Relative (b, c)-Inverses with Respect to a Ring Endomorphism

Jun JIAO, Wenxi LI, Liang ZHAO*
School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract

We study the relative properties of (b, c)-inverses with respect to a ring endomorphism. A new class of generalized inverses named α - (b, c)-inverse is introduced and studied in a more general setting. We show by giving an example that (b, c)-inverses behave quite differently from $\alpha-(b, c)$-inverses. The condition that an $\alpha-(b, c)$-invertible element is precisely a (b, c)-invertible element is investigated. We also study the strongly clean decompositions for α - (b, c)-inverses. Some well-known results on (b, c)-inverses are extended and unified.

Keywords $\alpha-(b, c)$-inverse; Cline's formula; Jacobson's lemma; strongly clean decomposition
MR(2020) Subject Classification 16U90; 16W20; 16E50

1. Introduction

Throughout this paper, R is a unitary associative ring and α is an endomorphism of R. The center and units of R are denoted by $C(R)$ and $U(R)$, respectively. Furthermore, we denote the set of all idempotent elements of R by $E(R)$. An involution $*: R \rightarrow R$ is an anti-isomorphism which satisfies $\left(a^{*}\right)^{*}=a,(a b)^{*}=b^{*} a^{*},(a+b)^{*}=a^{*}+b^{*}$ for all $a, b \in R$. For any $a \in R$, we use $\operatorname{lann}(a)=\{x \in R: x a=0\}$ and $\operatorname{rann}(a)=\{x \in R: a x=0\}$ to denote the left and right annihilator of a, respectively. A ring R is abelian if every idempotent is central. According to [1], an endomorphism α of a ring R is called rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$, and R is an α-rigid ring [2] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism, and α-rigid rings are reduced rings. Recall from [3] that a ring R is right α-reversible if whenever $a b=0$ for $a, b \in R$, then $b \alpha(a)=0$.

An element $a \in R$ is called regular if there is $x \in R$ such that $a x a=a$. Such an x is called an inner inverse of a and is denoted as a^{-}and the set of all inner invertible elements of R is denoted by R^{-}. An element $a \in R$ is group invertible if there is $y \in R$ such that aya $=a$, yay $=y$, $a y=y a$. The set of all group invertible elements is denoted by $R^{\#}$. It is well known that a is group invertible if and only if $a \in a^{2} R \cap R a^{2}$. Given a ring R and $a, b, c, y \in R$, recall from [4] that y is the (b, c)-inverse of a if yay $=y, y R=b R$ and $R y=R c$, and is denoted by $a^{(b, c)}$. It was shown in [4, Theorem 2.2] that an element a is (b, c)-invertible if and only if $b \in R c a b$ and $c \in c a b R$. The set of all (b, c)-invertible elements of R is denoted by $R^{(b, c)}$. More results

[^0]on (b, c)-inverses can be found in [5-10]. According to [11], an element $a \in R$ is central Drazin invertible, if there is $x \in R$ such that $x a \in C(R), x a x=x$ and $a^{n+1} x=a^{n}$ for some integer $n \geq 0$.

In this paper, we further study the properties of (b, c)-inverses from a new perspective. More precisely, we study the relative properties of (b, c)-inverses with respect to a ring endomorphism. The new concept of $\alpha-(b, c)$-inverses is introduced and investigated. In particular, it is easy to see that α - (b, c)-inverse is just the general (b, c)-inverse when $\alpha=1_{R}$. However, we shall give an example to show that an α - (b, c)-invertible element need not be (b, c)-invertible, and a (b, c)-invertible element need not be $\alpha-(b, c)$-invertible. Furthermore, the condition that an α - (b, c)-invertible element is precisely a (b, c)-invertible element is discussed. Various properties including Jacobson's lemma and Cline's formula of $\alpha-(b, c)$-inverses are studied. Strongly clean decompositions for α - (b, c)-inverses are also considered.

This paper is organized as follows:
In Section 2, we define and investigate the $\alpha-(b, c)$-inverse of an element in a unitary associative ring. An example is given to show that $\alpha-(b, c)$-invertible elements are quite different from (b, c)-invertible elements (Example 2.2). If $a, b, c \in R$ and $\alpha(e)=e$ for any idempotent e, it is proved that a is (b, c)-invertible if and only if a is $\alpha-(b, c)$-invertible with $b, c \in R^{-}$(Proposition 2.3). In Section 3, we further study the properties of α-(b, c)-invertible elements, including Jacobson's lemma, strongly clean decompositions and Cline's formula (Corollary 3.12, Theorems 3.15 and 3.5). In particular, we obtain the strongly clean decomposition of Bott-Duffin (e, f)-inverse (Corollary 3.18).

2. α-(b, c)-inverses and their properties

In this section, we define and study a more general case of (b, c)-inverses that is closely related to an endomorphism of a ring, and is called α - (b, c)-inverse. However, we shall give an example to show that in general α - (b, c)-invertible elements are different with (b, c)-invertible elements.

We begin with the following definition.
Definition 2.1 Let $a, b, c \in R$ and let α be an endomorphism of R. We say that a is $\alpha-(b, c)-$ invertible if there is $x \in R$ such that

$$
x a x=x, x R=\alpha(b) R, \quad R x=R \alpha(c) .
$$

Any element x satisfying the above conditions is called the $\alpha-(b, c)$-inverse of a, denoted as $a_{\alpha}^{(b, c)}$. The set of all $\alpha-(b, c)$-invertible elements of R is denoted by $R_{\alpha}^{(b, c)}$.

In particular, if $\alpha=1_{R}$, then it is clear that α - (b, c)-inverses coincide with the general (b, c) inverses. Moreover, it is obvious that the $\alpha-(b, c)$-inverse of an element is unique, and $a \in R$ is $\alpha-(b, c)$-invertible if and only if $\alpha(b) \in R \alpha(c) a \alpha(b)$ and $\alpha(c) \in \alpha(c) a \alpha(b) R$.

The following example shows that α - (b, c)-invertible elements can be quite different from (b, c)-invertible elements.

Example 2.2 Let \mathbb{Z} be the ring of integers. Consider the ring

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}
$$

Let $\alpha: R \rightarrow R$ be an endomorphism defined by

$$
\alpha\left(\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)
$$

Take the elements

$$
a=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), b=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), c=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

in R. Then it is clear that a is (b, c)-invertible. However, $\alpha(c)=c, \alpha(b)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. This shows that $\alpha(b) \in R \alpha(c) a \alpha(b)$ and $\alpha(c) \notin \alpha(c) a \alpha(b) R$. Therefore, a is not α - (b, c)-invertible.

On the other hand, let

$$
a=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad b=c=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \in R
$$

then $c a b=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and a is $\alpha-(b, c)$-invertible. However, $b \notin R c a b$ and $c \notin c a b R$, that is, a is not (b, c)-invertible.

The next proposition shows the equivalence of α - (b, c)-invertibility and (b, c)-invertibility of an element.

Proposition 2.3 Let $a, b, c \in R$ and $\alpha(e)=e$ for any $e \in E(R)$. Then $a \in R^{(b, c)}$ if and only if $a \in R_{\alpha}^{(b, c)}$ and $b, c \in R^{-}$.

