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Abstract We study the relative properties of (b, ¢)-inverses with respect to a ring endomorphism.
A new class of generalized inverses named a-(b, ¢)-inverse is introduced and studied in a more
general setting. We show by giving an example that (b, ¢)-inverses behave quite differently from
a-(b, ¢)-inverses. The condition that an a-(b, ¢)-invertible element is precisely a (b, ¢)-invertible
element is investigated. We also study the strongly clean decompositions for «-(b, ¢)-inverses.
Some well-known results on (b, ¢)-inverses are extended and unified.
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1. Introduction

Throughout this paper, R is a unitary associative ring and « is an endomorphism of R. The
center and units of R are denoted by C(R) and U(R), respectively. Furthermore, we denote the
set of all idempotent elements of R by E(R). An involution *: R — R is an anti-isomorphism
which satisfies (a*)* = a, (ab)* = b*a*, (a +b)* = a* +b* for all a,b € R. For any a € R, we
use lann(a) = {# € R : za = 0} and rann(a) = {z € R : ax = 0} to denote the left and right
annihilator of a, respectively. A ring R is abelian if every idempotent is central. According to [1],
an endomorphism « of a ring R is called rigid if aa(a) = 0 implies a =0 for a € R, and R is an
a-rigid ring [2] if there exists a rigid endomorphism « of R. Note that any rigid endomorphism
of a ring is a monomorphism, and a-rigid rings are reduced rings. Recall from [3] that a ring R
is right a-reversible if whenever ab = 0 for a,b € R, then ba(a) = 0.

An element a € R is called regular if there is x € R such that axa = a. Such an x is called an
inner inverse of a and is denoted as a™ and the set of all inner invertible elements of R is denoted
by R~. An element a € R is group invertible if there is y € R such that aya = a, yay = v,
ay = ya. The set of all group invertible elements is denoted by R#. It is well known that a is
group invertible if and only if a € >R N Ra®. Given a ring R and a,b,c,y € R, recall from [4]
that y is the (b, ¢)-inverse of a if yay = y, yR = bR and Ry = Re, and is denoted by a®e),
It was shown in [4, Theorem 2.2] that an element a is (b, ¢)-invertible if and only if b € Rcab
and ¢ € cabR. The set of all (b, c)-invertible elements of R is denoted by R(*¢). More results
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on (b, ¢)-inverses can be found in [5-10]. According to [11], an element a € R is central Drazin
invertible, if there is # € R such that za € C(R), zax = z and a" "'z = a" for some integer
n > 0.

In this paper, we further study the properties of (b, ¢)-inverses from a new perspective. More
precisely, we study the relative properties of (b, ¢)-inverses with respect to a ring endomorphism.
The new concept of a-(b,c)-inverses is introduced and investigated. In particular, it is easy
to see that a-(b, c)-inverse is just the general (b,c)-inverse when o = 1z. However, we shall
give an example to show that an a-(b, ¢)-invertible element need not be (b, ¢)-invertible, and
a (b, ¢)-invertible element need not be «a-(b, ¢)-invertible. Furthermore, the condition that an
a-(b, ¢)-invertible element is precisely a (b, ¢)-invertible element is discussed. Various properties
including Jacobson’s lemma and Cline’s formula of a-(b, ¢)-inverses are studied. Strongly clean
decompositions for a-(b, ¢)-inverses are also considered.

This paper is organized as follows:

In Section 2, we define and investigate the a-(b, ¢)-inverse of an element in a unitary associa-
tive ring. An example is given to show that a-(b, c)-invertible elements are quite different from
(b, ¢)-invertible elements (Example 2.2). If a,b,c € R and «a(e) = e for any idempotent e, it is
proved that a is (b, ¢)-invertible if and only if a is a-(b, ¢)-invertible with b,c € R~ (Proposition
2.3). In Section 3, we further study the properties of a-(b, ¢)-invertible elements, including Jacob-
son’s lemma, strongly clean decompositions and Cline’s formula (Corollary 3.12, Theorems 3.15
and 3.5). In particular, we obtain the strongly clean decomposition of Bott-Duffin (e, f)-inverse
(Corollary 3.18).

2. a-(b,c)-inverses and their properties

In this section, we define and study a more general case of (b, ¢)-inverses that is closely related
to an endomorphism of a ring, and is called a-(b, ¢)-inverse. However, we shall give an example
to show that in general a-(b, ¢)-invertible elements are different with (b, ¢)-invertible elements.

We begin with the following definition.

Definition 2.1 Let a,b,c € R and let « be an endomorphism of R. We say that a is a-(b, ¢)-
invertible if there is x € R such that

zax =z, xR = a(b)R, Rz = Ra(c).

