Journal of Mathematical Research with Applications Jul., 2023, Vol. 43, No. 4, pp. 433–446 DOI:10.3770/j.issn:2095-2651.2023.04.006 Http://jmre.dlut.edu.cn

Relative (b, c)-Inverses with Respect to a Ring Endomorphism

Jun JIAO, Wenxi LI, Liang ZHAO*

School of Mathematics and Physics, Anhui University of Technology, Anhui 243032, P. R. China

Abstract We study the relative properties of (b, c)-inverses with respect to a ring endomorphism. A new class of generalized inverses named α -(b, c)-inverse is introduced and studied in a more general setting. We show by giving an example that (b, c)-inverses behave quite differently from α -(b, c)-inverses. The condition that an α -(b, c)-invertible element is precisely a (b, c)-invertible element is investigated. We also study the strongly clean decompositions for α -(b, c)-inverses. Some well-known results on (b, c)-inverses are extended and unified.

Keywords α -(b, c)-inverse; Cline's formula; Jacobson's lemma; strongly clean decomposition MR(2020) Subject Classification 16U90; 16W20; 16E50

1. Introduction

Throughout this paper, R is a unitary associative ring and α is an endomorphism of R. The center and units of R are denoted by C(R) and U(R), respectively. Furthermore, we denote the set of all idempotent elements of R by E(R). An involution $*: R \to R$ is an anti-isomorphism which satisfies $(a^*)^* = a, (ab)^* = b^*a^*, (a+b)^* = a^* + b^*$ for all $a, b \in R$. For any $a \in R$, we use $\operatorname{lann}(a) = \{x \in R : xa = 0\}$ and $\operatorname{rann}(a) = \{x \in R : ax = 0\}$ to denote the left and right annihilator of a, respectively. A ring R is abelian if every idempotent is central. According to [1], an endomorphism α of a ring R is called rigid if $a\alpha(a) = 0$ implies a = 0 for $a \in R$, and R is an α -rigid ring [2] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring R is right α -reversible if whenever ab = 0 for $a, b \in R$, then $b\alpha(a) = 0$.

An element $a \in R$ is called regular if there is $x \in R$ such that axa = a. Such an x is called an inner inverse of a and is denoted as a^- and the set of all inner invertible elements of R is denoted by R^- . An element $a \in R$ is group invertible if there is $y \in R$ such that aya = a, yay = y, ay = ya. The set of all group invertible elements is denoted by $R^{\#}$. It is well known that a is group invertible if and only if $a \in a^2R \cap Ra^2$. Given a ring R and $a, b, c, y \in R$, recall from [4] that y is the (b, c)-inverse of a if yay = y, yR = bR and Ry = Rc, and is denoted by $a^{(b,c)}$. It was shown in [4, Theorem 2.2] that an element a is (b, c)-invertible if and only if $b \in Rcab$ and $c \in cabR$. The set of all (b, c)-invertible elements of R is denoted by $R^{(b,c)}$. More results

Received July 6, 2022; Accepted November 25, 2022

Supported by the National Natural Science Foundation of China (Grant No. 12161049).

^{*} Corresponding author

E-mail address: jjunjiao@163.com (Jun JIAO); wxli@ahut.edu.cn(Wenxi LI); lzhao@ahut.edu.cn (Liang ZHAO)

on (b, c)-inverses can be found in [5–10]. According to [11], an element $a \in R$ is central Drazin invertible, if there is $x \in R$ such that $xa \in C(R)$, xax = x and $a^{n+1}x = a^n$ for some integer $n \ge 0$.

In this paper, we further study the properties of (b, c)-inverses from a new perspective. More precisely, we study the relative properties of (b, c)-inverses with respect to a ring endomorphism. The new concept of α -(b, c)-inverses is introduced and investigated. In particular, it is easy to see that α -(b, c)-inverse is just the general (b, c)-inverse when $\alpha = 1_R$. However, we shall give an example to show that an α -(b, c)-invertible element need not be (b, c)-invertible, and a (b, c)-invertible element need not be α -(b, c)-invertible. Furthermore, the condition that an α -(b, c)-invertible element is precisely a (b, c)-invertible element is discussed. Various properties including Jacobson's lemma and Cline's formula of α -(b, c)-inverses are studied. Strongly clean decompositions for α -(b, c)-inverses are also considered.

This paper is organized as follows:

In Section 2, we define and investigate the α -(b, c)-inverse of an element in a unitary associative ring. An example is given to show that α -(b, c)-invertible elements are quite different from (b, c)-invertible elements (Example 2.2). If $a, b, c \in R$ and $\alpha(e) = e$ for any idempotent e, it is proved that a is (b, c)-invertible if and only if a is α -(b, c)-invertible with $b, c \in R^-$ (Proposition 2.3). In Section 3, we further study the properties of α -(b, c)-invertible elements, including Jacobson's lemma, strongly clean decompositions and Cline's formula (Corollary 3.12, Theorems 3.15 and 3.5). In particular, we obtain the strongly clean decomposition of Bott-Duffin (e, f)-inverse (Corollary 3.18).

2. α -(b, c)-inverses and their properties

In this section, we define and study a more general case of (b, c)-inverses that is closely related to an endomorphism of a ring, and is called α -(b, c)-inverse. However, we shall give an example to show that in general α -(b, c)-invertible elements are different with (b, c)-invertible elements.

We begin with the following definition.

Definition 2.1 Let $a, b, c \in R$ and let α be an endomorphism of R. We say that a is α -(b, c)-invertible if there is $x \in R$ such that

$$xax = x, \ xR = \alpha(b)R, \ Rx = R\alpha(c)$$

Any element x satisfying the above conditions is called the α -(b, c)-inverse of a, denoted as $a_{\alpha}^{(b,c)}$. The set of all α -(b, c)-invertible elements of R is denoted by $R_{\alpha}^{(b,c)}$.

In particular, if $\alpha = 1_R$, then it is clear that α -(b, c)-inverses coincide with the general (b, c)-inverses. Moreover, it is obvious that the α -(b, c)-inverse of an element is unique, and $a \in R$ is α -(b, c)-invertible if and only if $\alpha(b) \in R\alpha(c)\alpha(b)$ and $\alpha(c) \in \alpha(c)\alpha(b)R$.

The following example shows that α -(b, c)-invertible elements can be quite different from (b, c)-invertible elements.

Example 2.2 Let \mathbb{Z} be the ring of integers. Consider the ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a, b, c \in \mathbb{Z} \right\}.$$

Let $\alpha: R \to R$ be an endomorphism defined by

$$\alpha \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

Take the elements

$$a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ c = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

in *R*. Then it is clear that *a* is (b, c)-invertible. However, $\alpha(c) = c, \alpha(b) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. This shows that $\alpha(b) \in R\alpha(c)a\alpha(b)$ and $\alpha(c) \notin \alpha(c)a\alpha(b)R$. Therefore, *a* is not α -(b, c)-invertible.

On the other hand, let

$$a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad b = c = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in R,$$

then $cab = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and a is α -(b, c)-invertible. However, $b \notin Rcab$ and $c \notin cabR$, that is, a is not (b, c)-invertible.

The next proposition shows the equivalence of α -(b, c)-invertibility and (b, c)-invertibility of an element.

Proposition 2.3 Let $a, b, c \in R$ and $\alpha(e) = e$ for any $e \in E(R)$. Then $a \in R^{(b,c)}$ if and only if $a \in R^{(b,c)}_{\alpha}$ and $b, c \in R^{-}$.