Proof If $a \in R^{(b, c)}$, then there exist $m, n \in R$ such that $b=m c a b, c=c a b n$. It is clear that $b, c \in R^{-}$. Since $b n=m c$, we get $a b n, m c a \in E(R)$. Since $c^{-} c \in E(R)$, it follows that

$$
\alpha(b)=\alpha(m c a b)=m c a \alpha(b)=m c \alpha\left(c^{-}\right) \alpha(c) a \alpha(b) \in R \alpha(c) a \alpha(b)
$$

Similarly, we conclude that $\alpha(c)=\alpha(c) a b n=\alpha(c) a \alpha(b) \alpha\left(b^{-}\right) b n \in \alpha(c) a \alpha(b) R$.
Conversely, if $a \in R_{\alpha}^{(b, c)}$, then there are $s, t \in R$ such that $\alpha(b)=s \alpha(c) a \alpha(b)$ and $\alpha(c)=$ $\alpha(c) a \alpha(b) t$. This shows that

$$
\alpha(b) \alpha\left(b^{-}\right)=s \alpha(c) a \alpha(b) \alpha\left(b^{-}\right), \quad \alpha\left(c^{-}\right) \alpha(c)=\alpha\left(c^{-}\right) \alpha(c) a \alpha(b) t
$$

Therefore, we have $b b^{-}=s \alpha(c) c^{-} c a b b^{-}$and $c^{-} c=c^{-} c a b b^{-} \alpha(b) t$. Then $b=s \alpha(c) c^{-} c a b \in R c a b$ and $c=c a b b^{-} \alpha(b) t \in c a b R$.

Note that if R is an α-rigid ring, then $\alpha(e)=e$ for any $e \in E(R)$ by [3, Proposition 2.5]. Also if α is a monomorphism and R is a right α-reversible ring, then $\alpha(e)=e$ for any $e \in E(R)$ by [3, Theorem 2.13]. Thus the rings that satisfy the condition $\alpha(e)=e$ for any $e \in E(R)$ exist.

Proposition 2.4 Let $a, b, c, x \in R$ such that $\alpha(e)=e$ for any $e \in E(R)$. If x is the (b, c)-inverse of a, then x is the $\alpha-(b, c)$-inverse of a.

Proof If x is the (b, c)-inverse of a, then $x a b=b, c a x=c$ and $b, c \in R^{-}$. It follows that $\alpha(b)=$ $x a \alpha(b)$ and $\alpha(c)=\alpha(c) a x$ since $x a, a x \in E(R)$. Also since $x \in b R=\alpha(b) \alpha\left(b^{-}\right) b R \subseteq \alpha(b) R$ and $x \in R c=R c \alpha\left(c^{-}\right) \alpha(c) \subseteq R \alpha(c)$, we get $x R=\alpha(b) R$ and $R x=R \alpha(c)$. Combining with $x a x=x$, then x is the $\alpha-(b, c)$-inverse of a.

In particular, if an endomorphism α of a ring R is an automorphism, then we have the following equivalence.

Theorem 2.5 Let $a, b, c \in R$ and let α be an automorphism of R. Then $a \in R^{(b, c)}$ if and only if $\alpha(a) \in R_{\alpha}^{(b, c)}$.

Proof If $\alpha(a) \in R_{\alpha}^{(b, c)}$, then there are $s, t \in R$ such that $\alpha(b)=s \alpha(c) \alpha(a) \alpha(b)$ and $\alpha(c)=$ $\alpha(c) \alpha(a) \alpha(b) t$. Since α is an epimorphism, there are $g, h \in R$ such that $s=\alpha(g)$ and $t=\alpha(h)$. This implies that $\alpha(b)=\alpha(g) \alpha(c) \alpha(a) \alpha(b)=\alpha(g c a b), \alpha(c)=\alpha(c) \alpha(a) \alpha(b) \alpha(h)=\alpha(c a b h)$. Since α is a monomorphism, we get $b=g c a b \in R c a b, c=c a b h \in c a b R$. Therefore, we have $a \in R^{(b, c)}$. The converse is clear.

The next corollary shows a particular case of $\alpha-(b, c)$-invertible elements.
Corollary 2.6 Let $a \in R^{-}, k \in \mathbb{N}$ and $\alpha(e)=e$ for any idempotent e. If $e \in C(R)$, then a is α - $\left(a^{k}, a^{k}\right)$-invertible if and only if a is central Drazin invertible.

The proof of the following auxiliary lemma is similar to that of [12, Corollary 2.4].
Lemma 2.7 Let $a, b, c, x \in R$. If x is the $\alpha-(b, c)$-inverse of a, then we have the following assertions:
(1) If $\alpha(b), \alpha(c) \in \operatorname{comm}(a)$, then $x \in \operatorname{comm}(a)$.
(2) If $\alpha(b), \alpha(c) \in \operatorname{comm}^{2}(a)$, then $x \in \operatorname{comm}(\alpha(b), \alpha(c))$ and $\alpha(b) \in \operatorname{comm}(\alpha(c))$.

The following example shows that the endomorphism α in Lemma 2.7 actually exists.
Example 2.8 Let R and $\alpha: R \rightarrow R$ be the ring and the ring endomorphism in Example 2.2. Take $a=b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Then $\alpha(b)=b$. It is clear that $\alpha(b) \in \operatorname{comm}(a)$. Moreover, let any $k \in R$ such that

$$
k=\left(\begin{array}{ll}
p & q \\
0 & s
\end{array}\right) \in \operatorname{comm}(a)
$$

for some $p, q, s \in \mathbb{Z}$. Then it can be easily checked that k has the form of $k=\left(\begin{array}{ll}p & 0 \\ 0 & s\end{array}\right)$. Therefore, $\alpha(b) \in \operatorname{comm}(k)$, that is, $\alpha(b) \in \operatorname{comm}^{2}(a)$.

For any two elements $a, d \in R$, the next proposition shows the equivalence of $\alpha-(b, c)$ invertibility of a and $a+d$ under some suitable conditions.

Proposition 2.9 Let $a, b, c, d \in R$ with $d \in C(R)$ and $d^{2}=0$. Then $a \in R_{\alpha}^{(b, c)}$ if and only if $a+d \in R_{\alpha}^{(b, c)}$.

Proof If $a \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a \alpha(b)$ and $\alpha(c)=$
$\alpha(c) a \alpha(b) n$. Since $d \in C(R)$ and $d^{2}=0$, it follows that

$$
\begin{aligned}
\alpha(b) & =m \alpha(c)(a+d) \alpha(b)-m \alpha(c) d \alpha(b) \\
& =m \alpha(c)(a+d) \alpha(b)-m \alpha(c) d \alpha(b)-m \alpha(c) d m \alpha(c) d \alpha(b) \\
& =[m-m \alpha(c) d m] \alpha(c)(a+d) \alpha(b) \in \operatorname{R\alpha }(c)(a+d) \alpha(b) .
\end{aligned}
$$

Similarly, we can get $\alpha(c)=\alpha(c)(a+d) \alpha(b)[n-n d \alpha(b) n] \in \alpha(c)(a+d) \alpha(b) R$.
Conversely, if $a+d \in R_{\alpha}^{(b, c)}$, then there is $s \in R$ such that $\alpha(b)=s \alpha(c)(a+d) \alpha(b)$. This implies that

$$
\alpha(b)=s \alpha(c) a \alpha(b)+s \alpha(c) d s \alpha(c)(a+d) \alpha(b)=[s+s \alpha(c) d s] \alpha(c) a \alpha(b) \in R \alpha(c) a \alpha(b) .
$$

Also we can prove $\alpha(c) \in \alpha(c) a \alpha(b) R$ in a similar way, as desired.
Theorem 2.10 Let $a, b, c, d \in R$ with $\alpha(b), \alpha(c) \in \operatorname{comm}(a, d)$. If $a, d \in R_{\alpha}^{(b, c)}$, then $(d a)^{k} \in$ $R_{\alpha}^{(b, c)}$ for $k \in \mathbb{N}$.

