α-(b, c)-inverses.

Some well-known results on (b, c)-inverses are extended and unified.
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1. Introduction

Throughout this paper, R is a unitary associative ring and α is an endomorphism of R. The

center and units of R are denoted by C(R) and U(R), respectively. Furthermore, we denote the

set of all idempotent elements of R by E(R). An involution ∗: R → R is an anti-isomorphism

which satisfies (a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗ for all a, b ∈ R. For any a ∈ R, we

use lann(a) = {x ∈ R : xa = 0} and rann(a) = {x ∈ R : ax = 0} to denote the left and right

annihilator of a, respectively. A ring R is abelian if every idempotent is central. According to [1],

an endomorphism α of a ring R is called rigid if aα(a) = 0 implies a = 0 for a ∈ R, and R is an

α-rigid ring [2] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism

of a ring is a monomorphism, and α-rigid rings are reduced rings. Recall from [3] that a ring R

is right α-reversible if whenever ab = 0 for a, b ∈ R, then bα(a) = 0.

An element a ∈ R is called regular if there is x ∈ R such that axa = a. Such an x is called an

inner inverse of a and is denoted as a− and the set of all inner invertible elements of R is denoted

by R−. An element a ∈ R is group invertible if there is y ∈ R such that aya = a, yay = y,

ay = ya. The set of all group invertible elements is denoted by R#. It is well known that a is

group invertible if and only if a ∈ a2R ∩ Ra2. Given a ring R and a, b, c, y ∈ R, recall from [4]

that y is the (b, c)-inverse of a if yay = y, yR = bR and Ry = Rc, and is denoted by a(b,c).

It was shown in [4, Theorem 2.2] that an element a is (b, c)-invertible if and only if b ∈ Rcab

and c ∈ cabR. The set of all (b, c)-invertible elements of R is denoted by R(b,c). More results
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on (b, c)-inverses can be found in [5–10]. According to [11], an element a ∈ R is central Drazin

invertible, if there is x ∈ R such that xa ∈ C(R), xax = x and an+1x = an for some integer

n ≥ 0.

In this paper, we further study the properties of (b, c)-inverses from a new perspective. More

precisely, we study the relative properties of (b, c)-inverses with respect to a ring endomorphism.

The new concept of α-(b, c)-inverses is introduced and investigated. In particular, it is easy

to see that α-(b, c)-inverse is just the general (b, c)-inverse when α = 1R. However, we shall

give an example to show that an α-(b, c)-invertible element need not be (b, c)-invertible, and

a (b, c)-invertible element need not be α-(b, c)-invertible. Furthermore, the condition that an

α-(b, c)-invertible element is precisely a (b, c)-invertible element is discussed. Various properties

including Jacobson’s lemma and Cline’s formula of α-(b, c)-inverses are studied. Strongly clean

decompositions for α-(b, c)-inverses are also considered.

This paper is organized as follows:

In Section 2, we define and investigate the α-(b, c)-inverse of an element in a unitary associa-

tive ring. An example is given to show that α-(b, c)-invertible elements are quite different from

(b, c)-invertible elements (Example 2.2). If a, b, c ∈ R and α(e) = e for any idempotent e, it is

proved that a is (b, c)-invertible if and only if a is α-(b, c)-invertible with b, c ∈ R− (Proposition

2.3). In Section 3, we further study the properties of α-(b, c)-invertible elements, including Jacob-

son’s lemma, strongly clean decompositions and Cline’s formula (Corollary 3.12, Theorems 3.15

and 3.5). In particular, we obtain the strongly clean decomposition of Bott-Duffin (e, f)-inverse

(Corollary 3.18).

2. α-(b, c)-inverses and their properties

In this section, we define and study a more general case of (b, c)-inverses that is closely related

to an endomorphism of a ring, and is called α-(b, c)-inverse. However, we shall give an example

to show that in general α-(b, c)-invertible elements are different with (b, c)-invertible elements.

We begin with the following definition.

Definition 2.1 Let a, b, c ∈ R and let α be an endomorphism of R. We say that a is α-(b, c)-

invertible if there is x ∈ R such that

xax = x, xR = α(b)R, Rx = Rα(c).

Any element x satisfying the above conditions is called the α-(b, c)-inverse of a, denoted as a
(b,c)
α .

The set of all α-(b, c)-invertible elements of R is denoted by R
(b,c)
α .

In particular, if α = 1R, then it is clear that α-(b, c)-inverses coincide with the general (b, c)-

inverses. Moreover, it is obvious that the α-(b, c)-inverse of an element is unique, and a ∈ R is

α-(b, c)-invertible if and only if α(b) ∈ Rα(c)aα(b) and α(c) ∈ α(c)aα(b)R.

The following example shows that α-(b, c)-invertible elements can be quite different from

(b, c)-invertible elements.
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Example 2.2 Let Z be the ring of integers. Consider the ring

R =

{(

a b

0 c

)

|a, b, c ∈ Z

}

.

Let α : R → R be an endomorphism defined by

α

((

a b

0 c

))

=

(

a 0

0 0

)

.

Take the elements

a =

(

0 1

0 0

)

, b =

(

0 0

0 1

)

, c =

(

1 0

0 0

)

in R. Then it is clear that a is (b, c)-invertible. However, α(c) = c, α(b) =
(

0 0
0 0

)

. This shows

that α(b) ∈ Rα(c)aα(b) and α(c) /∈ α(c)aα(b)R. Therefore, a is not α-(b, c)-invertible.