Proof If $a \in R^{(b,c)}$, then there exist $m, n \in R$ such that b = mcab, c = cabn. It is clear that $b, c \in R^-$. Since bn = mc, we get $abn, mca \in E(R)$. Since $c^-c \in E(R)$, it follows that

$$\alpha(b) = \alpha(mcab) = mca\alpha(b) = mc\alpha(c^{-})\alpha(c)a\alpha(b) \in R\alpha(c)a\alpha(b).$$

Similarly, we conclude that $\alpha(c) = \alpha(c)abn = \alpha(c)a\alpha(b)\alpha(b^{-})bn \in \alpha(c)a\alpha(b)R$.

Conversely, if $a \in R_{\alpha}^{(b,c)}$, then there are $s, t \in R$ such that $\alpha(b) = s\alpha(c)a\alpha(b)$ and $\alpha(c) = \alpha(c)a\alpha(b)t$. This shows that

$$\alpha(b)\alpha(b^{-}) = s\alpha(c)a\alpha(b)\alpha(b^{-}), \quad \alpha(c^{-})\alpha(c) = \alpha(c^{-})\alpha(c)a\alpha(b)t.$$

Therefore, we have $bb^- = s\alpha(c)c^-cabb^-$ and $c^-c = c^-cabb^-\alpha(b)t$. Then $b = s\alpha(c)c^-cab \in Rcab$ and $c = cabb^-\alpha(b)t \in cabR$. \Box

Note that if R is an α -rigid ring, then $\alpha(e) = e$ for any $e \in E(R)$ by [3, Proposition 2.5]. Also if α is a monomorphism and R is a right α -reversible ring, then $\alpha(e) = e$ for any $e \in E(R)$ by [3, Theorem 2.13]. Thus the rings that satisfy the condition $\alpha(e) = e$ for any $e \in E(R)$ exist.

Proposition 2.4 Let $a, b, c, x \in R$ such that $\alpha(e) = e$ for any $e \in E(R)$. If x is the (b, c)-inverse of a, then x is the α -(b, c)-inverse of a.

Proof If x is the (b, c)-inverse of a, then xab = b, cax = c and $b, c \in R^-$. It follows that $\alpha(b) = xa\alpha(b)$ and $\alpha(c) = \alpha(c)ax$ since xa, $ax \in E(R)$. Also since $x \in bR = \alpha(b)\alpha(b^-)bR \subseteq \alpha(b)R$ and $x \in Rc = Rc\alpha(c^-)\alpha(c) \subseteq R\alpha(c)$, we get $xR = \alpha(b)R$ and $Rx = R\alpha(c)$. Combining with xax = x, then x is the α -(b, c)-inverse of a. \Box

In particular, if an endomorphism α of a ring R is an automorphism, then we have the following equivalence.

Theorem 2.5 Let $a, b, c \in R$ and let α be an automorphism of R. Then $a \in R^{(b,c)}$ if and only if $\alpha(a) \in R^{(b,c)}_{\alpha}$.

Proof If $\alpha(a) \in R_{\alpha}^{(b,c)}$, then there are $s, t \in R$ such that $\alpha(b) = s\alpha(c)\alpha(a)\alpha(b)$ and $\alpha(c) = \alpha(c)\alpha(a)\alpha(b)t$. Since α is an epimorphism, there are $g, h \in R$ such that $s = \alpha(g)$ and $t = \alpha(h)$. This implies that $\alpha(b) = \alpha(g)\alpha(c)\alpha(a)\alpha(b) = \alpha(gcab), \ \alpha(c) = \alpha(c)\alpha(a)\alpha(b)\alpha(h) = \alpha(cabh)$. Since α is a monomorphism, we get $b = gcab \in Rcab, \ c = cabh \in cabR$. Therefore, we have $a \in R^{(b,c)}$. The converse is clear. \Box

The next corollary shows a particular case of α -(b, c)-invertible elements.

Corollary 2.6 Let $a \in \mathbb{R}^-, k \in \mathbb{N}$ and $\alpha(e) = e$ for any idempotent e. If $e \in C(\mathbb{R})$, then a is α - (a^k, a^k) -invertible if and only if a is central Drazin invertible.

The proof of the following auxiliary lemma is similar to that of [12, Corollary 2.4].

Lemma 2.7 Let $a, b, c, x \in R$. If x is the α -(b, c)-inverse of a, then we have the following assertions:

- (1) If $\alpha(b), \alpha(c) \in comm(a)$, then $x \in comm(a)$.
- (2) If $\alpha(b), \alpha(c) \in comm^2(a)$, then $x \in comm(\alpha(b), \alpha(c))$ and $\alpha(b) \in comm(\alpha(c))$.

The following example shows that the endomorphism α in Lemma 2.7 actually exists.

Example 2.8 Let R and $\alpha : R \to R$ be the ring and the ring endomorphism in Example 2.2. Take $a = b = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then $\alpha(b) = b$. It is clear that $\alpha(b) \in comm(a)$. Moreover, let any $k \in R$ such that

$$k = \begin{pmatrix} p & q \\ 0 & s \end{pmatrix} \in comm(a)$$

for some $p, q, s \in \mathbb{Z}$. Then it can be easily checked that k has the form of $k = \begin{pmatrix} p & 0 \\ 0 & s \end{pmatrix}$. Therefore, $\alpha(b) \in comm(k)$, that is, $\alpha(b) \in comm^2(a)$.

For any two elements $a, d \in R$, the next proposition shows the equivalence of α -(b, c)-invertibility of a and a + d under some suitable conditions.

Proposition 2.9 Let $a, b, c, d \in R$ with $d \in C(R)$ and $d^2 = 0$. Then $a \in R_{\alpha}^{(b,c)}$ if and only if $a + d \in R_{\alpha}^{(b,c)}$.

Proof If $a \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)a\alpha(b)$ and $\alpha(c) = m\alpha(c)a\alpha(b)$

 $\alpha(c)a\alpha(b)n$. Since $d \in C(R)$ and $d^2 = 0$, it follows that

$$\begin{aligned} \alpha(b) &= m\alpha(c)(a+d)\alpha(b) - m\alpha(c)d\alpha(b) \\ &= m\alpha(c)(a+d)\alpha(b) - m\alpha(c)d\alpha(b) - m\alpha(c)dm\alpha(c)d\alpha(b) \\ &= [m-m\alpha(c)dm]\alpha(c)(a+d)\alpha(b) \in R\alpha(c)(a+d)\alpha(b). \end{aligned}$$

Similarly, we can get $\alpha(c) = \alpha(c)(a+d)\alpha(b)[n-nd\alpha(b)n] \in \alpha(c)(a+d)\alpha(b)R$.

Conversely, if $a + d \in R_{\alpha}^{(b,c)}$, then there is $s \in R$ such that $\alpha(b) = s\alpha(c)(a + d)\alpha(b)$. This implies that

$$\alpha(b) = s\alpha(c)a\alpha(b) + s\alpha(c)ds\alpha(c)(a+d)\alpha(b) = [s+s\alpha(c)ds]\alpha(c)a\alpha(b) \in R\alpha(c)a\alpha(b).$$

Also we can prove $\alpha(c) \in \alpha(c)a\alpha(b)R$ in a similar way, as desired. \Box

Theorem 2.10 Let $a, b, c, d \in R$ with $\alpha(b), \alpha(c) \in comm(a, d)$. If $a, d \in R_{\alpha}^{(b,c)}$, then $(da)^k \in R_{\alpha}^{(b,c)}$ for $k \in \mathbb{N}$.