Proof If $a \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a \alpha(b)$ and $\alpha(c)=$ $\alpha(c) a \alpha(b) n$. Since $\alpha(b), \alpha(c) \in \operatorname{comm}(a)$, we have $a \alpha(b) n=m \alpha(c) a$ by Lemma 2.7. If $d \in R_{\alpha}^{(b, c)}$, then there exist $s, t \in R$ such that $\alpha(b)=s \alpha(c) d \alpha(b)$ and $\alpha(c)=\alpha(c) d \alpha(b) t$. Since $\alpha(b), \alpha(c) \in$ $\operatorname{comm}(d)$, we get $d \alpha(b) t=s \alpha(c) d$. We conclude that

$$
\begin{aligned}
\alpha(b) & =m \alpha(c) d \alpha(b) \operatorname{ta\alpha }(b)=m \alpha(c) s \alpha(c) a \alpha(b) n d a \alpha(b)=\alpha(b) n s \alpha(c) m \alpha(c) a d a \alpha(b) \\
& =\alpha(b) n s \alpha(c) m \alpha(c) d \alpha(b) \operatorname{tada\alpha }(b)=\alpha(b) n s \alpha(c) m \alpha(c) \operatorname{sa}(c) \operatorname{dada\alpha }(b) \\
& =\cdots=[m \alpha(c) s \alpha(c)]^{k-1} m \alpha(c) \operatorname{so}(c)(d a)^{k} \alpha(b) \in R \alpha(c)(d a)^{k} \alpha(b) \\
\alpha(c) & =\alpha(c) d m \alpha(c) \operatorname{a} \alpha(b) t=\alpha(c) \operatorname{das} \alpha(c) d \alpha(b) n \alpha(b) t=\alpha(c) d a d \alpha(b) \operatorname{ta}(b) n \alpha(b) t \\
& =\alpha(c) d a d m \alpha(c) a \alpha(b) \operatorname{t\alpha }(b) n \alpha(b) t=\alpha(c) d a d a \alpha(b) n \alpha(b) t \alpha(b) n \alpha(b) t \\
& =\cdots=\alpha(c)(d a)^{k} \alpha(b) n \alpha(b) t[\alpha(b) n \alpha(b) t]^{k-1} \in \alpha(c)(d a)^{k} \alpha(b) R .
\end{aligned}
$$

Therefore, $(d a)^{k} \in R_{\alpha}^{(b, c)}$ for $k \in \mathbb{N}$.
Corollary 2.11 Let $a, b, c \in R$ with $\alpha(b), \alpha(c) \in \operatorname{comm}(a)$. If $a \in R_{\alpha}^{(b, c)}$, then $a^{k} \in R_{\alpha}^{(b, c)}$ for $k \in \mathbb{N}$. In this case, $\left(a^{k}\right)_{\alpha}^{(b, c)}=\left(a_{\alpha}^{(b, c)}\right)^{k}$.

Proof If $a \in R_{\alpha}^{(b, c)}$, then $a^{k} \in R_{\alpha}^{(b, c)}$ by Theorem 2.10. Let $x=a_{\alpha}^{(b, c)}$. Then we have

$$
\begin{aligned}
& \alpha(b)=x a x a \alpha(b)=x^{2} a^{2} \alpha(b)=\cdots=x^{k} a^{k} \alpha(b) \\
& \alpha(c)=\alpha(c) \operatorname{axax}=\alpha(c) a^{2} x^{2}=\cdots=\alpha(c) a^{k} x^{k}
\end{aligned}
$$

by Lemma 2.7. Since $x \in \alpha(b) R$ and $x \in R \alpha(c)$, we have $x^{k} \in \alpha(b) R$ and $x^{k} \in R \alpha(c)$. Hence, $a^{k} \in R_{\alpha}^{(b, c)}$ and $\left(a^{k}\right)_{\alpha}^{(b, c)}=\left(a_{\alpha}^{(b, c)}\right)^{k}$.

3. Further results on α-($b, c)$-invertible elements

In this section, we continue to study some topics related to $\alpha-(b, c)$-invertible elements. We also explore the Jacobson's lemma, Cline's formula and strongly clean decompositions for α -
(b, c)-invertible elements.
Theorem 3.1 Let $a, b, c, d \in R$ such that $a, d \in R_{\alpha}^{(b, c)}$ and $a d^{2}=d a d$. If $\alpha(b), \alpha(c) \in \operatorname{comm}(a, d)$, then $1+a_{\alpha}^{(b, c)} d \in R_{\alpha}^{(b, c)}$ if and only if $a+d \in R_{\alpha}^{(b, c)}$.

Proof Since $d \in R_{\alpha}^{(b, c)}$, there are $s, t \in R$ such that $\alpha(b)=s \alpha(c) d \alpha(b)$ and $\alpha(c)=\alpha(c) d \alpha(b) t$. Since $\alpha(b), \alpha(c) \in \operatorname{comm}(a)$, we have $a a_{\alpha}^{(b, c)}=a_{\alpha}^{(b, c)} a$ by Lemma 2.7. If $1+a_{\alpha}^{(b, c)} d \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b)$ and $\alpha(c)=\alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b) n$. It follows that

$$
\begin{aligned}
\alpha(b) & =m \alpha(c) a a_{\alpha}^{(b, c)}\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b)=m \alpha(c) a_{\alpha}^{(b, c)}(a+d) \alpha(b) \\
& =m \alpha(c) k \alpha(c)(a+d) \alpha(b) \in R \alpha(c)(a+d) \alpha(b)
\end{aligned}
$$

since $a_{\alpha}^{(b, c)}=k \alpha(c)=\alpha(b) l$ for $k, l \in R$. Also we can conclude that

$$
\begin{aligned}
\alpha(c) & =\alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) a_{\alpha}^{(b, c)} a \alpha(b) n \\
& =\alpha(c) a_{\alpha}^{(b, c)} a \alpha(b) n+\alpha(c) a_{\alpha}^{(b, c)} d a \alpha(b) l \alpha(b) n \\
& =\alpha(c) a_{\alpha}^{(b, c)} a \alpha(b) n+\alpha(c) a_{\alpha}^{(b, c)} d a d s \alpha(c) \alpha(b) l \alpha(b) n \\
& =\alpha(c) a_{\alpha}^{(b, c)} a \alpha(b) n+\alpha(c) a_{\alpha}^{(b, c)} a d^{2} s \alpha(c) \alpha(b) l \alpha(b) n \\
& =\alpha(c) a \alpha(b) l \alpha(b) n+\alpha(c) d \alpha(b) l \alpha(b) n \\
& =\alpha(c)(a+d) \alpha(b) l \alpha(b) n \in \alpha(c)(a+d) \alpha(b) R,
\end{aligned}
$$

since $\alpha(b), \alpha(c) \in \operatorname{comm}(d)$. Therefore, $a+d \in R_{\alpha}^{(b, c)}$.
Conversely, if $a+d \in R_{\alpha}^{(b, c)}$, then there exist $s^{\prime}, t^{\prime} \in R$ such that $\alpha(b)=s^{\prime} \alpha(c)(a+d) \alpha(b)$ and $\alpha(c)=\alpha(c)(a+d) \alpha(b) t^{\prime}$. This implies that

$$
\begin{aligned}
\alpha(b) & =s^{\prime} \alpha(c) a \alpha(b)+s^{\prime} \alpha(c) a a_{\alpha}^{(b, c)} d \alpha(b)=s^{\prime} \alpha(c) a\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b) \\
& =s^{\prime} a \alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b) \in R \alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b)
\end{aligned}
$$

In addition, we also have

$$
\begin{aligned}
\alpha(c) & =\alpha(c) a \alpha(b) t^{\prime}+\alpha(c) a_{\alpha}^{(b, c)} a d \alpha(b) t^{\prime}=\alpha(c) a \alpha(b) t^{\prime}+\alpha(c) a_{\alpha}^{(b, c)} a d s \alpha(c) d \alpha(b) t^{\prime} \\
& =\alpha(c) a \alpha(b) t^{\prime}+\alpha(c) a_{\alpha}^{(b, c)} a d^{2} s \alpha(c) \alpha(b) t^{\prime}=\alpha(c) a \alpha(b) t^{\prime}+\alpha(c) a_{\alpha}^{(b, c)} d a d s \alpha(c) \alpha(b) t^{\prime} \\
& =\alpha(c) a \alpha(b) t^{\prime}+\alpha(c) a_{\alpha}^{(b, c)} d a \alpha(b) t^{\prime}=\alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) a \alpha(b) t^{\prime} \\
& =\alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b) a t^{\prime} \in \alpha(c)\left(1+a_{\alpha}^{(b, c)} d\right) \alpha(b) R .
\end{aligned}
$$

Therefore, $1+a_{\alpha}^{(b, c)} d \in R_{\alpha}^{(b, c)}$ and we are done.
Corollary 3.2 Let $a, b, c \in R$ such that $a \in R^{(b, c)}$. If $b, c \in \operatorname{comm}(a)$, then $1+a^{(b, c)} \in R^{(b, c)}$ if and only if $1+a \in R^{(b, c)}$.