On the other hand, let

a =

(

0 1

0 0

)

, b = c =

(

0 0

0 1

)

∈ R,

then cab =
(

0 0
0 0

)

and a is α-(b, c)-invertible. However, b /∈ Rcab and c /∈ cabR, that is, a is not

(b, c)-invertible.

The next proposition shows the equivalence of α-(b, c)-invertibility and (b, c)-invertibility of

an element.

Proposition 2.3 Let a, b, c ∈ R and α(e) = e for any e ∈ E(R). Then a ∈ R(b,c) if and only if

a ∈ R
(b,c)
α and b, c ∈ R−.

Proof If a ∈ R(b,c), then there exist m,n ∈ R such that b = mcab, c = cabn. It is clear that

b, c ∈ R−. Since bn = mc, we get abn,mca ∈ E(R). Since c−c ∈ E(R), it follows that

α(b) = α(mcab) = mcaα(b) = mcα(c−)α(c)aα(b) ∈ Rα(c)aα(b).

Similarly, we conclude that α(c) = α(c)abn = α(c)aα(b)α(b−)bn ∈ α(c)aα(b)R.

Conversely, if a ∈ R
(b,c)
α , then there are s, t ∈ R such that α(b) = sα(c)aα(b) and α(c) =

α(c)aα(b)t. This shows that

α(b)α(b−) = sα(c)aα(b)α(b−), α(c−)α(c) = α(c−)α(c)aα(b)t.

Therefore, we have bb− = sα(c)c−cabb− and c−c = c−cabb−α(b)t. Then b = sα(c)c−cab ∈ Rcab

and c = cabb−α(b)t ∈ cabR. 2

Note that if R is an α-rigid ring, then α(e) = e for any e ∈ E(R) by [3, Proposition 2.5].

Also if α is a monomorphism and R is a right α-reversible ring, then α(e) = e for any e ∈ E(R)

by [3, Theorem 2.13]. Thus the rings that satisfy the condition α(e) = e for any e ∈ E(R) exist.

Proposition 2.4 Let a, b, c, x ∈ R such that α(e) = e for any e ∈ E(R). If x is the (b, c)-inverse

of a, then x is the α-(b, c)-inverse of a.
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Proof If x is the (b, c)-inverse of a, then xab = b, cax = c and b, c ∈ R−. It follows that α(b) =

xaα(b) and α(c) = α(c)ax since xa, ax ∈ E(R). Also since x ∈ bR = α(b)α(b−)bR ⊆ α(b)R

and x ∈ Rc = Rcα(c−)α(c) ⊆ Rα(c), we get xR = α(b)R and Rx = Rα(c). Combining with

xax = x, then x is the α-(b, c)-inverse of a. 2

In particular, if an endomorphism α of a ring R is an automorphism, then we have the

following equivalence.

Theorem 2.5 Let a, b, c ∈ R and let α be an automorphism of R. Then a ∈ R(b,c) if and only

if α(a) ∈ R
(b,c)
α .

Proof If α(a) ∈ R
(b,c)
α , then there are s, t ∈ R such that α(b) = sα(c)α(a)α(b) and α(c) =

α(c)α(a)α(b)t. Since α is an epimorphism, there are g, h ∈ R such that s = α(g) and t = α(h).

This implies that α(b) = α(g)α(c)α(a)α(b) = α(gcab), α(c) = α(c)α(a)α(b)α(h) = α(cabh).

Since α is a monomorphism, we get b = gcab ∈ Rcab, c = cabh ∈ cabR. Therefore, we have

a ∈ R(b,c). The converse is clear. 2

The next corollary shows a particular case of α-(b, c)-invertible elements.

Corollary 2.6 Let a ∈ R−, k ∈ N and α(e) = e for any idempotent e. If e ∈ C(R), then a is

α-(ak, ak)-invertible if and only if a is central Drazin invertible.

The proof of the following auxiliary lemma is similar to that of [12, Corollary 2.4].

Lemma 2.7 Let a, b, c, x ∈ R. If x is the α-(b, c)-inverse of a, then we have the following

assertions:

(1) If α(b), α(c) ∈ comm(a), then x ∈ comm(a).

(2) If α(b), α(c) ∈ comm2(a), then x ∈ comm(α(b), α(c)) and α(b) ∈ comm(α(c)).

The following example shows that the endomorphism α in Lemma 2.7 actually exists.

Example 2.8 Let R and α : R → R be the ring and the ring endomorphism in Example 2.2.

Take a = b =
(

1 0
0 0

)

. Then α(b) = b. It is clear that α(b) ∈ comm(a). Moreover, let any k ∈ R

such that

k =

(

p q

0 s

)

∈ comm(a)

for some p, q, s ∈ Z. Then it can be easily checked that k has the form of k =
(

p 0
0 s

)

. Therefore,

α(b) ∈ comm(k), that is, α(b) ∈ comm2(a).

For any two elements a, d ∈ R, the next proposition shows the equivalence of α-(b, c)-

invertibility of a and a+ d under some suitable conditions.

Proposition 2.9 Let a, b, c, d ∈ R with d ∈ C(R) and d2 = 0. Then a ∈ R
(b,c)
α if and only if

a+ d ∈ R
(b,c)
α .

Proof If a ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)aα(b) and α(c) =



Relative (b, c)-inverses with respect to a ring endomorphism 437

α(c)aα(b)n. Since d ∈ C(R) and d2 = 0, it follows that

α(b) = mα(c)(a + d)α(b)−mα(c)dα(b)

= mα(c)(a + d)α(b)−mα(c)dα(b) −mα(c)dmα(c)dα(b)

= [m−mα(c)dm]α(c)(a + d)α(b) ∈ Rα(c)(a+ d)α(b).