Proof If $a \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)a\alpha(b)$ and $\alpha(c) = \alpha(c)a\alpha(b)n$. Since $\alpha(b), \alpha(c) \in comm(a)$, we have $a\alpha(b)n = m\alpha(c)a$ by Lemma 2.7. If $d \in R_{\alpha}^{(b,c)}$, then there exist $s, t \in R$ such that $\alpha(b) = s\alpha(c)d\alpha(b)$ and $\alpha(c) = \alpha(c)d\alpha(b)t$. Since $\alpha(b), \alpha(c) \in comm(d)$, we get $d\alpha(b)t = s\alpha(c)d$. We conclude that

$$\begin{aligned} \alpha(b) &= m\alpha(c)d\alpha(b)ta\alpha(b) = m\alpha(c)s\alpha(c)a\alpha(b)nda\alpha(b) = \alpha(b)ns\alpha(c)m\alpha(c)ada\alpha(b) \\ &= \alpha(b)ns\alpha(c)m\alpha(c)d\alpha(b)tada\alpha(b) = \alpha(b)ns\alpha(c)m\alpha(c)s\alpha(c)dada\alpha(b) \\ &= \dots = [m\alpha(c)s\alpha(c)]^{k-1}m\alpha(c)s\alpha(c)(da)^k\alpha(b) \in R\alpha(c)(da)^k\alpha(b), \\ \alpha(c) &= \alpha(c)dm\alpha(c)a\alpha(b)t = \alpha(c)das\alpha(c)d\alpha(b)n\alpha(b)t = \alpha(c)dad\alpha(b)t\alpha(b)n\alpha(b)t \\ &= \alpha(c)dadm\alpha(c)a\alpha(b)t\alpha(b)n\alpha(b)t = \alpha(c)dada\alpha(b)n\alpha(b)t\alpha(b)n\alpha(b)t \\ &= \dots = \alpha(c)(da)^k\alpha(b)n\alpha(b)t[\alpha(b)n\alpha(b)t]^{k-1} \in \alpha(c)(da)^k\alpha(b)R. \end{aligned}$$

Therefore, $(da)^k \in R^{(b,c)}_{\alpha}$ for $k \in \mathbb{N}$. \Box

Corollary 2.11 Let $a, b, c \in R$ with $\alpha(b), \alpha(c) \in comm(a)$. If $a \in R_{\alpha}^{(b,c)}$, then $a^k \in R_{\alpha}^{(b,c)}$ for $k \in \mathbb{N}$. In this case, $(a^k)_{\alpha}^{(b,c)} = (a_{\alpha}^{(b,c)})^k$.

Proof If $a \in R_{\alpha}^{(b,c)}$, then $a^k \in R_{\alpha}^{(b,c)}$ by Theorem 2.10. Let $x = a_{\alpha}^{(b,c)}$. Then we have

$$\alpha(b) = xaxa\alpha(b) = x^2 a^2 \alpha(b) = \dots = x^k a^k \alpha(b),$$

$$\alpha(c) = \alpha(c)axax = \alpha(c)a^2 x^2 = \dots = \alpha(c)a^k x^k$$

by Lemma 2.7. Since $x \in \alpha(b)R$ and $x \in R\alpha(c)$, we have $x^k \in \alpha(b)R$ and $x^k \in R\alpha(c)$. Hence, $a^k \in R_{\alpha}^{(b,c)}$ and $(a^k)_{\alpha}^{(b,c)} = (a_{\alpha}^{(b,c)})^k$. \Box

3. Further results on α -(b, c)-invertible elements

In this section, we continue to study some topics related to α -(b, c)-invertible elements. We also explore the Jacobson's lemma, Cline's formula and strongly clean decompositions for α -

(b, c)-invertible elements.

Theorem 3.1 Let $a, b, c, d \in \mathbb{R}$ such that $a, d \in \mathbb{R}^{(b,c)}_{\alpha}$ and $ad^2 = dad$. If $\alpha(b), \alpha(c) \in comm(a, d)$, then $1 + a^{(b,c)}_{\alpha} d \in \mathbb{R}^{(b,c)}_{\alpha}$ if and only if $a + d \in \mathbb{R}^{(b,c)}_{\alpha}$.

Proof Since $d \in R_{\alpha}^{(b,c)}$, there are $s, t \in R$ such that $\alpha(b) = s\alpha(c)d\alpha(b)$ and $\alpha(c) = \alpha(c)d\alpha(b)t$. Since $\alpha(b), \alpha(c) \in comm(a)$, we have $aa_{\alpha}^{(b,c)} = a_{\alpha}^{(b,c)}a$ by Lemma 2.7. If $1 + a_{\alpha}^{(b,c)}d \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)(1 + a_{\alpha}^{(b,c)}d)\alpha(b)$ and $\alpha(c) = \alpha(c)(1 + a_{\alpha}^{(b,c)}d)\alpha(b)n$. It follows that

$$\begin{aligned} \alpha(b) &= m\alpha(c)aa_{\alpha}^{(b,c)}(1 + a_{\alpha}^{(b,c)}d)\alpha(b) = m\alpha(c)a_{\alpha}^{(b,c)}(a+d)\alpha(b) \\ &= m\alpha(c)k\alpha(c)(a+d)\alpha(b) \in R\alpha(c)(a+d)\alpha(b), \end{aligned}$$

since $a_{\alpha}^{(b,c)} = k\alpha(c) = \alpha(b)l$ for $k, l \in \mathbb{R}$. Also we can conclude that

$$\begin{aligned} \alpha(c) &= \alpha(c)(1 + a_{\alpha}^{(b,c)}d)a_{\alpha}^{(b,c)}a\alpha(b)n \\ &= \alpha(c)a_{\alpha}^{(b,c)}a\alpha(b)n + \alpha(c)a_{\alpha}^{(b,c)}da\alpha(b)l\alpha(b)n \\ &= \alpha(c)a_{\alpha}^{(b,c)}a\alpha(b)n + \alpha(c)a_{\alpha}^{(b,c)}dads\alpha(c)\alpha(b)l\alpha(b)n \\ &= \alpha(c)a_{\alpha}^{(b,c)}a\alpha(b)n + \alpha(c)a_{\alpha}^{(b,c)}ad^{2}s\alpha(c)\alpha(b)l\alpha(b)n \\ &= \alpha(c)a\alpha(b)l\alpha(b)n + \alpha(c)d\alpha(b)l\alpha(b)n \\ &= \alpha(c)(a+d)\alpha(b)l\alpha(b)n \in \alpha(c)(a+d)\alpha(b)R, \end{aligned}$$

since $\alpha(b), \alpha(c) \in comm(d)$. Therefore, $a + d \in R_{\alpha}^{(b,c)}$.