Proof Since $a \in R^{(b, c)}$, there exist $m, n \in R$ such that $b=m c a b$ and $c=c a b n$. Also since $b, c \in \operatorname{comm}(a)$, we have $a^{(b, c)}=a^{(b, c)} a$ by [12, Corollary 2.4]. If $1+a^{(b, c)} \in R^{(b, c)}$, then there are $g, h \in R$ such that $b=g c\left(1+a^{(b, c)}\right) b$ and $c=c\left(1+a^{(b, c)}\right) b h$. It yields that

$$
b=g c a a^{(b, c)}\left(1+a^{(b, c)}\right) b h=g c\left(a a^{(b, c)}+a^{(b, c)}\right) b
$$

$$
=g c a^{(b, c)}(1+a) b=g c p c(1+a) b
$$

since $a^{(b, c)}=p c=b q$ for $p, q \in R$. Therefore, we conclude that

$$
\begin{aligned}
c & =c\left(1+a^{(b, c)}\right) a^{(b, c)} a b h=c a a^{(b, c)} b h+c a^{(b, c)} b h=c a b q b h+c b q b h \\
& =c(1+a) b q b h \in c(1+a) b R
\end{aligned}
$$

Therefore, $1+a \in R^{(b, c)}$.
Conversely, if $1+a \in R^{(b, c)}$, then there are $m^{\prime}, n^{\prime} \in R$ such that $b=m^{\prime} c(1+a) b$ and $c=c(1+a) b n^{\prime}$. This shows that

$$
\begin{aligned}
b & =m^{\prime} c a a^{(b, c)} b+m^{\prime} c a b=m^{\prime} a c a^{(b, c)} b+m^{\prime} a c b \\
& =m^{\prime} a c\left(1+a^{(b, c)}\right) b \in R c\left(1+a^{(b, c)}\right) b .
\end{aligned}
$$

We also have

$$
\begin{aligned}
c & =c a^{(b, c)} a b n^{\prime}+c a b n^{\prime}=c a^{(b, c)} b a n^{\prime}+c b a n^{\prime} \\
& =c\left(1+a^{(b, c)}\right) b a n^{\prime} \in c\left(1+a^{(b, c)}\right) b R .
\end{aligned}
$$

This implies that $1+a^{(b, c)} \in R^{(b, c)}$ and we are done.
It was proved in [13] that if $a b$ is Drazin invertible, then so is $b a$, and $(b a)^{D}=b\left[(a b)^{D}\right]^{2} a$. This equality is called Cline's formula. Next, we discuss the Cline's formula for $\alpha-(b, c)$-invertible elements.

Proposition 3.3 Let $a, b, c, d, g, h \in R$ such that $a d h=h g h$ and $h g a=a d a$. If $\alpha(b), \alpha(c) \in$ $\operatorname{comm}(a d, h g)$, then $a d \in R_{\alpha}^{(b, c)}$ if and only if $h g \in R_{\alpha}^{(b, c)}$. In this case, $(a d)_{\alpha}^{(b, c)}=(h g)_{\alpha}^{(b, c)}$.
Proof If $a d \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a d \alpha(b)$ and $\alpha(c)=$ $\alpha(c) a d \alpha(b) n$. Since $\alpha(b), \alpha(c) \in \operatorname{comm}(a d, h g)$, it follows that

$$
\begin{aligned}
& \alpha(b)=m \alpha(c) \operatorname{adadm} \alpha(c) \alpha(b)=m \alpha(c) h g a d m \alpha(c) \alpha(b), \\
& \alpha(c)=\alpha(c) \operatorname{adad} \alpha(b) n \alpha(b) n=\alpha(c) h g a d \alpha(b) n \alpha(b) n
\end{aligned}
$$

by Lemma 2.7. Therefore, we have

$$
\begin{aligned}
& \alpha(b)=m \alpha(c) h g \alpha(b) \in R \alpha(c) h g \alpha(b), \\
& \alpha(c)=\alpha(c) h g \alpha(b) n \in \alpha(c) h g \alpha(b) R .
\end{aligned}
$$

Let $x=(a d)_{\alpha}^{(b, c)}$. This implies that

$$
\begin{gathered}
x=x a d a d x^{2}=x h g a d x^{2}=x h g x, \\
x h g \alpha(b)=x h g x a d \alpha(b)=x a d \alpha(b)=\alpha(b), \\
\alpha(c) h g x=\alpha(c) a d x h g x=\alpha(c) a d x=\alpha(c) .
\end{gathered}
$$

Combining with $x \in \alpha(b) R$ and $x \in R \alpha(c)$, we get $(a d)_{\alpha}^{(b, c)}=(h g)_{\alpha}^{(b, c)}$. Conversely, if $h g \in R_{\alpha}^{(b, c)}$, then we can show $a d \in R_{\alpha}^{(b, c)}$ similarly.

Corollary 3.4 Let R be an abelian ring and let $a, b, c, d, g, h \in R$ such that adh $=h g h$ and $h g a=a d a$. Then $a d \in R_{\alpha}^{(b, c)}$ if and only if $h g \in R_{\alpha}^{(b, c)}$. In this case, $(a d)_{\alpha}^{(b, c)}=(h g)_{\alpha}^{(b, c)}$.

More generally, we can extend Proposition 3.3 to the following new version of Cline's formula for α - (b, c)-invertible elements.

Theorem 3.5 Let $a, b, c, d, g, h \in R$ such that $\alpha(b), \alpha(c) \in \operatorname{comm}(a d, g, h)$. If $h \in R_{\alpha}^{(b, c)}$ with $a d h=h g h$ and $h g a=a d a$, then $a d \in R_{\alpha}^{(b, c)}$ if and only if $g h \in R_{\alpha}^{(b, c)}$. In this case, we have $(g h)_{\alpha}^{(b, c)}=g\left((a d)_{\alpha}^{(b, c)}\right)^{2} h,(a d)_{\alpha}^{(b, c)}=h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g$.

Proof If $g h \in R_{\alpha}^{(b, c)}$, then there exist $s, t \in R$ such that $\alpha(b)=s \alpha(c) g h \alpha(b)=s \alpha(c) s \alpha(c) g h g h \alpha(b)$ and $\alpha(c)=\alpha(c) g h \alpha(b) t=\alpha(c) g h g h \alpha(b) t \alpha(b) t$ since $\alpha(b), \alpha(c) \in \operatorname{comm}(g h)$. Hence $\alpha(b)=$ $(s \alpha(c))^{2} \operatorname{gadh} \alpha(b)$ and $\alpha(c)=\alpha(c) \operatorname{gadh}(\alpha(b) t)^{2}$. Since $h \in R_{\alpha}^{(b, c)}$, there is $n^{\prime} \in R$ such that $\alpha(c)=\alpha(c) h \alpha(b) n^{\prime}$. Then we have

$$
\begin{gathered}
(s \alpha(c))^{2} g a d h \alpha(b) n^{\prime}=\alpha(b) n^{\prime} \\
\alpha(c)=\alpha(c) h \alpha(b) n^{\prime} \operatorname{gadh}(\alpha(b) t)^{2}=\alpha(c) \alpha(b) n^{\prime} h \operatorname{gadh}(\alpha(b) t)^{2},
\end{gathered}
$$

since $\alpha(b), \alpha(c) \in \operatorname{comm}(h)$. This implies that

$$
\alpha(b)=h s \alpha(c) \operatorname{so}(c) \operatorname{gad} \alpha(b)=h s \alpha(c) \operatorname{sg} \alpha(c) a d \alpha(b) \in R \alpha(c) a d \alpha(b)
$$

and $\alpha(c) h=h \alpha(c)=h \alpha(c) \alpha(b) n^{\prime} h g a d h(\alpha(b) t)^{2}$. Thus, we have

$$
\begin{aligned}
\alpha(c) & =\alpha(c) h g a d h(\alpha(b) t)^{2} \alpha(b) n^{\prime}=\alpha(c) a d h g h(\alpha(b) t)^{2} \alpha(b) n^{\prime} \\
& =\alpha(c) \operatorname{adh} \alpha(b) t s \alpha(c) g h \alpha(b) n^{\prime}=\alpha(c) \operatorname{ad} \alpha(b) h t s \alpha(c) g \in \alpha(c) a d \alpha(b) R .
\end{aligned}
$$