Similarly, we can get α(c) = α(c)(a+ d)α(b)[n − ndα(b)n] ∈ α(c)(a+ d)α(b)R.

Conversely, if a + d ∈ R
(b,c)
α , then there is s ∈ R such that α(b) = sα(c)(a + d)α(b). This

implies that

α(b) = sα(c)aα(b) + sα(c)dsα(c)(a + d)α(b) = [s+ sα(c)ds]α(c)aα(b) ∈ Rα(c)aα(b).

Also we can prove α(c) ∈ α(c)aα(b)R in a similar way, as desired. 2

Theorem 2.10 Let a, b, c, d ∈ R with α(b), α(c) ∈ comm(a, d). If a, d ∈ R
(b,c)
α , then (da)k ∈

R
(b,c)
α for k ∈ N.

Proof If a ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)aα(b) and α(c) =

α(c)aα(b)n. Since α(b), α(c) ∈ comm(a), we have aα(b)n = mα(c)a by Lemma 2.7. If d ∈ R
(b,c)
α ,

then there exist s, t ∈ R such that α(b) = sα(c)dα(b) and α(c) = α(c)dα(b)t. Since α(b), α(c) ∈

comm(d), we get dα(b)t = sα(c)d. We conclude that

α(b) = mα(c)dα(b)taα(b) = mα(c)sα(c)aα(b)ndaα(b) = α(b)nsα(c)mα(c)adaα(b)

= α(b)nsα(c)mα(c)dα(b)tadaα(b) = α(b)nsα(c)mα(c)sα(c)dadaα(b)

= · · · = [mα(c)sα(c)]k−1mα(c)sα(c)(da)kα(b) ∈ Rα(c)(da)kα(b),

α(c) = α(c)dmα(c)aα(b)t = α(c)dasα(c)dα(b)nα(b)t = α(c)dadα(b)tα(b)nα(b)t

= α(c)dadmα(c)aα(b)tα(b)nα(b)t = α(c)dadaα(b)nα(b)tα(b)nα(b)t

= · · · = α(c)(da)kα(b)nα(b)t[α(b)nα(b)t]k−1 ∈ α(c)(da)kα(b)R.

Therefore, (da)k ∈ R
(b,c)
α for k ∈ N. 2

Corollary 2.11 Let a, b, c ∈ R with α(b), α(c) ∈ comm(a). If a ∈ R
(b,c)
α , then ak ∈ R

(b,c)
α for

k ∈ N. In this case, (ak)
(b,c)
α = (a

(b,c)
α )k.

Proof If a ∈ R
(b,c)
α , then ak ∈ R

(b,c)
α by Theorem 2.10. Let x = a

(b,c)
α . Then we have

α(b) = xaxaα(b) = x2a2α(b) = · · · = xkakα(b),

α(c) = α(c)axax = α(c)a2x2 = · · · = α(c)akxk

by Lemma 2.7. Since x ∈ α(b)R and x ∈ Rα(c), we have xk ∈ α(b)R and xk ∈ Rα(c). Hence,

ak ∈ R
(b,c)
α and (ak)

(b,c)
α = (a

(b,c)
α )k. 2

3. Further results on α-(b, c)-invertible elements

In this section, we continue to study some topics related to α-(b, c)-invertible elements. We

also explore the Jacobson’s lemma, Cline’s formula and strongly clean decompositions for α-
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(b, c)-invertible elements.

Theorem 3.1 Let a, b, c, d ∈ R such that a, d ∈ R
(b,c)
α and ad2 = dad. If α(b), α(c) ∈ comm(a, d),

then 1 + a
(b,c)
α d ∈ R

(b,c)
α if and only if a+ d ∈ R

(b,c)
α .

Proof Since d ∈ R
(b,c)
α , there are s, t ∈ R such that α(b) = sα(c)dα(b) and α(c) = α(c)dα(b)t.

Since α(b), α(c) ∈ comm(a), we have aa
(b,c)
α = a

(b,c)
α a by Lemma 2.7. If 1 + a

(b,c)
α d ∈ R

(b,c)
α , then

there exist m,n ∈ R such that α(b) = mα(c)(1 + a
(b,c)
α d)α(b) and α(c) = α(c)(1 + a

(b,c)
α d)α(b)n.

It follows that

α(b) = mα(c)aa(b,c)α (1 + a(b,c)α d)α(b) = mα(c)a(b,c)α (a+ d)α(b)

= mα(c)kα(c)(a + d)α(b) ∈ Rα(c)(a+ d)α(b),

since a
(b,c)
α = kα(c) = α(b)l for k, l ∈ R. Also we can conclude that

α(c) = α(c)(1 + a(b,c)α d)a(b,c)α aα(b)n

= α(c)a(b,c)α aα(b)n+ α(c)a(b,c)α daα(b)lα(b)n

= α(c)a(b,c)α aα(b)n+ α(c)a(b,c)α dadsα(c)α(b)lα(b)n

= α(c)a(b,c)α aα(b)n+ α(c)a(b,c)α ad2sα(c)α(b)lα(b)n

= α(c)aα(b)lα(b)n + α(c)dα(b)lα(b)n

= α(c)(a + d)α(b)lα(b)n ∈ α(c)(a + d)α(b)R,

since α(b), α(c) ∈ comm(d). Therefore, a+ d ∈ R
(b,c)
α .