Conversely, if $a + d \in R_{\alpha}^{(b,c)}$, then there exist $s', t' \in R$ such that $\alpha(b) = s'\alpha(c)(a+d)\alpha(b)$ and $\alpha(c) = \alpha(c)(a+d)\alpha(b)t'$. This implies that

$$\begin{aligned} \alpha(b) &= s'\alpha(c)a\alpha(b) + s'\alpha(c)aa_{\alpha}^{(b,c)}d\alpha(b) = s'\alpha(c)a(1 + a_{\alpha}^{(b,c)}d)\alpha(b) \\ &= s'a\alpha(c)(1 + a_{\alpha}^{(b,c)}d)\alpha(b) \in R\alpha(c)(1 + a_{\alpha}^{(b,c)}d)\alpha(b). \end{aligned}$$

In addition, we also have

$$\begin{split} \alpha(c) &= \alpha(c)a\alpha(b)t' + \alpha(c)a_{\alpha}^{(b,c)}ad\alpha(b)t' = \alpha(c)a\alpha(b)t' + \alpha(c)a_{\alpha}^{(b,c)}ads\alpha(c)d\alpha(b)t' \\ &= \alpha(c)a\alpha(b)t' + \alpha(c)a_{\alpha}^{(b,c)}ad^{2}s\alpha(c)\alpha(b)t' = \alpha(c)a\alpha(b)t' + \alpha(c)a_{\alpha}^{(b,c)}dads\alpha(c)\alpha(b)t' \\ &= \alpha(c)a\alpha(b)t' + \alpha(c)a_{\alpha}^{(b,c)}da\alpha(b)t' = \alpha(c)(1 + a_{\alpha}^{(b,c)}d)a\alpha(b)t' \\ &= \alpha(c)(1 + a_{\alpha}^{(b,c)}d)\alpha(b)at' \in \alpha(c)(1 + a_{\alpha}^{(b,c)}d)\alpha(b)R. \end{split}$$

Therefore, $1 + a_{\alpha}^{(b,c)} d \in R_{\alpha}^{(b,c)}$ and we are done. \Box

Corollary 3.2 Let $a, b, c \in R$ such that $a \in R^{(b,c)}$. If $b, c \in comm(a)$, then $1 + a^{(b,c)} \in R^{(b,c)}$ if and only if $1 + a \in R^{(b,c)}$.

Proof Since $a \in R^{(b,c)}$, there exist $m, n \in R$ such that b = mcab and c = cabn. Also since $b, c \in comm(a)$, we have $a^{(b,c)} = a^{(b,c)}a$ by [12, Corollary 2.4]. If $1 + a^{(b,c)} \in R^{(b,c)}$, then there are $g, h \in R$ such that $b = gc(1 + a^{(b,c)})b$ and $c = c(1 + a^{(b,c)})bh$. It yields that

$$b = gcaa^{(b,c)}(1 + a^{(b,c)})bh = gc(aa^{(b,c)} + a^{(b,c)})bh$$

$$= gca^{(b,c)}(1+a)b = gcpc(1+a)b,$$

since $a^{(b,c)} = pc = bq$ for $p, q \in R$. Therefore, we conclude that

$$c = c(1 + a^{(b,c)})a^{(b,c)}abh = caa^{(b,c)}bh + ca^{(b,c)}bh = cabqbh + cbqbh$$
$$= c(1 + a)bqbh \in c(1 + a)bR.$$

Therefore, $1 + a \in R^{(b,c)}$.

Conversely, if $1 + a \in R^{(b,c)}$, then there are $m', n' \in R$ such that b = m'c(1+a)b and c = c(1+a)bn'. This shows that

$$b = m'caa^{(b,c)}b + m'cab = m'aca^{(b,c)}b + m'acb$$
$$= m'ac(1 + a^{(b,c)})b \in Rc(1 + a^{(b,c)})b.$$

We also have

$$c = ca^{(b,c)}abn' + cabn' = ca^{(b,c)}ban' + cban$$
$$= c(1 + a^{(b,c)})ban' \in c(1 + a^{(b,c)})bR.$$

This implies that $1 + a^{(b,c)} \in \mathbb{R}^{(b,c)}$ and we are done. \Box

It was proved in [13] that if ab is Drazin invertible, then so is ba, and $(ba)^D = b[(ab)^D]^2 a$. This equality is called Cline's formula. Next, we discuss the Cline's formula for α -(b, c)-invertible elements.

Proposition 3.3 Let $a, b, c, d, g, h \in \mathbb{R}$ such that adh = hgh and hga = ada. If $\alpha(b), \alpha(c) \in comm(ad, hg)$, then $ad \in \mathbb{R}^{(b,c)}_{\alpha}$ if and only if $hg \in \mathbb{R}^{(b,c)}_{\alpha}$. In this case, $(ad)^{(b,c)}_{\alpha} = (hg)^{(b,c)}_{\alpha}$.

Proof If $ad \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)ad\alpha(b)$ and $\alpha(c) = \alpha(c)ad\alpha(b)n$. Since $\alpha(b), \alpha(c) \in comm(ad, hg)$, it follows that

$$\begin{aligned} \alpha(b) &= m\alpha(c)adadm\alpha(c)\alpha(b) = m\alpha(c)hgadm\alpha(c)\alpha(b),\\ \alpha(c) &= \alpha(c)adad\alpha(b)n\alpha(b)n = \alpha(c)hgad\alpha(b)n\alpha(b)n \end{aligned}$$

by Lemma 2.7. Therefore, we have

$$\alpha(b) = m\alpha(c)hg\alpha(b) \in R\alpha(c)hg\alpha(b),$$

$$\alpha(c) = \alpha(c)hg\alpha(b)n \in \alpha(c)hg\alpha(b)R.$$

Let $x = (ad)^{(b,c)}_{\alpha}$. This implies that

$$\begin{aligned} x &= xadadx^2 = xhgadx^2 = xhgx, \\ xhg\alpha(b) &= xhgxad\alpha(b) = xad\alpha(b) = \alpha(b), \\ \alpha(c)hgx &= \alpha(c)adxhgx = \alpha(c)adx = \alpha(c). \end{aligned}$$

Combining with $x \in \alpha(b)R$ and $x \in R\alpha(c)$, we get $(ad)^{(b,c)}_{\alpha} = (hg)^{(b,c)}_{\alpha}$. Conversely, if $hg \in R^{(b,c)}_{\alpha}$, then we can show $ad \in R^{(b,c)}_{\alpha}$ similarly. \Box

Corollary 3.4 Let R be an abelian ring and let $a, b, c, d, g, h \in R$ such that adh = hgh and hga = ada. Then $ad \in R_{\alpha}^{(b,c)}$ if and only if $hg \in R_{\alpha}^{(b,c)}$. In this case, $(ad)_{\alpha}^{(b,c)} = (hg)_{\alpha}^{(b,c)}$.

More generally, we can extend Proposition 3.3 to the following new version of Cline's formula for α -(b, c)-invertible elements.

Theorem 3.5 Let $a, b, c, d, g, h \in \mathbb{R}$ such that $\alpha(b), \alpha(c) \in comm(ad, g, h)$. If $h \in \mathbb{R}^{(b,c)}_{\alpha}$ with adh = hgh and hga = ada, then $ad \in \mathbb{R}^{(b,c)}_{\alpha}$ if and only if $gh \in \mathbb{R}^{(b,c)}_{\alpha}$. In this case, we have $(gh)^{(b,c)}_{\alpha} = g((ad)^{(b,c)}_{\alpha})^2h, (ad)^{(b,c)}_{\alpha} = h((gh)^{(b,c)}_{\alpha})^2g.$

Proof If $gh \in R_{\alpha}^{(b,c)}$, then there exist $s, t \in R$ such that $\alpha(b) = s\alpha(c)gh\alpha(b) = s\alpha(c)s\alpha(c)ghgh\alpha(b)$ and $\alpha(c) = \alpha(c)gh\alpha(b)t = \alpha(c)ghgh\alpha(b)t\alpha(b)t$ since $\alpha(b), \alpha(c) \in comm(gh)$. Hence $\alpha(b) = (s\alpha(c))^2gadh\alpha(b)$ and $\alpha(c) = \alpha(c)gadh(\alpha(b)t)^2$. Since $h \in R_{\alpha}^{(b,c)}$, there is $n' \in R$ such that $\alpha(c) = \alpha(c)h\alpha(b)n'$. Then we have

$$(s\alpha(c))^2 gadh\alpha(b)n' = \alpha(b)n',$$

$$\alpha(c) = \alpha(c)h\alpha(b)n'gadh(\alpha(b)t)^2 = \alpha(c)\alpha(b)n'hgadh(\alpha(b)t)^2,$$

since $\alpha(b), \alpha(c) \in comm(h)$. This implies that

$$\alpha(b) = hs\alpha(c)s\alpha(c)gad\alpha(b) = hs\alpha(c)sg\alpha(c)ad\alpha(b) \in R\alpha(c)ad\alpha(b)$$

and $\alpha(c)h = h\alpha(c) = h\alpha(c)\alpha(b)n'hgadh(\alpha(b)t)^2$. Thus, we have

$$\begin{aligned} \alpha(c) &= \alpha(c)hgadh(\alpha(b)t)^2\alpha(b)n' = \alpha(c)adhgh(\alpha(b)t)^2\alpha(b)n' \\ &= \alpha(c)adh\alpha(b)ts\alpha(c)gh\alpha(b)n' = \alpha(c)ad\alpha(b)hts\alpha(c)g \in \alpha(c)ad\alpha(b)R. \end{aligned}$$