Moreover, it is clear that $(g h)_{\alpha}^{(b, c)}=s \alpha(c)=\alpha(b) t$. Let $y=h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g$. Then yad $\alpha(b)=\alpha(b)$ and $\alpha(c) a d y=\alpha(c)$. Moreover, we have

$$
\begin{gathered}
y a d y=h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g h g h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g=h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g=y, y=\alpha(b) h t(g h)_{\alpha}^{(b, c)} g \in \alpha(b) R, \\
y=h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g=h(g h)_{\alpha}^{(b, c)} \operatorname{s\alpha }(c) g=h(g h)_{\alpha}^{(b, c)} \operatorname{sg\alpha }(c) \in R \alpha(c),
\end{gathered}
$$

that is, $(a d)_{\alpha}^{(b, c)}=h\left((g h)_{\alpha}^{(b, c)}\right)^{2} g$. The converse can be proved similarly.
Specifically, we have the following Cline's formula for α - (b, c)-invertible elements.
Corollary 3.6 Let $a, b, c, d \in R$ such that $\alpha(b), \alpha(c) \in \operatorname{comm}(a, d)$. If $a \in R_{\alpha}^{(b, c)}$, then $a d \in R_{\alpha}^{(b, c)}$ if and only if $d a \in R_{\alpha}^{(b, c)}$. In this case, we have $(d a)_{\alpha}^{(b, c)}=d\left((a d)_{\alpha}^{(b, c)}\right)^{2} a,(a d)_{\alpha}^{(b, c)}=a\left((d a)_{\alpha}^{(b, c)}\right)^{2} d$.

Corollary 3.7 Let $a, b, c, d \in R$ such that $b, c \in \operatorname{comm}(a, d)$. If $a \in R^{(b, c)}$, then $a d \in R^{(b, c)}$ if and only if $d a \in R^{(b, c)}$.

A ring R is called semicommutative if $a b=0$ implies $a R b=0$ for $a, b \in R$. It can be easily checked that every semicommutative ring is abelian.

Proposition 3.8 Let R be a semicommutative ring and let $a, b, c, d, g, h \in R$ such that $a d h=h g h$ and $h g a=a d a$. Then $a d \in R_{\alpha}^{(b, c)}$ if and only if $g h \in R_{\alpha}^{(b, c)}$. In this case, we have $(g h)_{\alpha}^{(b, c)}=g\left((a d)_{\alpha}^{(b, c)}\right)^{2} h,(a d)_{\alpha}^{(b, c)}=h\left((g h)_{\alpha}^{(b, c)}\right)^{3} g a d$.

Proof If $a d \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a d \alpha(b)=m \alpha(c) h g \alpha(b)$ and $\alpha(c)=\alpha(c) a d \alpha(b) n=\alpha(c) h g \alpha(b) n$ by Corollary 3.4. Since $h g a=a d a$ and $a d \alpha(b) n, m \alpha(c) h g$, $h g \alpha(b) n \in E(R)$, we conclude that

$$
\begin{aligned}
\alpha(b) & =m \alpha(c) a d \alpha(b) \operatorname{nad} \alpha(b)=\alpha(b) m \alpha(c) \operatorname{adad} \alpha(b) n \\
& =\alpha(b) m \alpha(c) h \operatorname{gad} \alpha(b) n=\alpha(b) m \alpha(c) h a d \alpha(b) n g,
\end{aligned}
$$

$$
h g m \alpha(c)=h g m \alpha(c) h g \alpha(b) n=m \alpha(c) h g h g \alpha(b) n=m \alpha(c) h g .
$$

Therefore, we have

$$
\begin{aligned}
\alpha(b) h & =\alpha(b) m \alpha(c) \operatorname{ad\alpha }(b) n h a d \alpha(b) n g h=\alpha(b) \operatorname{adad} \alpha(b) n \alpha(b) n m \alpha(c) h a d m \alpha(c) g h \\
& =\alpha(b) \operatorname{hgad}(\alpha(b) n)^{3} h a d m \alpha(c) g h=\alpha(b) h g(\alpha(b) n)^{2} h a d m \alpha(c) g h,
\end{aligned}
$$

that is, $\alpha(b)\left(h-h g(\alpha(b) n)^{2} h a d m \alpha(c) g h\right)=0$. Since R is semicommutative, we get $\alpha(b) n h=$ $\alpha(b) n h g(\alpha(b) n)^{2} h a d m \alpha(c) g h$. Hence $\alpha(b) n h\left(1-g(\alpha(b) n)^{2} h a d m \alpha(c) g h\right)=0$. Then we have $\alpha(b) n h g=\alpha(b) n h g^{2}(\alpha(b) n)^{2} h a d m \alpha(c) g h$. This shows that

$$
\alpha(b)=\alpha(b) n h g \alpha(b)=\alpha(b) n h g^{2}(\alpha(b) n)^{2} h a d m \alpha(c) g h \alpha(b) \in R \alpha(c) g h \alpha(b) .
$$

Next, we have

$$
\begin{aligned}
\alpha(c) & =a d \alpha(b) n \alpha(c)=m \alpha(c) \operatorname{adad}(b) n \alpha(c) \\
& =m \alpha(c) h g a d \alpha(b) n \alpha(c)=m \alpha(c) h a d \alpha(b) n g \alpha(c) .
\end{aligned}
$$

This implies that $(1-m \alpha(c) h a d \alpha(b) n g) \alpha(c)=0$. Since R is a semicommutative ring, we have $m \alpha(c)=m \alpha(c) h a d \alpha(b) n g m \alpha(c)$. Therefore, we have
since $m \alpha(c) h(1-a d \alpha(b) n g m \alpha(c) h)=0$. Then we have

$$
\begin{aligned}
\alpha(c) & =\alpha(c) h g \alpha(b) n=\alpha(c) h g m \alpha(c)=\alpha(c) m \alpha(c) h g \\
& =\alpha(c) g h \alpha(b) n a d g m \alpha(c) m \alpha(c) h \in \alpha(c) g h \alpha(b) R .
\end{aligned}
$$

It is clear that $m \alpha(c)=\alpha(b) n$ is the $\alpha-(b, c)$-inverse of $a d$. Let $x=(a d)_{\alpha}^{(b, c)}$. Then $x=m \alpha(c)=$ $\alpha(b) n$. Thus, $x=(h g)_{\alpha}^{(b, c)}$ by Corollary 3.4. Since $x a d=a d x \in E(R)$, we conclude that

$$
\alpha(b)=\alpha(b) n h g^{2}(\alpha(b) n)^{2} h a d m \alpha(c) g h \alpha(b)=m \alpha(c) h g^{2} \alpha(b) n \alpha(b) n h g h \alpha(b) .
$$

Since $m \alpha(c) h g \alpha(b)=\alpha(b)$, we have $(m \alpha(c) h g-1) \alpha(b)=0$. Thus we get $m \alpha(c) h g^{2} \alpha(b)=g \alpha(b)$. Therefore, $\alpha(b)=g \alpha(b) n \alpha(b) n h g h \alpha(b)=g x^{2} h g h \alpha(b)$. Similarly, we obtain

$$
\alpha(c)=\alpha(c) g h \alpha(b) n a d g m \alpha(c) m \alpha(c) h=\alpha(c) g h g m \alpha(c) m \alpha(c) h=\alpha(c) g h g x^{2} h .
$$