Conversely, if a + d ∈ R
(b,c)
α , then there exist s′, t′ ∈ R such that α(b) = s′α(c)(a + d)α(b)

and α(c) = α(c)(a + d)α(b)t′. This implies that

α(b) = s′α(c)aα(b) + s′α(c)aa(b,c)α dα(b) = s′α(c)a(1 + a(b,c)α d)α(b)

= s′aα(c)(1 + a(b,c)α d)α(b) ∈ Rα(c)(1 + a(b,c)α d)α(b).

In addition, we also have

α(c) = α(c)aα(b)t′ + α(c)a(b,c)α adα(b)t′ = α(c)aα(b)t′ + α(c)a(b,c)α adsα(c)dα(b)t′

= α(c)aα(b)t′ + α(c)a(b,c)α ad2sα(c)α(b)t′ = α(c)aα(b)t′ + α(c)a(b,c)α dadsα(c)α(b)t′

= α(c)aα(b)t′ + α(c)a(b,c)α daα(b)t′ = α(c)(1 + a(b,c)α d)aα(b)t′

= α(c)(1 + a(b,c)α d)α(b)at′ ∈ α(c)(1 + a(b,c)α d)α(b)R.

Therefore, 1 + a
(b,c)
α d ∈ R

(b,c)
α and we are done. 2

Corollary 3.2 Let a, b, c ∈ R such that a ∈ R(b,c). If b, c ∈ comm(a), then 1 + a(b,c) ∈ R(b,c) if

and only if 1 + a ∈ R(b,c).

Proof Since a ∈ R(b,c), there exist m,n ∈ R such that b = mcab and c = cabn. Also since

b, c ∈ comm(a), we have a(b,c) = a(b,c)a by [12, Corollary 2.4]. If 1 + a(b,c) ∈ R(b,c), then there

are g, h ∈ R such that b = gc(1 + a(b,c))b and c = c(1 + a(b,c))bh. It yields that

b = gcaa(b,c)(1 + a(b,c))bh = gc(aa(b,c) + a(b,c))b
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= gca(b,c)(1 + a)b = gcpc(1 + a)b,

since a(b,c) = pc = bq for p, q ∈ R. Therefore, we conclude that

c = c(1 + a(b,c))a(b,c)abh = caa(b,c)bh+ ca(b,c)bh = cabqbh+ cbqbh

= c(1 + a)bqbh ∈ c(1 + a)bR.

Therefore, 1 + a ∈ R(b,c).

Conversely, if 1 + a ∈ R(b,c), then there are m′, n′ ∈ R such that b = m′c(1 + a)b and

c = c(1 + a)bn′. This shows that

b = m′caa(b,c)b+m′cab = m′aca(b,c)b+m′acb

= m′ac(1 + a(b,c))b ∈ Rc(1 + a(b,c))b.

We also have

c = ca(b,c)abn′ + cabn′ = ca(b,c)ban′ + cban′

= c(1 + a(b,c))ban′ ∈ c(1 + a(b,c))bR.

This implies that 1 + a(b,c) ∈ R(b,c) and we are done. 2

It was proved in [13] that if ab is Drazin invertible, then so is ba, and (ba)D = b[(ab)D]2a.

This equality is called Cline’s formula. Next, we discuss the Cline’s formula for α-(b, c)-invertible

elements.

Proposition 3.3 Let a, b, c, d, g, h ∈ R such that adh = hgh and hga = ada. If α(b), α(c) ∈

comm(ad, hg), then ad ∈ R
(b,c)
α if and only if hg ∈ R

(b,c)
α . In this case, (ad)

(b,c)
α = (hg)

(b,c)
α .

Proof If ad ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)adα(b) and α(c) =

α(c)adα(b)n. Since α(b), α(c) ∈ comm(ad, hg), it follows that

α(b) = mα(c)adadmα(c)α(b) = mα(c)hgadmα(c)α(b),

α(c) = α(c)adadα(b)nα(b)n = α(c)hgadα(b)nα(b)n

by Lemma 2.7. Therefore, we have

α(b) = mα(c)hgα(b) ∈ Rα(c)hgα(b),

α(c) = α(c)hgα(b)n ∈ α(c)hgα(b)R.

Let x = (ad)
(b,c)
α . This implies that

x = xadadx2 = xhgadx2 = xhgx,

xhgα(b) = xhgxadα(b) = xadα(b) = α(b),

α(c)hgx = α(c)adxhgx = α(c)adx = α(c).

Combining with x ∈ α(b)R and x ∈ Rα(c), we get (ad)
(b,c)
α = (hg)

(b,c)
α . Conversely, if hg ∈ R

(b,c)
α ,

then we can show ad ∈ R
(b,c)
α similarly. 2
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Corollary 3.4 Let R be an abelian ring and let a, b, c, d, g, h ∈ R such that adh = hgh and

hga = ada. Then ad ∈ R
(b,c)
α if and only if hg ∈ R

(b,c)
α . In this case, (ad)

(b,c)
α = (hg)

(b,c)
α .

More generally, we can extend Proposition 3.3 to the following new version of Cline’s formula

for α-(b, c)-invertible elements.

Theorem 3.5 Let a, b, c, d, g, h ∈ R such that α(b), α(c) ∈ comm(ad, g, h). If h ∈ R
(b,c)
α with

adh = hgh and hga = ada, then ad ∈ R
(b,c)
α if and only if gh ∈ R

(b,c)
α . In this case, we have

(gh)
(b,c)
α = g((ad)

(b,c)
α )2h, (ad)

(b,c)
α = h((gh)

(b,c)
α )2g.