Moreover, it is clear that $(gh)_{\alpha}^{(b,c)} = s\alpha(c) = \alpha(b)t$. Let $y = h((gh)_{\alpha}^{(b,c)})^2 g$. Then $yad\alpha(b) = \alpha(b)$ and $\alpha(c)ady = \alpha(c)$. Moreover, we have

$$yady = h((gh)_{\alpha}^{(b,c)})^2 ghgh((gh)_{\alpha}^{(b,c)})^2 g = h((gh)_{\alpha}^{(b,c)})^2 g = y, \ y = \alpha(b)ht(gh)_{\alpha}^{(b,c)} g \in \alpha(b)R,$$
$$y = h((gh)_{\alpha}^{(b,c)})^2 g = h(gh)_{\alpha}^{(b,c)} s\alpha(c)g = h(gh)_{\alpha}^{(b,c)} sg\alpha(c) \in R\alpha(c),$$

that is, $(ad)^{(b,c)}_{\alpha} = h((gh)^{(b,c)}_{\alpha})^2 g$. The converse can be proved similarly. \Box

Specifically, we have the following Cline's formula for α -(b, c)-invertible elements.

Corollary 3.6 Let $a, b, c, d \in R$ such that $\alpha(b), \alpha(c) \in comm(a, d)$. If $a \in R_{\alpha}^{(b,c)}$, then $ad \in R_{\alpha}^{(b,c)}$, if and only if $da \in R_{\alpha}^{(b,c)}$. In this case, we have $(da)_{\alpha}^{(b,c)} = d((ad)_{\alpha}^{(b,c)})^2 a, (ad)_{\alpha}^{(b,c)} = a((da)_{\alpha}^{(b,c)})^2 d$.

Corollary 3.7 Let $a, b, c, d \in R$ such that $b, c \in comm(a, d)$. If $a \in R^{(b,c)}$, then $ad \in R^{(b,c)}$ if and only if $da \in R^{(b,c)}$.

A ring R is called semicommutative if ab = 0 implies aRb = 0 for $a, b \in R$. It can be easily checked that every semicommutative ring is abelian.

Proposition 3.8 Let R be a semicommutative ring and let $a, b, c, d, g, h \in R$ such that adh = hgh and hga = ada. Then $ad \in R_{\alpha}^{(b,c)}$ if and only if $gh \in R_{\alpha}^{(b,c)}$. In this case, we have $(gh)_{\alpha}^{(b,c)} = g((ad)_{\alpha}^{(b,c)})^2h$, $(ad)_{\alpha}^{(b,c)} = h((gh)_{\alpha}^{(b,c)})^3gad$.

Proof If $ad \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)ad\alpha(b) = m\alpha(c)hg\alpha(b)$ and $\alpha(c) = \alpha(c)ad\alpha(b)n = \alpha(c)hg\alpha(b)n$ by Corollary 3.4. Since hga = ada and $ad\alpha(b)n, m\alpha(c)hg$, $hg\alpha(b)n \in E(R)$, we conclude that

$$\begin{aligned} \alpha(b) &= m\alpha(c)ad\alpha(b)nad\alpha(b) = \alpha(b)m\alpha(c)adad\alpha(b)n \\ &= \alpha(b)m\alpha(c)hgad\alpha(b)n = \alpha(b)m\alpha(c)had\alpha(b)ng, \\ hgm\alpha(c) &= hgm\alpha(c)hg\alpha(b)n = m\alpha(c)hghg\alpha(b)n = m\alpha(c)hg \end{aligned}$$

Therefore, we have

$$\begin{split} \alpha(b)h &= \alpha(b)m\alpha(c)ad\alpha(b)nhad\alpha(b)ngh = \alpha(b)adad\alpha(b)n\alpha(b)nm\alpha(c)hadm\alpha(c)gh \\ &= \alpha(b)hgad(\alpha(b)n)^3hadm\alpha(c)gh = \alpha(b)hg(\alpha(b)n)^2hadm\alpha(c)gh, \end{split}$$

that is, $\alpha(b)(h - hg(\alpha(b)n)^2 hadm\alpha(c)gh) = 0$. Since R is semicommutative, we get $\alpha(b)nh = \alpha(b)nhg(\alpha(b)n)^2 hadm\alpha(c)gh$. Hence $\alpha(b)nh(1 - g(\alpha(b)n)^2 hadm\alpha(c)gh) = 0$. Then we have $\alpha(b)nhg = \alpha(b)nhg^2(\alpha(b)n)^2 hadm\alpha(c)gh$. This shows that

$$\alpha(b) = \alpha(b)nhg\alpha(b) = \alpha(b)nhg^2(\alpha(b)n)^2hadm\alpha(c)gh\alpha(b) \in R\alpha(c)gh\alpha(b).$$

Next, we have

$$\begin{aligned} \alpha(c) &= ad\alpha(b)n\alpha(c) = m\alpha(c)adad\alpha(b)n\alpha(c) \\ &= m\alpha(c)hgad\alpha(b)n\alpha(c) = m\alpha(c)had\alpha(b)ng\alpha(c). \end{aligned}$$

This implies that $(1 - m\alpha(c)had\alpha(b)ng)\alpha(c) = 0$. Since R is a semicommutative ring, we have $m\alpha(c) = m\alpha(c)had\alpha(b)ngm\alpha(c)$. Therefore, we have

$$\begin{split} m\alpha(c)hg &= m\alpha(c)hgad\alpha(b)ngm\alpha(c)h = gm\alpha(c)hgad\alpha(b)nm\alpha(c)h \\ &= ghgm\alpha(c)ad\alpha(b)nm\alpha(c)h = ghm\alpha(c)adgm\alpha(c)m\alpha(c)h, \end{split}$$

since $m\alpha(c)h(1 - ad\alpha(b)ngm\alpha(c)h) = 0$. Then we have

$$\begin{aligned} \alpha(c) &= \alpha(c)hg\alpha(b)n = \alpha(c)hgm\alpha(c) = \alpha(c)m\alpha(c)hg\\ &= \alpha(c)gh\alpha(b)nadgm\alpha(c)m\alpha(c)h \in \alpha(c)gh\alpha(b)R. \end{aligned}$$

It is clear that $m\alpha(c) = \alpha(b)n$ is the α -(b, c)-inverse of ad. Let $x = (ad)^{(b,c)}_{\alpha}$. Then $x = m\alpha(c) = \alpha(b)n$. Thus, $x = (hg)^{(b,c)}_{\alpha}$ by Corollary 3.4. Since $xad = adx \in E(R)$, we conclude that

$$\alpha(b) = \alpha(b)nhg^2(\alpha(b)n)^2hadm\alpha(c)gh\alpha(b) = m\alpha(c)hg^2\alpha(b)n\alpha(b)nhgh\alpha(b).$$