Any element x satisfying the above conditions is called the a-(b, ¢)-inverse of a, denoted as a&b’c).

The set of all a-(b, ¢)-invertible elements of R is denoted by R

In particular, if & = 1g, then it is clear that a-(b, ¢)-inverses coincide with the general (b, c¢)-
inverses. Moreover, it is obvious that the a-(b, ¢)-inverse of an element is unique, and a € R is
a-(b, ¢)-invertible if and only if a(b) € Ra(c)ac(b) and a(c) € a(c)aa(b)R.

The following example shows that a-(b, c)-invertible elements can be quite different from

(b, ¢)-invertible elements.
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Example 2.2 Let Z be the ring of integers. Consider the ring

R{(a b) |a,b,c€Z}.
0 c

Let a: R — R be an endomorphism defined by

(66
() (o) o)

in R. Then it is clear that a is (b, ¢)-invertible. However, a(c) = ¢, a(b) = (8 8). This shows

that a(b) € Ra(c)ac(b) and a(c) ¢ a(c)ac(b)R. Therefore, a is not a-(b, ¢)-invertible.

On the other hand, let
0 1 0 0
a = , b=c= € R,
0 0 0 1

then cab = ( 8) and a is a-(b, ¢)-invertible. However, b ¢ Reab and ¢ ¢ cabR, that is, a is not
(b, ¢)-invertible.

The next proposition shows the equivalence of a-(b, ¢)-invertibility and (b, ¢)-invertibility of

Take the elements

an element.

Proposition 2.3 Let a,b,c € R and a(e) = e for any e € E(R). Then a € R if and only if
a € Réb’c) and b,c € R™.

Proof If a € R then there exist m,n € R such that b = mcab, ¢ = cabn. It is clear that
b,c € R™. Since bn = mc, we get abn, mca € E(R). Since ¢~ ¢ € E(R), it follows that

a(b) = a(meab) = mcaa(b) = mea(c™ )a(c)aa(b) € Ralc)ax(b).

Similarly, we conclude that a(c) = a(c)abn = a(c)aa(b)a(b™)bn € a(c)aa(b)R.
Conversely, if a € R, then there are s,t € R such that a(b) = sa(c)aa(b) and alc) =
a(c)aa(b)t. This shows that

a®)ad™) = salc)aad)a(db™), alc)a(c) = alc)a(c)aa(b)t.

Therefore, we have bb~ = sa(c)c” cabb™ and ¢~ ¢ = ¢~ cabb™a(b)t. Then b = sa(c)c™ cab € Reab
and ¢ = cabb~ a(b)t € cabR. O

Note that if R is an a-rigid ring, then a(e) = e for any e € E(R) by [3, Proposition 2.5].
Also if « is a monomorphism and R is a right a-reversible ring, then a(e) = e for any e € E(R)
by [3, Theorem 2.13]. Thus the rings that satisfy the condition a(e) = e for any e € E(R) exist.

Proposition 2.4 Let a,b, ¢,z € R such that a(e) = e for any e € E(R). If x is the (b, ¢)-inverse

of a, then x is the a-(b, ¢)-inverse of a.
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Proof If x is the (b, ¢)-inverse of a, then zab = b, cax = ¢ and b,c € R~. It follows that «(b) =
zaa(b) and a(c) = alc)ax since za, ax € E(R). Also since x € bR = a(b)a(b™)bR C a(b)R
and x € Re = Rea(c™ )a(c) C Ra(c), we get xR = a(b)R and Rz = Ra(c). Combining with
rax = x, then z is the a-(b, ¢)-inverse of a. O

In particular, if an endomorphism « of a ring R is an automorphism, then we have the

following equivalence.

Theorem 2.5 Let a,b,c € R and let o be an automorphism of R. Then a € R if and only
if a(a) € R,

Proof If a(a) € R then there are s,t € R such that a(b) = sa(c)a(a)a(d) and alc) =
alc)a(a)a(b)t. Since « is an epimorphism, there are g, h € R such that s = a(g) and ¢t = a(h).
This implies that a(b) = a(g)a(c)a(a)a(d) = algead), a(c) = alc)a(a)a(b)a(h) = a(cabh).
Since « is a monomorphism, we get b = gcab € Rcab, ¢ = cabh € cabR. Therefore, we have

a € R®¢) . The converse is clear. O
The next corollary shows a particular case of a-(b, ¢)-invertible elements.

Corollary 2.6 Let a € R™,k € N and a(e) = e for any idempotent e. If e € C(R), then a is

a-(a¥, a*)-invertible if and only if a is central Drazin invertible.