Proof If gh ∈ R
(b,c)
α , then there exist s, t ∈ R such that α(b) = sα(c)ghα(b) = sα(c)sα(c)ghghα(b)

and α(c) = α(c)ghα(b)t = α(c)ghghα(b)tα(b)t since α(b), α(c) ∈ comm(gh). Hence α(b) =

(sα(c))2gadhα(b) and α(c) = α(c)gadh(α(b)t)2. Since h ∈ R
(b,c)
α , there is n′ ∈ R such that

α(c) = α(c)hα(b)n′. Then we have

(sα(c))2gadhα(b)n′ = α(b)n′,

α(c) = α(c)hα(b)n′gadh(α(b)t)2 = α(c)α(b)n′hgadh(α(b)t)2,

since α(b), α(c) ∈ comm(h). This implies that

α(b) = hsα(c)sα(c)gadα(b) = hsα(c)sgα(c)adα(b) ∈ Rα(c)adα(b)

and α(c)h = hα(c) = hα(c)α(b)n′hgadh(α(b)t)2. Thus, we have

α(c) = α(c)hgadh(α(b)t)2α(b)n′ = α(c)adhgh(α(b)t)2α(b)n′

= α(c)adhα(b)tsα(c)ghα(b)n′ = α(c)adα(b)htsα(c)g ∈ α(c)adα(b)R.

Moreover, it is clear that (gh)
(b,c)
α = sα(c) = α(b)t. Let y = h((gh)

(b,c)
α )2g. Then yadα(b) = α(b)

and α(c)ady = α(c). Moreover, we have

yady = h((gh)(b,c)α )2ghgh((gh)(b,c)α )2g = h((gh)(b,c)α )2g = y, y = α(b)ht(gh)(b,c)α g ∈ α(b)R,

y = h((gh)(b,c)α )2g = h(gh)(b,c)α sα(c)g = h(gh)(b,c)α sgα(c) ∈ Rα(c),

that is, (ad)
(b,c)
α = h((gh)

(b,c)
α )2g. The converse can be proved similarly. 2

Specifically, we have the following Cline’s formula for α-(b, c)-invertible elements.

Corollary 3.6 Let a, b, c, d ∈ R such that α(b), α(c) ∈ comm(a, d). If a ∈ R
(b,c)
α , then ad ∈ R

(b,c)
α

if and only if da ∈ R
(b,c)
α . In this case, we have (da)

(b,c)
α = d((ad)

(b,c)
α )2a, (ad)

(b,c)
α = a((da)

(b,c)
α )2d.

Corollary 3.7 Let a, b, c, d ∈ R such that b, c ∈ comm(a, d). If a ∈ R(b,c), then ad ∈ R(b,c) if

and only if da ∈ R(b,c).

A ring R is called semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. It can be easily

checked that every semicommutative ring is abelian.

Proposition 3.8 Let R be a semicommutative ring and let a, b, c, d, g, h ∈ R such that

adh = hgh and hga = ada. Then ad ∈ R
(b,c)
α if and only if gh ∈ R

(b,c)
α . In this case, we

have (gh)
(b,c)
α = g((ad)

(b,c)
α )2h, (ad)

(b,c)
α = h((gh)

(b,c)
α )3gad.
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Proof If ad ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)adα(b) = mα(c)hgα(b)

and α(c) = α(c)adα(b)n = α(c)hgα(b)n by Corollary 3.4. Since hga = ada and adα(b)n,mα(c)hg,

hgα(b)n ∈ E(R), we conclude that

α(b) = mα(c)adα(b)nadα(b) = α(b)mα(c)adadα(b)n

= α(b)mα(c)hgadα(b)n = α(b)mα(c)hadα(b)ng,

hgmα(c) = hgmα(c)hgα(b)n = mα(c)hghgα(b)n = mα(c)hg.

Therefore, we have

α(b)h = α(b)mα(c)adα(b)nhadα(b)ngh = α(b)adadα(b)nα(b)nmα(c)hadmα(c)gh

= α(b)hgad(α(b)n)3hadmα(c)gh = α(b)hg(α(b)n)2hadmα(c)gh,

that is, α(b)(h − hg(α(b)n)2hadmα(c)gh) = 0. Since R is semicommutative, we get α(b)nh =

α(b)nhg(α(b)n)2hadmα(c)gh. Hence α(b)nh(1 − g(α(b)n)2hadmα(c)gh) = 0. Then we have

α(b)nhg = α(b)nhg2(α(b)n)2hadmα(c)gh. This shows that

α(b) = α(b)nhgα(b) = α(b)nhg2(α(b)n)2hadmα(c)ghα(b) ∈ Rα(c)ghα(b).

Next, we have

α(c) = adα(b)nα(c) = mα(c)adadα(b)nα(c)

= mα(c)hgadα(b)nα(c) = mα(c)hadα(b)ngα(c).

This implies that (1 −mα(c)hadα(b)ng)α(c) = 0. Since R is a semicommutative ring, we have

mα(c) = mα(c)hadα(b)ngmα(c). Therefore, we have

mα(c)hg = mα(c)hgadα(b)ngmα(c)h = gmα(c)hgadα(b)nmα(c)h

= ghgmα(c)adα(b)nmα(c)h = ghmα(c)adgmα(c)mα(c)h,

since mα(c)h(1 − adα(b)ngmα(c)h) = 0. Then we have

α(c) = α(c)hgα(b)n = α(c)hgmα(c) = α(c)mα(c)hg

= α(c)ghα(b)nadgmα(c)mα(c)h ∈ α(c)ghα(b)R.