Since $m\alpha(c)hg\alpha(b) = \alpha(b)$, we have $(m\alpha(c)hg - 1)\alpha(b) = 0$. Thus we get $m\alpha(c)hg^2\alpha(b) = g\alpha(b)$. Therefore, $\alpha(b) = g\alpha(b)n\alpha(b)nhgh\alpha(b) = gx^2hgh\alpha(b)$. Similarly, we obtain

$$\alpha(c) = \alpha(c)gh\alpha(b)nadgm\alpha(c)m\alpha(c)h = \alpha(c)ghgm\alpha(c)m\alpha(c)h = \alpha(c)ghgx^{2}h.$$

Let $y = gx^2h$. Then $\alpha(b) = ygh\alpha(b)$ and $\alpha(c) = \alpha(c)ghy$. And we have

$$yghy = gx^{2}hghgx^{2}h = gx^{2}h = y, \quad gx^{2}h = gx^{2}hadm\alpha(c) \in R\alpha(c)$$
$$gx^{2}h = gm\alpha(c)ad\alpha(b)nxh = \alpha(b)nadgx^{2}h \in \alpha(b)R.$$

This implies that $gx^2hR = \alpha(b)R$ and $Rgx^2h = R\alpha(c)$. Therefore, we have $(gh)^{(b,c)}_{\alpha} = y = gx^2h = g((ad)^{(b,c)}_{\alpha})^2h$. The converse can be proved similarly. \Box

Proposition 3.9 Let $a, b, c, d, g \in R$ such that $a(ga)^2 = adaga$ and $agada = (ad)^2 a$. If R is a semicommutative ring, then $ad \in R_{\alpha}^{(b,c)}$ if and only if $ga \in R_{\alpha}^{(b,c)}$.

Proof If $ad \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)ad\alpha(b)$ and $\alpha(c) = \alpha(c)ad\alpha(b)n$. Because R is semicommutative (hence abelian), we conclude that

$$\begin{aligned} \alpha(b)n &= \alpha(b)nm\alpha(c)adadad\alpha(b)n\alpha(b)n = \alpha(b)nm\alpha(c)agadad\alpha(b)n\alpha(b)n \\ &= \alpha(b)nm\alpha(c)aad\alpha(b)nad\alpha(b)ng = \alpha(b)nad\alpha(b)nm\alpha(c)aad\alpha(b)ng. \end{aligned}$$

Then $\alpha(b)na = \alpha(b)nad\alpha(b)nm\alpha(c)aad\alpha(b)nga$. Since R is semicommutative and $\alpha(b)na(1 - d\alpha(b)nm\alpha(c)aad\alpha(b)nga) = 0$, we have

$$\begin{aligned} \alpha(b) &= \alpha(b) nad\alpha(b) = \alpha(b) nad^2 \alpha(b) nm\alpha(c) a^2 d\alpha(b) nga\alpha(b) \\ &= d\alpha(b) nm\alpha(c) a^2 dm\alpha(c) ga\alpha(b) \in R\alpha(c) ga\alpha(b). \end{aligned}$$

Since $\alpha(c) = m\alpha(c)adadad\alpha(b)n\alpha(b)n\alpha(c) = m\alpha(c)agad\alpha(b)nad\alpha(b)n\alpha(c)$, we get

$$(1 - m\alpha(c)agad\alpha(b)n)\alpha(c) = 0$$

Then $m\alpha(c)a = m\alpha(c)agad\alpha(b)nm\alpha(c)a$ and thus

$$m\alpha(c)ad = m\alpha(c)adgad\alpha(b)nm\alpha(c)a = gam\alpha(c)ad^2\alpha(b)nm\alpha(c)a.$$

Also it is clear that $m\alpha(c)ad = adm\alpha(c)$ since $ad\alpha(b)n, m\alpha(c)ad \in E(R)$. Then we have $\alpha(c) = \alpha(c)ga\alpha(b)nad^2\alpha(b)nm\alpha(c)a \in \alpha(c)ga\alpha(b)R$, which implies that $ga \in R^{(b,c)}_{\alpha}$. The converse can be proved in a similar way. \Box

Corollary 3.10 Let R be a semicommutative ring and $a, b, c, d \in R$. Then $ad \in R^{(b,c)}$ if and only if $da \in R^{(b,c)}$.

It is well-known that 1 + ab is invertible if and only if 1 + ba is invertible, it is called the Jacobson's Lemma [14, Exercise 1.6]. The next proposition shows the similar result for α -(b, c)-invertible elements.

Proposition 3.11 Let $a, b, c, d, g, h \in R$ such that $\alpha(b), \alpha(c) \in comm(ad, hg)$, adh = hgh and hga = ada. Then $(1 - ad) \in R_{\alpha}^{(b,c)}$ if and only if $(1 - hg) \in R_{\alpha}^{(b,c)}$.

Proof If $(1 - ad) \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)(1 - ad)\alpha(b)$ and $\alpha(c) = \alpha(c)(1 - ad)\alpha(b)n$. Since adh = hgh and hga = ada, we get (hg - ad)(1 - hg) = hg - ad and (1 - hg)(hg - ad) = (1 - ad)(hg - ad). Therefore, we have

$$\begin{aligned} \alpha(b) &= m\alpha(c)(1 - hg)\alpha(b) + m\alpha(c)(hg - ad)\alpha(b) \\ &= m\alpha(c)(1 - hg)\alpha(b) + m(hg - ad)\alpha(c)(1 - hg)\alpha(b), \\ &= [m + m(hg - ad)]\alpha(c)(1 - hg)\alpha(b) \in R\alpha(c)(1 - hg)\alpha(b) \\ \alpha(c) &= \alpha(c)(1 - hg)\alpha(b)n + \alpha(c)(hg - ad)(1 - ad)\alpha(b)n \end{aligned}$$

$$= \alpha(c)(1 - hg)\alpha(b)n + \alpha(c)m\alpha(c)(1 - ad)(hg - ad)\alpha(b)n(1 - ad)$$
$$= \alpha(c)(1 - hg)\alpha(b)n + \alpha(c)m\alpha(c)(1 - hg)(hg - ad)\alpha(b)n(1 - ad),$$

since $\alpha(b), \alpha(c) \in comm(ad, hg)$. This shows that

$$\begin{aligned} \alpha(c)(1-ad)\alpha(b) &= (1-ad)\alpha(c)\alpha(b) \\ &= (1-ad)\alpha(c)(1-hg)\alpha(b)n\alpha(b) + \alpha(c)(1-hg)(hg-ad)\alpha(b) \\ &= (1-ad)\alpha(c)(1-hg)\alpha(b)n\alpha(b) + \alpha(c)(1-hg)\alpha(b)(hg-ad). \end{aligned}$$

Since (hg - ad)(hg - ad) = 0, it follows that

$$m\alpha(c)(1-ad)\alpha(b)(hg-ad) = m(1-ad)\alpha(c)(1-hg)\alpha(b)n\alpha(b)(hg-ad).$$

This implies that $\alpha(b)(hg - ad)n = (1 - ad)\alpha(b)n(1 - hg)\alpha(b)n\alpha(b)(hg - ad)n$, that is, $\alpha(c)(hg - ad)\alpha(b)n = \alpha(c)(1 - hg)\alpha(b)n(hg - ad)\alpha(b)n$. Therefore, we conclude that

$$\begin{aligned} \alpha(c) &= \alpha(c)(1 - hg)\alpha(b)n + \alpha(c)(1 - hg)\alpha(b)n(hg - ad)\alpha(b)n \\ &= \alpha(c)(1 - hg)\alpha(b)[n + n(hg - ad)\alpha(b)n] \in \alpha(c)(1 - hg)\alpha(b)R, \end{aligned}$$

proving $(1 - hg) \in R_{\alpha}^{(b,c)}$. The converse can be proved similarly. \Box

Corollary 3.12 Let $a, b, c, d \in R$ such that $\alpha(b), \alpha(c) \in comm(ad, da), ad^2 = dad$ and $da^2 = ada$. Then $(1 - ad) \in R_{\alpha}^{(b,c)}$ if and only if $(1 - da) \in R_{\alpha}^{(b,c)}$.