Let $y=g x^{2} h$. Then $\alpha(b)=y g h \alpha(b)$ and $\alpha(c)=\alpha(c) g h y$. And we have

$$
\begin{gathered}
y g h y=g x^{2} h g h g x^{2} h=g x^{2} h=y, \quad g x^{2} h=g x^{2} h a d m \alpha(c) \in R \alpha(c), \\
g x^{2} h=g m \alpha(c) a d \alpha(b) n x h=\alpha(b) n a d g x^{2} h \in \alpha(b) R .
\end{gathered}
$$

$$
\begin{aligned}
& m \alpha(c) h g=m \alpha(c) h g a d \alpha(b) n g m \alpha(c) h=\operatorname{gm\alpha }(c) h g a d \alpha(b) n m \alpha(c) h \\
& =\operatorname{ghgm\alpha }(c) \operatorname{ad\alpha }(b) n m \alpha(c) h=g h m \alpha(c) \operatorname{adgm\alpha }(c) m \alpha(c) h,
\end{aligned}
$$

This implies that $g x^{2} h R=\alpha(b) R$ and $R g x^{2} h=R \alpha(c)$. Therefore, we have $(g h)_{\alpha}^{(b, c)}=y=$ $g x^{2} h=g\left((a d)_{\alpha}^{(b, c)}\right)^{2} h$. The converse can be proved similarly.

Proposition 3.9 Let $a, b, c, d, g \in R$ such that $a(g a)^{2}=$ adaga and agada $=(a d)^{2} a$. If R is a semicommutative ring, then $a d \in R_{\alpha}^{(b, c)}$ if and only if $g a \in R_{\alpha}^{(b, c)}$.

Proof If $a d \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a d \alpha(b)$ and $\alpha(c)=$ $\alpha(c) a d \alpha(b) n$. Because R is semicommutative (hence abelian), we conclude that

$$
\begin{aligned}
\alpha(b) n & =\alpha(b) n m \alpha(c) a d a d a d \alpha(b) n \alpha(b) n=\alpha(b) n m \alpha(c) \operatorname{agadad\alpha }(b) n \alpha(b) n \\
& =\alpha(b) n m \alpha(c) a a d \alpha(b) n a d \alpha(b) n g=\alpha(b) n a d \alpha(b) n m \alpha(c) a a d \alpha(b) n g
\end{aligned}
$$

Then $\alpha(b) n a=\alpha(b) n a d \alpha(b) n m \alpha(c) a a d \alpha(b) n g a$. Since R is semicommutative and $\alpha(b) n a(1-$ $d \alpha(b) n m \alpha(c) a a d \alpha(b) n g a)=0$, we have

$$
\begin{aligned}
\alpha(b) & =\alpha(b) n a d \alpha(b)=\alpha(b) n a d^{2} \alpha(b) n m \alpha(c) a^{2} d \alpha(b) n g a \alpha(b) \\
& =d \alpha(b) n m \alpha(c) a^{2} d m \alpha(c) g a \alpha(b) \in R \alpha(c) g a \alpha(b)
\end{aligned}
$$

Since $\alpha(c)=m \alpha(c) a d a d a d \alpha(b) n \alpha(b) n \alpha(c)=m \alpha(c) \operatorname{agad\alpha }(b) n a d \alpha(b) n \alpha(c)$, we get

$$
(1-m \alpha(c) \operatorname{agad\alpha }(b) n) \alpha(c)=0
$$

Then $m \alpha(c) a=m \alpha(c) a g a d \alpha(b) n m \alpha(c) a$ and thus

$$
m \alpha(c) a d=m \alpha(c) a d g a d \alpha(b) n m \alpha(c) a=\operatorname{gam} \alpha(c) a d^{2} \alpha(b) n m \alpha(c) a
$$

Also it is clear that $m \alpha(c) a d=a d m \alpha(c)$ since $a d \alpha(b) n, m \alpha(c) a d \in E(R)$. Then we have $\alpha(c)=$ $\alpha(c) g a \alpha(b) n a d^{2} \alpha(b) n m \alpha(c) a \in \alpha(c) g a \alpha(b) R$, which implies that $g a \in R_{\alpha}^{(b, c)}$. The converse can be proved in a similar way.

Corollary 3.10 Let R be a semicommutative ring and $a, b, c, d \in R$. Then $a d \in R^{(b, c)}$ if and only if $d a \in R^{(b, c)}$.

It is well-known that $1+a b$ is invertible if and only if $1+b a$ is invertible, it is called the Jacobson's Lemma [14, Exercise 1.6]. The next proposition shows the similar result for $\alpha-(b, c)$ invertible elements.

Proposition 3.11 Let $a, b, c, d, g, h \in R$ such that $\alpha(b), \alpha(c) \in \operatorname{comm}(a d, h g)$, adh $=h g h$ and $h g a=a d a$. Then $(1-a d) \in R_{\alpha}^{(b, c)}$ if and only if $(1-h g) \in R_{\alpha}^{(b, c)}$.

Proof If $(1-a d) \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c)(1-a d) \alpha(b)$ and $\alpha(c)=\alpha(c)(1-a d) \alpha(b) n$. Since $a d h=h g h$ and $h g a=a d a$, we get $(h g-a d)(1-h g)=h g-a d$ and $(1-h g)(h g-a d)=(1-a d)(h g-a d)$. Therefore, we have

$$
\begin{aligned}
\alpha(b) & =m \alpha(c)(1-h g) \alpha(b)+m \alpha(c)(h g-a d) \alpha(b) \\
& =m \alpha(c)(1-h g) \alpha(b)+m(h g-a d) \alpha(c)(1-h g) \alpha(b) \\
& =[m+m(h g-a d)] \alpha(c)(1-h g) \alpha(b) \in R \alpha(c)(1-h g) \alpha(b) \\
\alpha(c) & =\alpha(c)(1-h g) \alpha(b) n+\alpha(c)(h g-a d)(1-a d) \alpha(b) n
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha(c)(1-h g) \alpha(b) n+\alpha(c) m \alpha(c)(1-a d)(h g-a d) \alpha(b) n(1-a d) \\
& =\alpha(c)(1-h g) \alpha(b) n+\alpha(c) m \alpha(c)(1-h g)(h g-a d) \alpha(b) n(1-a d)
\end{aligned}
$$

since $\alpha(b), \alpha(c) \in \operatorname{comm}(a d, h g)$. This shows that

$$
\begin{aligned}
\alpha(c)(1-a d) \alpha(b) & =(1-a d) \alpha(c) \alpha(b) \\
& =(1-a d) \alpha(c)(1-h g) \alpha(b) n \alpha(b)+\alpha(c)(1-h g)(h g-a d) \alpha(b) \\
& =(1-a d) \alpha(c)(1-h g) \alpha(b) n \alpha(b)+\alpha(c)(1-h g) \alpha(b)(h g-a d) .
\end{aligned}
$$

Since $(h g-a d)(h g-a d)=0$, it follows that

$$
m \alpha(c)(1-a d) \alpha(b)(h g-a d)=m(1-a d) \alpha(c)(1-h g) \alpha(b) n \alpha(b)(h g-a d) .
$$

This implies that $\alpha(b)(h g-a d) n=(1-a d) \alpha(b) n(1-h g) \alpha(b) n \alpha(b)(h g-a d) n$, that is, $\alpha(c)(h g-$ $a d) \alpha(b) n=\alpha(c)(1-h g) \alpha(b) n(h g-a d) \alpha(b) n$. Therefore, we conclude that

$$
\begin{aligned}
\alpha(c) & =\alpha(c)(1-h g) \alpha(b) n+\alpha(c)(1-h g) \alpha(b) n(h g-a d) \alpha(b) n \\
& =\alpha(c)(1-h g) \alpha(b)[n+n(h g-a d) \alpha(b) n] \in \alpha(c)(1-h g) \alpha(b) R,
\end{aligned}
$$

proving $(1-h g) \in R_{\alpha}^{(b, c)}$. The converse can be proved similarly.
Corollary 3.12 Let $a, b, c, d \in R$ such that $\alpha(b), \alpha(c) \in \operatorname{comm}(a d, d a), a d^{2}=d a d$ and $d a^{2}=$ $a d a$. Then $(1-a d) \in R_{\alpha}^{(b, c)}$ if and only if $(1-d a) \in R_{\alpha}^{(b, c)}$.