It is clear that mα(c) = α(b)n is the α-(b, c)-inverse of ad. Let x = (ad)
(b,c)
α . Then x = mα(c) =

α(b)n. Thus, x = (hg)
(b,c)
α by Corollary 3.4. Since xad = adx ∈ E(R), we conclude that

α(b) = α(b)nhg2(α(b)n)2hadmα(c)ghα(b) = mα(c)hg2α(b)nα(b)nhghα(b).

Since mα(c)hgα(b) = α(b), we have (mα(c)hg−1)α(b) = 0. Thus we get mα(c)hg2α(b) = gα(b).

Therefore, α(b) = gα(b)nα(b)nhghα(b) = gx2hghα(b). Similarly, we obtain

α(c) = α(c)ghα(b)nadgmα(c)mα(c)h = α(c)ghgmα(c)mα(c)h = α(c)ghgx2h.

Let y = gx2h. Then α(b) = yghα(b) and α(c) = α(c)ghy. And we have

yghy = gx2hghgx2h = gx2h = y, gx2h = gx2hadmα(c) ∈ Rα(c),

gx2h = gmα(c)adα(b)nxh = α(b)nadgx2h ∈ α(b)R.
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This implies that gx2hR = α(b)R and Rgx2h = Rα(c). Therefore, we have (gh)
(b,c)
α = y =

gx2h = g((ad)
(b,c)
α )2h. The converse can be proved similarly. 2

Proposition 3.9 Let a, b, c, d, g ∈ R such that a(ga)2 = adaga and agada = (ad)2a. If R is a

semicommutative ring, then ad ∈ R
(b,c)
α if and only if ga ∈ R

(b,c)
α .

Proof If ad ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)adα(b) and α(c) =

α(c)adα(b)n. Because R is semicommutative (hence abelian), we conclude that

α(b)n = α(b)nmα(c)adadadα(b)nα(b)n = α(b)nmα(c)agadadα(b)nα(b)n

= α(b)nmα(c)aadα(b)nadα(b)ng = α(b)nadα(b)nmα(c)aadα(b)ng.

Then α(b)na = α(b)nadα(b)nmα(c)aadα(b)nga. Since R is semicommutative and α(b)na(1 −

dα(b)nmα(c)aadα(b)nga) = 0, we have

α(b) = α(b)nadα(b) = α(b)nad2α(b)nmα(c)a2dα(b)ngaα(b)

= dα(b)nmα(c)a2dmα(c)gaα(b) ∈ Rα(c)gaα(b).

Since α(c) = mα(c)adadadα(b)nα(b)nα(c) = mα(c)agadα(b)nadα(b)nα(c), we get

(1−mα(c)agadα(b)n)α(c) = 0.

Then mα(c)a = mα(c)agadα(b)nmα(c)a and thus

mα(c)ad = mα(c)adgadα(b)nmα(c)a = gamα(c)ad2α(b)nmα(c)a.

Also it is clear that mα(c)ad = admα(c) since adα(b)n,mα(c)ad ∈ E(R). Then we have α(c) =

α(c)gaα(b)nad2α(b)nmα(c)a ∈ α(c)gaα(b)R, which implies that ga ∈ R
(b,c)
α . The converse can

be proved in a similar way. 2

Corollary 3.10 Let R be a semicommutative ring and a, b, c, d ∈ R. Then ad ∈ R(b,c) if and

only if da ∈ R(b,c).

It is well-known that 1 + ab is invertible if and only if 1 + ba is invertible, it is called the

Jacobson’s Lemma [14, Exercise 1.6]. The next proposition shows the similar result for α-(b, c)-

invertible elements.

Proposition 3.11 Let a, b, c, d, g, h ∈ R such that α(b), α(c) ∈ comm(ad, hg), adh = hgh and

hga = ada. Then (1− ad) ∈ R
(b,c)
α if and only if (1− hg) ∈ R

(b,c)
α .

Proof If (1 − ad) ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)(1 − ad)α(b) and

α(c) = α(c)(1− ad)α(b)n. Since adh = hgh and hga = ada, we get (hg − ad)(1− hg) = hg − ad

and (1 − hg)(hg − ad) = (1− ad)(hg − ad). Therefore, we have

α(b) = mα(c)(1 − hg)α(b) +mα(c)(hg − ad)α(b)

= mα(c)(1 − hg)α(b) +m(hg − ad)α(c)(1 − hg)α(b),

= [m+m(hg − ad)]α(c)(1 − hg)α(b) ∈ Rα(c)(1 − hg)α(b)

α(c) = α(c)(1 − hg)α(b)n+ α(c)(hg − ad)(1 − ad)α(b)n
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= α(c)(1 − hg)α(b)n+ α(c)mα(c)(1 − ad)(hg − ad)α(b)n(1 − ad)

= α(c)(1 − hg)α(b)n+ α(c)mα(c)(1 − hg)(hg − ad)α(b)n(1 − ad),

since α(b), α(c) ∈ comm(ad, hg). This shows that

α(c)(1 − ad)α(b) = (1− ad)α(c)α(b)

= (1− ad)α(c)(1 − hg)α(b)nα(b) + α(c)(1 − hg)(hg − ad)α(b)

= (1− ad)α(c)(1 − hg)α(b)nα(b) + α(c)(1 − hg)α(b)(hg − ad).

Since (hg − ad)(hg − ad) = 0, it follows that

mα(c)(1 − ad)α(b)(hg − ad) = m(1− ad)α(c)(1 − hg)α(b)nα(b)(hg − ad).