If R is an abelian ring, then we have the similar result as follows.

Proposition 3.13 Let R be an abelian ring such that adh = hgh and hga = ada for $a, b, c, d, g, h \in R$. Then $(1 - ad) \in R_{\alpha}^{(b,c)}$ if and only if $(1 - hg) \in R_{\alpha}^{(b,c)}$.

Proof If $(1-ad) \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)(1-ad)\alpha(b), \alpha(c) = \alpha(c)(1-ad)\alpha(b)n$. Since R is an abelian ring, we have $m\alpha(c)(1-ad) = (1-ad)m\alpha(c) \in C(R)$. This shows that

$$\begin{aligned} \alpha(b)n &= \alpha(b)nm\alpha(c)(1-hg) + \alpha(b)nm\alpha(c)(hg-ad) \\ &= \alpha(b)nm\alpha(c)(1-hg) + \alpha(b)nm\alpha(c)(hg-ad)(1-hg) \\ &= \alpha(b)nm\alpha(c)(1-hg) + \alpha(b)n\alpha(b)n(hg-ad)(1-ad)m\alpha(c)(1-hg) \end{aligned}$$

since adh = hgh and hga = ada. It follows that $\alpha(b)n(1 - ad) = m\alpha(c)(1 - hg) + m\alpha(c)(hg - ad)m\alpha(c)(1 - hg)$. Therefore, we have

$$\alpha(b) = m\alpha(c)(1 - hg)\alpha(b) + m\alpha(c)(hg - ad)m\alpha(c)(1 - hg)\alpha(b)$$
$$= [m + m\alpha(c)(hg - ad)m]\alpha(c)(1 - hg)\alpha(b) \in R\alpha(c)(1 - hg)\alpha(b).$$

Next, since (hg - ad)(1 - ad) = hg - ad, we also have

$$m\alpha(c) = (1 - hg + hg - ad)\alpha(b)nm\alpha(c)$$

= $(1 - hg)\alpha(b)nm\alpha(c) + m\alpha(c)(1 - ad)(hg - ad)m\alpha(c)$
= $(1 - hg)\alpha(b)nm\alpha(c) + m\alpha(c)(1 - hg)(hg - ad)(1 - ad)m\alpha(c)$

443

$$= (1 - hg)\alpha(b)nm\alpha(c) + m\alpha(c)(1 - hg)(hg - ad)$$

Then $m\alpha(c)(1-ad) = (1-hg)m\alpha(c) + m\alpha(c)(1-hg)(hg-ad)$. Since (hg-ad)(hg-ad) = 0, we deduce that $m\alpha(c)(1-ad)(hg-ad) = (1-hg)m\alpha(c)(hg-ad)$. This implies that $m\alpha(c)(1-ad) = (1-hg)\alpha(b)n + (1-hg)\alpha(b)n(hg-ad)$. Hence, we have

$$\begin{aligned} \alpha(c) &= \alpha(c)(1 - ad)\alpha(b)n = \alpha(c)m\alpha(c)(1 - ad) \\ &= \alpha(c)(1 - hg)\alpha(b)[n + n(hg - ad)] \in \alpha(c)(1 - hg)\alpha(b)R \end{aligned}$$

The converse can be proved similarly. \Box

It was shown in [9, Theorem 2.19] that (b, c)-inverse has the analogous version for Jacobson's lemma. Similarly, we have the following result for α -(b, c)-inverses.

Proposition 3.14 Let $a, b, c, m \in R$. If $y \in R$ is the α -(b, c)-inverse of a, then the following statements are equivalent:

- (1) $m \in R^{(b,c)}_{\alpha};$
- (2) 1 + (m a)y is invertible;
- (3) 1 + y(m a) is invertible.

Proof The proof is similar to that of [9, Theorem 2.19]. \Box

The following theorem shows the strongly clean decompositions for α -(b, c)-invertible elements.

Theorem 3.15 Let $a, b, c \in R$ with $\alpha(b), \alpha(c) \in comm^2(a)$. Then the following statements are equivalent:

(1) $a \in R_{\alpha}^{(b,c)}$ and $a \in R_{\alpha}^{(c,b)}$;

(2) $\alpha(b) = u + e, \ \alpha(c) = v + e$ are strongly clean decompositions, $e\alpha(b) = \alpha(b)e = e\alpha(c) = \alpha(c)e = 0, \ \alpha(b) \in R\alpha(c)a, \ \alpha(c) \in a\alpha(b)R$ and $\alpha(c) \in R\alpha(b)a, \ \alpha(b) \in a\alpha(c)R$, where $u, v \in U(R), e \in E(R)$;

(3) $\alpha(b) = u + e, \ \alpha(c) = v + e, \ ue = eu, \ ve = ev, \ \alpha(b)R \cap eR = \alpha(c)R \cap eR = \{0\}$ and $\alpha(b) \in R\alpha(c)a, \ \alpha(c) \in a\alpha(b)R, \ \alpha(c) \in R\alpha(b)a, \ \alpha(b) \in a\alpha(c)R$, where $u, v \in U(R)$ and $e \in E(R)$.

Proof (1) \Rightarrow (2). If $a \in R_{\alpha}^{(b,c)}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)a\alpha(b)$ and $\alpha(c) = \alpha(c)a\alpha(b)n$. If $a \in R_{\alpha}^{(c,b)}$, then there exist $s, t \in R$ such that $\alpha(c) = s\alpha(b)a\alpha(c)$ and $\alpha(b) = \alpha(b)a\alpha(c)t$. By Lemma 2.7, we have

$$\alpha(b)\alpha(c) = \alpha(c)\alpha(b), \quad m\alpha(c)a = am\alpha(c),$$

$$m\alpha(c)\alpha(b) = \alpha(b)m\alpha(c), \quad m\alpha(c)\alpha(c) = \alpha(c)m\alpha(c),$$

since $\alpha(b), \alpha(c) \in comm^2(a)$. This shows that $\alpha(b) \in R\alpha(c)a, \alpha(c) \in a\alpha(b)R$ and $\alpha(c) \in R\alpha(b)a, \alpha(b) \in a\alpha(c)R$. Let $p \in rann(\alpha(b))$. Then we have $m\alpha(c)ap = ms\alpha(b)a\alpha(c)ap = msa\alpha(c)a\alpha(b)p = 0$, that is, $rann(\alpha(b)) \subseteq rann(m\alpha(c)a)$. It follows that $m\alpha(c)ana\alpha(b) = m\alpha(c)a$ since $\alpha(b)na\alpha(b) = \alpha(b)$. Also since $\alpha(b)nam\alpha(c)a = \alpha(b)na$, we get $m\alpha(c)anam\alpha(c)a = \alpha(b)nam\alpha(c)a = \alpha($