The proof of the following auxiliary lemma is similar to that of [12, Corollary 2.4].
Lemma 2.7 Let a,b,c,x € R. If x is the a-(b,c)-inverse of a, then we have the following
assertions:

(1) If a(b), a(c) € comm(a), then x € comm(a).

(2) If a(b), a(c) € comm?(a), then x € comm(a(b),a(c)) and a(b) € comm(a(c)).

The following example shows that the endomorphism « in Lemma 2.7 actually exists.

Example 2.8 Let R and a : R — R be the ring and the ring endomorphism in Example 2.2.
Take a = b = (6 8). Then «a(b) = b. It is clear that «(b) € comm(a). Moreover, let any k € R

such that
k= <p q) € comm(a)
0 s

for some p, q, s € Z. Then it can be easily checked that k£ has the form of k = (ZO’ S) Therefore,
a(b) € comm(k), that is, a(b) € comm?(a).
For any two elements a,d € R, the next proposition shows the equivalence of a-(b,c)-

invertibility of @ and a + d under some suitable conditions.

Proposition 2.9 Let a,b,c,d € R with d € C(R) and d> = 0. Then a € R if and only if
a+de R

Proof If a € R, then there exist m,n € R such that a(b) = ma(c)aa(d) and alc) =
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a(c)aa(b)n. Since d € C(R) and d* = 0, it follows that
a(b) = ma(e)(a + d)a(b) — ma(c)da(b)

= ma(c)(a + d)a(b) — ma(c)da(b) — ma(c)dmal(c)da(b)

= [m — ma(c)dm]a(c)(a + d)a(d) € Ra(c)(a + d)a(b).
Similarly, we can get a(c) = a(c)(a + d)a(b)[n — nda(b)n] € a(c)(a + d)a(b)R.

Conversely, if a +d € R, then there is s € R such that a(b) = sa(c)(a + d)a(b). This
implies that
a(b) = sa(c)aa(d) + sa(c)dsa(c)(a + d)a(b) = [s + sa(c)ds]a(c)an(b) € Ralc)aa(b).

Also we can prove a(c) € a(c)aa(b)R in a similar way, as desired. O

Theorem 2.10 Let a,b,¢,d € R with a(b),a(c) € comm(a,d). If a,d € R then (da)*
RY for k e N.

Proof If a € R, then there exist m,n € R such that a(b) = ma(c)aa(d) and alc) =
a(c)aa(b)n. Since a(b), a(c) € comm(a), we have ac(b)n = ma(c)a by Lemma 2.7. If d € R,
then there exist s,t € R such that a(b) = sa(c)da(b) and a(c) = a(c)da(b)t. Since a(b), a(c) €
comm/(d), we get da(b)t = sa(c)d. We conclude that
a(b) = ma(c)da(b)tac(b) = ma(c)sa(c)aa(b)ndac(b) = a(b)nsa(c)ma(c)adac(b)
a(b)nsa(c)ma(c)da(b)tadac(b) = a(b)nsa(c)ma(c)sa(c)dadac(b)
Yma(c)sa(c)(da)a(b) € Ra(c)(da)*a(b),
a(c) = a(c)dma(c)aa(b)t = a(c)dasal(c)da(b)na(b)t = a(c)dada(b)ta(b)na(b)t

= a(c)dadma(c)aa(b)ta(b)na(b)t = a(c)dadac(b)na(b)ta(b)na(b)t
= ... = alc)(da)f a(b)na(b)t[a(b)na(b)t]* ! € alc)(da)*a(b)R

= ... = [ma(c)sa(c)]*

(
(

Therefore, (da)¥ € RY for ke N. O

Corollary 2.11 Let a,b,c € R with a(b),a(c) € comm(a). If a € RY9 | then a* € R for
k € N. In this case, (ak)&b’c) = (ag”c))k.
Proof Ifa € R&b’c), then a* € R,(xb’c) by Theorem 2.10. Let x = a(b ) Then we have
a(b) = zaraa(b) = 2?a’a(b) = - -- = 2"a"a(b),
alc) = alc)arar = alc)a’z? = - - = a(c)a*z"

by Lemma 2.7. Since z € a(b)R and = € Ra(c), we have 2* € a(b)R and 2* € Ra(c). Hence,
a* € R and (%)% = (o). o

3. Further results on a-(b, ¢)-invertible elements

In this section, we continue to study some topics related to a-(b, ¢)-invertible elements. We

also explore the Jacobson’s lemma, Cline’s formula and strongly clean decompositions for a-
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(b, ¢)-invertible elements.

Theorem 3.1 Leta,b,c,d € R such that a,d € R and ad? = dad. Ifa(b), a(c) € comm(a,d),
then 1+a(bc dGRbC) if and on]y1fa+d€RbC).