This implies that α(b)(hg−ad)n = (1−ad)α(b)n(1−hg)α(b)nα(b)(hg−ad)n, that is, α(c)(hg−

ad)α(b)n = α(c)(1 − hg)α(b)n(hg − ad)α(b)n. Therefore, we conclude that

α(c) = α(c)(1 − hg)α(b)n+ α(c)(1 − hg)α(b)n(hg − ad)α(b)n

= α(c)(1 − hg)α(b)[n+ n(hg − ad)α(b)n] ∈ α(c)(1 − hg)α(b)R,

proving (1− hg) ∈ R
(b,c)
α . The converse can be proved similarly. 2

Corollary 3.12 Let a, b, c, d ∈ R such that α(b), α(c) ∈ comm(ad, da), ad2 = dad and da2 =

ada. Then (1− ad) ∈ R
(b,c)
α if and only if (1− da) ∈ R

(b,c)
α .

If R is an abelian ring, then we have the similar result as follows.

Proposition 3.13 Let R be an abelian ring such that adh = hgh and hga = ada for

a, b, c, d, g, h ∈ R. Then (1 − ad) ∈ R
(b,c)
α if and only if (1 − hg) ∈ R

(b,c)
α .

Proof If (1−ad) ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)(1−ad)α(b), α(c) =

α(c)(1− ad)α(b)n. Since R is an abelian ring, we have mα(c)(1− ad) = (1− ad)mα(c) ∈ C(R).

This shows that

α(b)n = α(b)nmα(c)(1 − hg) + α(b)nmα(c)(hg − ad)

= α(b)nmα(c)(1 − hg) + α(b)nmα(c)(hg − ad)(1− hg)

= α(b)nmα(c)(1 − hg) + α(b)nα(b)n(hg − ad)(1 − ad)mα(c)(1 − hg)

since adh = hgh and hga = ada. It follows that α(b)n(1 − ad) = mα(c)(1 − hg) +mα(c)(hg −

ad)mα(c)(1 − hg). Therefore, we have

α(b) = mα(c)(1 − hg)α(b) +mα(c)(hg − ad)mα(c)(1 − hg)α(b)

= [m+mα(c)(hg − ad)m]α(c)(1 − hg)α(b) ∈ Rα(c)(1− hg)α(b).

Next, since (hg − ad)(1− ad) = hg − ad, we also have

mα(c) = (1− hg + hg − ad)α(b)nmα(c)

= (1− hg)α(b)nmα(c) +mα(c)(1 − ad)(hg − ad)mα(c)

= (1− hg)α(b)nmα(c) +mα(c)(1 − hg)(hg − ad)(1 − ad)mα(c)
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= (1− hg)α(b)nmα(c) +mα(c)(1 − hg)(hg − ad).

Then mα(c)(1−ad) = (1−hg)mα(c)+mα(c)(1−hg)(hg−ad). Since (hg−ad)(hg−ad) = 0, we

deduce that mα(c)(1−ad)(hg−ad) = (1−hg)mα(c)(hg−ad). This implies that mα(c)(1−ad) =

(1− hg)α(b)n+ (1− hg)α(b)n(hg − ad). Hence, we have

α(c) = α(c)(1 − ad)α(b)n = α(c)mα(c)(1 − ad)

= α(c)(1 − hg)α(b)[n+ n(hg − ad)] ∈ α(c)(1 − hg)α(b)R.

The converse can be proved similarly. 2

It was shown in [9, Theorem 2.19] that (b, c)-inverse has the analogous version for Jacobson’s

lemma. Similarly, we have the following result for α-(b, c)-inverses.

Proposition 3.14 Let a, b, c,m ∈ R. If y ∈ R is the α-(b, c)-inverse of a, then the following

statements are equivalent:

(1) m ∈ R
(b,c)
α ;

(2) 1 + (m− a)y is invertible;

(3) 1 + y(m− a) is invertible.

Proof The proof is similar to that of [9, Theorem 2.19]. 2

The following theorem shows the strongly clean decompositions for α-(b, c)-invertible ele-

ments.

Theorem 3.15 Let a, b, c ∈ R with α(b), α(c) ∈ comm2(a). Then the following statements are

equivalent:

(1) a ∈ R
(b,c)
α and a ∈ R

(c,b)
α ;

(2) α(b) = u + e, α(c) = v + e are strongly clean decompositions, eα(b) = α(b)e = eα(c) =

α(c)e = 0, α(b) ∈ Rα(c)a, α(c) ∈ aα(b)R and α(c) ∈ Rα(b)a, α(b) ∈ aα(c)R, where u, v ∈ U(R),

e ∈ E(R);

(3) α(b) = u + e, α(c) = v + e, ue = eu, ve = ev, α(b)R ∩ eR = α(c)R ∩ eR = {0} and

α(b) ∈ Rα(c)a, α(c) ∈ aα(b)R, α(c) ∈ Rα(b)a, α(b) ∈ aα(c)R, where u, v ∈ U(R) and e ∈ E(R).