If R is an abelian ring, then we have the similar result as follows.
Proposition 3.13 Let R be an abelian ring such that $a d h=h g h$ and hga $=a d a$ for $a, b, c, d, g, h \in R$. Then $(1-a d) \in R_{\alpha}^{(b, c)}$ if and only if $(1-h g) \in R_{\alpha}^{(b, c)}$.

Proof If $(1-a d) \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c)(1-a d) \alpha(b), \alpha(c)=$ $\alpha(c)(1-a d) \alpha(b) n$. Since R is an abelian ring, we have $m \alpha(c)(1-a d)=(1-a d) m \alpha(c) \in C(R)$. This shows that

$$
\begin{aligned}
\alpha(b) n & =\alpha(b) n m \alpha(c)(1-h g)+\alpha(b) n m \alpha(c)(h g-a d) \\
& =\alpha(b) n m \alpha(c)(1-h g)+\alpha(b) n m \alpha(c)(h g-a d)(1-h g) \\
& =\alpha(b) n m \alpha(c)(1-h g)+\alpha(b) n \alpha(b) n(h g-a d)(1-a d) m \alpha(c)(1-h g)
\end{aligned}
$$

since $a d h=h g h$ and $h g a=a d a$. It follows that $\alpha(b) n(1-a d)=m \alpha(c)(1-h g)+m \alpha(c)(h g-$ ad) $m \alpha(c)(1-h g)$. Therefore, we have

$$
\begin{aligned}
\alpha(b) & =m \alpha(c)(1-h g) \alpha(b)+m \alpha(c)(h g-a d) m \alpha(c)(1-h g) \alpha(b) \\
& =[m+m \alpha(c)(h g-a d) m] \alpha(c)(1-h g) \alpha(b) \in R \alpha(c)(1-h g) \alpha(b) .
\end{aligned}
$$

Next, since $(h g-a d)(1-a d)=h g-a d$, we also have

$$
\begin{aligned}
m \alpha(c) & =(1-h g+h g-a d) \alpha(b) n m \alpha(c) \\
& =(1-h g) \alpha(b) n m \alpha(c)+m \alpha(c)(1-a d)(h g-a d) m \alpha(c) \\
& =(1-h g) \alpha(b) n m \alpha(c)+m \alpha(c)(1-h g)(h g-a d)(1-a d) m \alpha(c)
\end{aligned}
$$

$$
=(1-h g) \alpha(b) n m \alpha(c)+m \alpha(c)(1-h g)(h g-a d)
$$

Then $m \alpha(c)(1-a d)=(1-h g) m \alpha(c)+m \alpha(c)(1-h g)(h g-a d)$. Since $(h g-a d)(h g-a d)=0$, we deduce that $m \alpha(c)(1-a d)(h g-a d)=(1-h g) m \alpha(c)(h g-a d)$. This implies that $m \alpha(c)(1-a d)=$ $(1-h g) \alpha(b) n+(1-h g) \alpha(b) n(h g-a d)$. Hence, we have

$$
\begin{aligned}
\alpha(c) & =\alpha(c)(1-a d) \alpha(b) n=\alpha(c) m \alpha(c)(1-a d) \\
& =\alpha(c)(1-h g) \alpha(b)[n+n(h g-a d)] \in \alpha(c)(1-h g) \alpha(b) R .
\end{aligned}
$$

The converse can be proved similarly.
It was shown in [9, Theorem 2.19] that (b, c)-inverse has the analogous version for Jacobson's lemma. Similarly, we have the following result for $\alpha-(b, c)$-inverses.

Proposition 3.14 Let $a, b, c, m \in R$. If $y \in R$ is the $\alpha-(b, c)$-inverse of a, then the following statements are equivalent:
(1) $m \in R_{\alpha}^{(b, c)}$;
(2) $1+(m-a) y$ is invertible;
(3) $1+y(m-a)$ is invertible.

Proof The proof is similar to that of [9, Theorem 2.19].
The following theorem shows the strongly clean decompositions for α - (b, c)-invertible elements.

Theorem 3.15 Let $a, b, c \in R$ with $\alpha(b), \alpha(c) \in \operatorname{comm}^{2}(a)$. Then the following statements are equivalent:
(1) $a \in R_{\alpha}^{(b, c)}$ and $a \in R_{\alpha}^{(c, b)}$;
(2) $\alpha(b)=u+e, \alpha(c)=v+e$ are strongly clean decompositions, $e \alpha(b)=\alpha(b) e=e \alpha(c)=$ $\alpha(c) e=0, \alpha(b) \in R \alpha(c) a, \alpha(c) \in a \alpha(b) R$ and $\alpha(c) \in R \alpha(b) a, \alpha(b) \in a \alpha(c) R$, where $u, v \in U(R)$, $e \in E(R)$;
(3) $\alpha(b)=u+e, \alpha(c)=v+e, u e=e u$, $v e=e v, \alpha(b) R \cap e R=\alpha(c) R \cap e R=\{0\}$ and $\alpha(b) \in R \alpha(c) a, \alpha(c) \in a \alpha(b) R, \alpha(c) \in R \alpha(b) a, \alpha(b) \in a \alpha(c) R$, where $u, v \in U(R)$ and $e \in E(R)$.
Proof (1) \Rightarrow (2). If $a \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a \alpha(b)$ and $\alpha(c)=\alpha(c) a \alpha(b) n$. If $a \in R_{\alpha}^{(c, b)}$, then there exist $s, t \in R$ such that $\alpha(c)=s \alpha(b) a \alpha(c)$ and $\alpha(b)=\alpha(b) a \alpha(c) t$. By Lemma 2.7, we have

$$
\begin{gathered}
\alpha(b) \alpha(c)=\alpha(c) \alpha(b), \quad m \alpha(c) a=a m \alpha(c) \\
m \alpha(c) \alpha(b)=\alpha(b) m \alpha(c), \quad m \alpha(c) \alpha(c)=\alpha(c) m \alpha(c)
\end{gathered}
$$

since $\alpha(b), \alpha(c) \in \operatorname{comm}^{2}(a)$. This shows that $\alpha(b) \in R \alpha(c) a, \alpha(c) \in a \alpha(b) R$ and $\alpha(c) \in$ $R \alpha(b) a, \alpha(b) \in a \alpha(c) R$. Let $p \in \operatorname{rann}(\alpha(b))$. Then we have $m \alpha(c) a p=m s \alpha(b) a \alpha(c) a p=$ $\operatorname{msa\alpha }(c) a \alpha(b) p=0$, that is, $\operatorname{rann}(\alpha(b)) \subseteq \operatorname{rann}(m \alpha(c) a)$. It follows that $m \alpha(c) a n a \alpha(b)=$ $m \alpha(c) a$ since $\alpha(b) n a \alpha(b)=\alpha(b)$. Also since $\alpha(b) \operatorname{nam} \alpha(c) a=\alpha(b) n a$, we get $\operatorname{m\alpha }(c)$ anam $\alpha(c) a=$
$m \alpha(c) a n a$. Let $u=\alpha(b)-1+m \alpha(c) a$. Then we have

$$
\begin{aligned}
& (\alpha(b)-1+m \alpha(c) a)(m \alpha(c) a n a-1+m \alpha(c) a) \\
& \quad=(m \alpha(c) a n a-1+m \alpha(c) a)(\alpha(b)-1+m \alpha(c) a)=1
\end{aligned}
$$