 $m\alpha(c)ana$. Let $u = \alpha(b) - 1 + m\alpha(c)a$. Then we have

$$(\alpha(b) - 1 + m\alpha(c)a)(m\alpha(c)ana - 1 + m\alpha(c)a)$$

= $(m\alpha(c)ana - 1 + m\alpha(c)a)(\alpha(b) - 1 + m\alpha(c)a) = 1$

which shows $u \in U(R)$. Take $e = 1 - m\alpha(c)a$. Then $\alpha(b) = u + e$ and $e\alpha(b) = \alpha(b)e = e\alpha(c) = \alpha(c)e = 0$. Similarly, let $k \in lann(\alpha(c))$. We deduce that

$$km\alpha(c)a = k\alpha(b)na = k\alpha(b)a\alpha(c)tna = k\alpha(c)\alpha(b)atna = 0,$$

that is, $lann(\alpha(c)) \subseteq lann(m\alpha(c)a)$. Because $\alpha(c)am\alpha(c) = \alpha(c)$ and $am\alpha(c)am\alpha(c) = am\alpha(c)$, we also have $\alpha(c)amm\alpha(c)a = m\alpha(c)a$, and $am\alpha(c)amm\alpha(c)a = amm\alpha(c)a$. This shows that

$$\begin{aligned} &(\alpha(c) - 1 + m\alpha(c)a)(amam\alpha(c) - 1 + m\alpha(c)a) \\ &= (amam\alpha(c) - 1 + m\alpha(c)a)(\alpha(c) - 1 + m\alpha(c)a) = 1. \end{aligned}$$

Let $v = \alpha(c) - 1 + m\alpha(c)a$. Then $v \in U(R)$ and $\alpha(c) = v + e$.

 $(2) \Rightarrow (1). \text{ Since } \alpha(b) = u + e \text{ and } \alpha(c) = v + e, \text{ we get } \alpha(b)\alpha(b) = (u + e)\alpha(b) = u\alpha(b) \text{ and } \alpha(c)\alpha(c) = \alpha(c)(v + e) = \alpha(c)v. \text{ Because } u, v \in U(R), \alpha(b) \in R\alpha(c)a \text{ and } \alpha(c) \in a\alpha(b)R, \text{ we have } \alpha(b) = u^{-1}\alpha(b)\alpha(b) \in R\alpha(c)a\alpha(b), \ \alpha(c) = \alpha(c)\alpha(c)v^{-1} \in \alpha(c)a\alpha(b)R. \text{ Similarly, we can get } \alpha(b) \in \alpha(b)a\alpha(c)R \text{ and } \alpha(c) \in R\alpha(b)a\alpha(c), \text{ that is, } a \in R_{\alpha}^{(b,c)} \text{ and } a \in R_{\alpha}^{(c,b)}.$

(2) \Leftrightarrow (3). It is obvious. \Box

Theorem 3.16 Let R be an abelian ring and $a \in R_{\alpha}^{(b,c)}$. Then $\alpha(b) = u + e$, $\alpha(c) = v + e$ are strongly clean decompositions, where $u, v \in U(R)$ and $e \in E(R)$.

Proof (1) \Rightarrow (2). If $a \in R^{(b,c)}_{\alpha}$, then there exist $m, n \in R$ such that $\alpha(b) = m\alpha(c)a\alpha(b)$ and $\alpha(c) = \alpha(c)a\alpha(b)n$. It follows that $na\alpha(b), \alpha(c)am \in E(R)$ since $\alpha(b)n = m\alpha(c)$. Also since R is an abelian ring, we get

$$\alpha(b)na = \alpha(b)na\alpha(b)na = na\alpha(b),$$

$$m\alpha(c)a = \alpha(c)amm\alpha(c)a = \alpha(c)am = am\alpha(c)$$

This yields that

$$\begin{aligned} &(\alpha(b) - 1 + m\alpha(c)a)(m\alpha(c)ana - 1 + m\alpha(c)a) \\ &= (m\alpha(c)ana - 1 + m\alpha(c)a)(\alpha(b) - 1 + m\alpha(c)a) = 1 \end{aligned}$$

Let $u = \alpha(b) - 1 + m\alpha(c)a$. Then $u \in U(R)$. Take $e = 1 - m\alpha(c)a$. Then $\alpha(b) = u + e$. Similarly, let $v = \alpha(c) - 1 + m\alpha(c)a$. Then we have

$$(\alpha(c) - 1 + m\alpha(c)a)(amam\alpha(c) - 1 + m\alpha(c)a)$$

= $(amam\alpha(c) - 1 + m\alpha(c)a)(\alpha(c) - 1 + m\alpha(c)a) = 1$

Thus, $v \in U(R)$ and $\alpha(c) = v + e$. \Box

Corollary 3.17 If R is an abelian ring and $a \in R^{(b,c)}$, then b = u + e, c = v + e are strongly clean decompositions, where $u, v \in U(R)$, $e \in E(R)$ and $a, b, c \in R$.

According to [4], $a \in R$ is Bott-Duffin (e, f)-invertible if there is $y \in R$ such that y = ey = yf, yae = e and fay = f, where $e, f \in E(R)$.

Corollary 3.18 If R is an abelian ring and $a \in R$ is Bott-Duffin (e, f)-invertible, then e = u + wand f = v + w are strongly clean decompositions, where $u, v \in U(R)$ and $e, f, w \in E(R)$.

Acknowledgements The authors wish to express their sincere thanks to the referees for the helpful comments and suggestions.

References

- [1] J. KREMPA. Some examples of reduced rings. Algebra Colloq., 1996, 3(4): 289-300.
- C. Y. HONG, N. K. KIM, T. K. KWAK. Ore extensions of baer and p.p.-rings. J. Pure Appl. Algebra, 2000, 151(3): 215–226.
- [3] M. BASER, C. Y. HONG, T. K. KWAK. On extended reversible rings. Algebra Colloq., 2009, 16(1): 37–48.
- [4] M. P. DRAZIN. A class of outer generalized inverses. Linear Algebra Appl., 2012, 436(7): 1909–1923.
- Jianlong CHEN, Yuanyuan KE, D. MOSIĆ. The reverse order law of the (b, c)-inverses in semigroups. Acta Math. Hungar., 2017, 151(1): 181–198.
- [6] Xiaofeng CHEN, Jianlong CHEN. The (b, c)-inverse in semigroups and rings with involution. Front. Math. China, 2020, 15(6): 1089–1104.
- M. P. DRAZIN. Hybrid (b, c)-inverses and five finiteness properties in rings, semigroups, and categories. Comm. Algebra, 2021, 49(5): 2265–2277.
- [8] M. P. DRAZIN. Left and right generalized inverses. Linear Algebra Appl., 2016, 510(1): 64–78.
- [9] Yuanyuan KE, D. S. CVETKOVIĆ-IIIĆ, Jianlong CHEN, et al. New results on (b, c)-inverses. Linear Multilinear Algebra, 2018, 66(3): 447–458.
- [10] Long WANG. Further results on hybrid (b, c)-inverses in rings. Faculty Sciences Math., 2019, 15: 4943–4950. In the second second
- [11] Cang WU, Liang ZHAO. Central drazin inverses. J. Algebra Appl., 2019, 18(4): 1950065, 13 pp.
- [12] M. P. DRAZIN. Commuting properties of generalized inverses. Linear Multilinear Algebra, 2013, 61(12): 167–1681.
- [13] R. E. CLINE. An Application of Representations for the Generalized Inverse of a Matrix. Tech. Summary Rep. 592, Math. Research Center, U.S. Army, Univ. Wisconsin, Madison, 1965.
- [14] T. Y. LAM. A First Course in Noncommutative Rings. Graduate Texts in Mathematics. 2nd ed. Vol.131, Berlin, Springer-Verlag, 2001.