Proof (1)⇒ (2). If a ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)aα(b) and

α(c) = α(c)aα(b)n. If a ∈ R
(c,b)
α , then there exist s, t ∈ R such that α(c) = sα(b)aα(c) and

α(b) = α(b)aα(c)t. By Lemma 2.7, we have

α(b)α(c) = α(c)α(b), mα(c)a = amα(c),

mα(c)α(b) = α(b)mα(c), mα(c)α(c) = α(c)mα(c),

since α(b), α(c) ∈ comm2(a). This shows that α(b) ∈ Rα(c)a, α(c) ∈ aα(b)R and α(c) ∈

Rα(b)a, α(b) ∈ aα(c)R. Let p ∈ rann(α(b)). Then we have mα(c)ap = msα(b)aα(c)ap =

msaα(c)aα(b)p = 0, that is, rann(α(b)) ⊆ rann(mα(c)a). It follows that mα(c)anaα(b) =

mα(c)a since α(b)naα(b) = α(b). Also since α(b)namα(c)a = α(b)na, we getmα(c)anamα(c)a =
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mα(c)ana. Let u = α(b)− 1 +mα(c)a. Then we have

(α(b)− 1 +mα(c)a)(mα(c)ana − 1 +mα(c)a)

= (mα(c)ana− 1 +mα(c)a)(α(b) − 1 +mα(c)a) = 1,

which shows u ∈ U(R). Take e = 1−mα(c)a. Then α(b) = u + e and eα(b) = α(b)e = eα(c) =

α(c)e = 0. Similarly, let k ∈ lann(α(c)). We deduce that

kmα(c)a = kα(b)na = kα(b)aα(c)tna = kα(c)α(b)atna = 0,

that is, lann(α(c)) ⊆ lann(mα(c)a). Because α(c)amα(c) = α(c) and amα(c)amα(c) = amα(c),

we also have α(c)ammα(c)a = mα(c)a, and amα(c)ammα(c)a = ammα(c)a. This shows that

(α(c) − 1 +mα(c)a)(amamα(c) − 1 +mα(c)a)

= (amamα(c)− 1 +mα(c)a)(α(c) − 1 +mα(c)a) = 1.

Let v = α(c)− 1 +mα(c)a. Then v ∈ U(R) and α(c) = v + e.

(2)⇒ (1). Since α(b) = u + e and α(c) = v + e, we get α(b)α(b) = (u + e)α(b) = uα(b) and

α(c)α(c) = α(c)(v + e) = α(c)v. Because u, v ∈ U(R), α(b) ∈ Rα(c)a and α(c) ∈ aα(b)R, we

have α(b) = u−1α(b)α(b) ∈ Rα(c)aα(b), α(c) = α(c)α(c)v−1 ∈ α(c)aα(b)R. Similarly, we can

get α(b) ∈ α(b)aα(c)R and α(c) ∈ Rα(b)aα(c), that is, a ∈ R
(b,c)
α and a ∈ R

(c,b)
α .

(2)⇔ (3). It is obvious. 2

Theorem 3.16 Let R be an abelian ring and a ∈ R
(b,c)
α . Then α(b) = u + e, α(c) = v + e are

strongly clean decompositions, where u, v ∈ U(R) and e ∈ E(R).

Proof (1)⇒ (2). If a ∈ R
(b,c)
α , then there exist m,n ∈ R such that α(b) = mα(c)aα(b) and

α(c) = α(c)aα(b)n. It follows that naα(b), α(c)am ∈ E(R) since α(b)n = mα(c). Also since R is

an abelian ring, we get

α(b)na = α(b)naα(b)na = naα(b),

mα(c)a = α(c)ammα(c)a = α(c)am = amα(c).

This yields that

(α(b)− 1 +mα(c)a)(mα(c)ana − 1 +mα(c)a)

= (mα(c)ana− 1 +mα(c)a)(α(b) − 1 +mα(c)a) = 1.

Let u = α(b)−1+mα(c)a. Then u ∈ U(R). Take e = 1−mα(c)a. Then α(b) = u+e. Similarly,

let v = α(c)− 1 +mα(c)a. Then we have

(α(c) − 1 +mα(c)a)(amamα(c) − 1 +mα(c)a)

= (amamα(c)− 1 +mα(c)a)(α(c) − 1 +mα(c)a) = 1.

Thus, v ∈ U(R) and α(c) = v + e. 2

Corollary 3.17 If R is an abelian ring and a ∈ R(b,c), then b = u + e, c = v + e are strongly

clean decompositions, where u, v ∈ U(R), e ∈ E(R) and a, b, c ∈ R.
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According to [4], a ∈ R is Bott-Duffin (e, f)-invertible if there is y ∈ R such that y = ey = yf ,

yae = e and fay = f , where e, f ∈ E(R).

Corollary 3.18 If R is an abelian ring and a ∈ R is Bott-Duffin (e, f)-invertible, then e = u+w

and f = v + w are strongly clean decompositions, where u, v ∈ U(R) and e, f, w ∈ E(R).
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[9] Yuanyuan KE, D. S. CVETKOVIĆ-IlIĆ, Jianlong CHEN, et al. New results on (b, c)-inverses. Linear Mul-
tilinear Algebra, 2018, 66(3): 447–458.

[10] Long WANG. Further results on hybrid (b, c)-inverses in rings. Faculty Sciences Math., 2019, 15: 4943–4950.

[11] Cang WU, Liang ZHAO. Central drazin inverses. J. Algebra Appl., 2019, 18(4): 1950065, 13 pp.

[12] M. P. DRAZIN. Commuting properties of generalized inverses. Linear Multilinear Algebra, 2013, 61(12):

167–1681.

[13] R. E. CLINE. An Application of Representations for the Generalized Inverse of a Matrix. Tech. Summary
Rep. 592, Math. Research Center, U.S. Army, Univ. Wisconsin, Madison, 1965.

[14] T. Y. LAM. A First Course in Noncommutative Rings. Graduate Texts in Mathematics. 2nd ed. Vol.131,

Berlin, Springer-Verlag, 2001.


	1. Introduction
	2. -(b, c)-inverses and their properties
	3. Further results on -(b, c)-invertible elements