which shows $u \in U(R)$. Take $e=1-m \alpha(c) a$. Then $\alpha(b)=u+e$ and $e \alpha(b)=\alpha(b) e=e \alpha(c)=$ $\alpha(c) e=0$. Similarly, let $k \in \operatorname{lann}(\alpha(c))$. We deduce that

$$
k m \alpha(c) a=k \alpha(b) n a=k \alpha(b) a \alpha(c) t n a=k \alpha(c) \alpha(b) a t n a=0,
$$

that is, $\operatorname{lann}(\alpha(c)) \subseteq \operatorname{lann}(m \alpha(c) a)$. Because $\alpha(c) a m \alpha(c)=\alpha(c)$ and $a m \alpha(c) a m \alpha(c)=a m \alpha(c)$, we also have $\alpha(c) a m m \alpha(c) a=m \alpha(c) a$, and $a m \alpha(c) a m m \alpha(c) a=a m m \alpha(c) a$. This shows that

$$
\begin{aligned}
& (\alpha(c)-1+m \alpha(c) a)(\operatorname{amam} \alpha(c)-1+m \alpha(c) a) \\
& \quad=(\operatorname{amam\alpha }(c)-1+m \alpha(c) a)(\alpha(c)-1+m \alpha(c) a)=1
\end{aligned}
$$

Let $v=\alpha(c)-1+m \alpha(c) a$. Then $v \in U(R)$ and $\alpha(c)=v+e$.
$(2) \Rightarrow(1)$. Since $\alpha(b)=u+e$ and $\alpha(c)=v+e$, we get $\alpha(b) \alpha(b)=(u+e) \alpha(b)=u \alpha(b)$ and $\alpha(c) \alpha(c)=\alpha(c)(v+e)=\alpha(c) v$. Because $u, v \in U(R), \alpha(b) \in R \alpha(c) a$ and $\alpha(c) \in a \alpha(b) R$, we have $\alpha(b)=u^{-1} \alpha(b) \alpha(b) \in R \alpha(c) a \alpha(b), \alpha(c)=\alpha(c) \alpha(c) v^{-1} \in \alpha(c) a \alpha(b) R$. Similarly, we can get $\alpha(b) \in \alpha(b) a \alpha(c) R$ and $\alpha(c) \in R \alpha(b) a \alpha(c)$, that is, $a \in R_{\alpha}^{(b, c)}$ and $a \in R_{\alpha}^{(c, b)}$.
$(2) \Leftrightarrow$ (3). It is obvious.
Theorem 3.16 Let R be an abelian ring and $a \in R_{\alpha}^{(b, c)}$. Then $\alpha(b)=u+e, \alpha(c)=v+e$ are strongly clean decompositions, where $u, v \in U(R)$ and $e \in E(R)$.

Proof (1) \Rightarrow (2). If $a \in R_{\alpha}^{(b, c)}$, then there exist $m, n \in R$ such that $\alpha(b)=m \alpha(c) a \alpha(b)$ and $\alpha(c)=\alpha(c) a \alpha(b) n$. It follows that $n a \alpha(b), \alpha(c) a m \in E(R)$ since $\alpha(b) n=m \alpha(c)$. Also since R is an abelian ring, we get

$$
\begin{gathered}
\alpha(b) n a=\alpha(b) n a \alpha(b) n a=n a \alpha(b) \\
m \alpha(c) a=\alpha(c) a m m \alpha(c) a=\alpha(c) a m=a m \alpha(c)
\end{gathered}
$$

This yields that

$$
\begin{aligned}
& (\alpha(b)-1+m \alpha(c) a)(m \alpha(c) a n a-1+m \alpha(c) a) \\
& \quad=(m \alpha(c) a n a-1+m \alpha(c) a)(\alpha(b)-1+m \alpha(c) a)=1 .
\end{aligned}
$$

Let $u=\alpha(b)-1+m \alpha(c) a$. Then $u \in U(R)$. Take $e=1-m \alpha(c) a$. Then $\alpha(b)=u+e$. Similarly, let $v=\alpha(c)-1+m \alpha(c) a$. Then we have

$$
\begin{aligned}
& (\alpha(c)-1+m \alpha(c) a)(\operatorname{amam\alpha }(c)-1+m \alpha(c) a) \\
& \quad=(\operatorname{amam\alpha }(c)-1+m \alpha(c) a)(\alpha(c)-1+m \alpha(c) a)=1 .
\end{aligned}
$$

Thus, $v \in U(R)$ and $\alpha(c)=v+e$.
Corollary 3.17 If R is an abelian ring and $a \in R^{(b, c)}$, then $b=u+e, c=v+e$ are strongly clean decompositions, where $u, v \in U(R), e \in E(R)$ and $a, b, c \in R$.

According to [4], $a \in R$ is Bott-Duffin (e, f)-invertible if there is $y \in R$ such that $y=e y=y f$, $y a e=e$ and $f a y=f$, where $e, f \in E(R)$.

Corollary 3.18 If R is an abelian ring and $a \in R$ is Bott-Duffin (e, f)-invertible, then $e=u+w$ and $f=v+w$ are strongly clean decompositions, where $u, v \in U(R)$ and $e, f, w \in E(R)$.

Acknowledgements The authors wish to express their sincere thanks to the referees for the helpful comments and suggestions.

References

[1] J. KREMPA. Some examples of reduced rings. Algebra Colloq., 1996, 3(4): 289-300.
[2] C. Y. HONG, N. K. KIM, T. K. KWAK. Ore extensions of baer and p.p.-rings. J. Pure Appl. Algebra, 2000, 151(3): 215-226.
[3] M. BASER, C. Y. HONG, T. K. KWAK. On extended reversible rings. Algebra Colloq., 2009, 16(1): 37-48.
[4] M. P. DRAZIN. A class of outer generalized inverses. Linear Algebra Appl., 2012, 436(7): 1909-1923.
[5] Jianlong CHEN, Yuanyuan KE, D. MOSIĆ. The reverse order law of the (b, c)-inverses in semigroups. Acta Math. Hungar., 2017, 151(1): 181-198.
[6] Xiaofeng CHEN, Jianlong CHEN. The (b, c-inverse in semigroups and rings with involution. Front. Math. China, 2020, 15(6): 1089-1104.
[7] M. P. DRAZIN. Hybrid (b, c)-inverses and five finiteness properties in rings, semigroups, and categories. Comm. Algebra, 2021, 49(5): 2265-2277.
[8] M. P. DRAZIN. Left and right generalized inverses. Linear Algebra Appl., 2016, 510(1): 64-78.
[9] Yuanyuan KE, D. S. CVETKOVIĆ-IlIĆ, Jianlong CHEN, et al. New results on (b, c)-inverses. Linear Multilinear Algebra, 2018, 66(3): 447-458.
[10] Long WANG. Further results on hybrid (b, c)-inverses in rings. Faculty Sciences Math., 2019, 15: 4943-4950.
[11] Cang WU, Liang ZHAO. Central drazin inverses. J. Algebra Appl., 2019, 18(4): 1950065, 13 pp.
[12] M. P. DRAZIN. Commuting properties of generalized inverses. Linear Multilinear Algebra, 2013, 61(12): 167-1681.
[13] R. E. CLINE. An Application of Representations for the Generalized Inverse of a Matrix. Tech. Summary Rep. 592, Math. Research Center, U.S. Army, Univ. Wisconsin, Madison, 1965.
[14] T. Y. LAM. A First Course in Noncommutative Rings. Graduate Texts in Mathematics. 2nd ed. Vol.131, Berlin, Springer-Verlag, 2001.

[^0]: Received July 6, 2022; Accepted November 25, 2022
 Supported by the National Natural Science Foundation of China (Grant No. 12161049).

 * Corresponding author

 E-mail address: jjunjiao@163.com (Jun JIAO); wxli@ahut.edu.cn(Wenxi LI); lzhao@ahut.edu.cn (Liang ZHAO)