Proof Since d € R, there are s,t € R such that a(b) = sa(c)da(b) and a( ) = a(c)da(b)t.
Since a(b), a(c) € comm(a) we have aal”” = a{"?a by Lemma 2.7. If 1 + a"?d € R"?, then
there exist m,n € R such that a(b) = ma(c)(1 + all C)d) (b) and a(c) = a(c)(1 + all C)d) (O)n.
It follows that

a(b) = ma(c)aa?) (1 + a9 d)a(b) = ma(c)a (a + d)a(b)
= ma(c)ka(c)(a + d)a(b) € Ra(c)(a + d)a(b),
since al"? = = ka(c) = a(b)l for k,l € R. Also we can conclude that

afc) = a(e)(1 + a9 d)a aa(b)n

— alc)aq n+ a(c)a bc)daa( b)la(b)n
=a (
— a(@a®aalb)n + a(@aadsa(ab)lab)n

(

(c)ay"“ ac(b) (e

(e)alPaa(b)n + a(c)alP ) dadsa(c)a(b)la(b)n
(c)ay “ac(b) (e

(©) a(b

= a(c)aa(b)la(b)n + a(c)da(b)la(b)n
alc)(a + d)a(b)la(b)n € alc)(a + d)a(b)R,
since a(b), a(c) € comm(d). Therefore, a +d € RE.

Conversely, if a +d € R, then there exist s/, € R such that a(b) = s'ale)(a + d)a(d)
and a(c) = a(c)(a + d)a(b)t’. This implies that

a(b) = s'a(c)aa(b) + s’a(c)aa((f’c)da(b) =s'a(c)a(l + a((lb’c)d)a(b)
= s'aa(c)(1 + aP9d)a(b) € Ra(c)(1 + a>Fd)a(b).

In addition, we also have

alc) = ac)aad)t’ + alc)a®ada(b)t’ = a(c)aa(d)t’ + a(c)aladsa(c)do(b)t’
= a(c)aa(b)t’ + alc)abad®sa(c)a(d)t’ = a(c)aa(d)t’ + a(c)a®Idadsa(c)a(b)t’
= a(c)aa(b)t’ + a(c)a®Vdaa(d)t’ = a(c)(1 4 a9 d)an(b)t’
= a(c)(1 + alOd)a(b)at’ € a(c)(1 + a®d)a(b)R.

Therefore, 1+ a(b C)d S R&b’c) and we are done. O

Corollary 3.2 Let a,b,c € R such that a € R, Ifb,c € comm(a), then 1+ a®*) ¢ R®:) if
and only if 1 +a € R,

Proof Since a € R, there exist m,n € R such that b = mcab and ¢ = cabn. Also since
b,c € comm(a), we have a(®°) = a(®)a by [12, Corollary 2.4]. If 1 + a®®) € R(®¢) then there
are g,h € R such that b = gc(1 4+ a®9)b and ¢ = ¢(1 + a®>))bh. Tt yields that

b= gcaa(b’c)(l + a(b’c))bh = gc(aa(b,c) + a(b’c))b
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= gca®) (1 + a)b = gepe(1 + a)b,

b,e) _

since al pc = bq for p,q € R. Therefore, we conclude that

¢ =c(14 a®Na®abh = caa®bh + ca®bh = cabgbh + cbgbh
¢(1 + a)bgbh € ¢(1 + a)bR.

Therefore, 1 +a € R(®:©).
Conversely, if 1 +a € R®°) then there are m’,n’ € R such that b = m’c(1 + a)b and
¢ =c¢(1+ a)bn'. This shows that

b =m'caa®b + m'cab = m’'aca®b + m ach

=m'ac(1 + a®))b € Re(1 + a>)b.

We also have

b,c)

c=ca®abn’ + cabn’ = ca®ban’ + cban’

= c(1 4+ a®Nban’ € ¢(1 + a>))bR.
This implies that 1 4+ a9 € R(®¢) and we are done. O
It was proved in [13] that if ab is Drazin invertible, then so is ba, and (ba)? = b[(ab)P]?a.

This equality is called Cline’s formula. Next, we discuss the Cline’s formula for a-(b, ¢)-invertible

elements.

Proposition 3.3 Let a,b,c,d,g,h € R such that adh = hgh and hga = ada. If a(b),a(c) €

comm(ad, hg), then ad € R&b’c) if and only if hg € R&b’c). In this case, (ad)((lb’c) = (hg)&b’c).

Proof If ad € RY"?, then there exist m,n € R such that a(b) = ma(c)ada(b) and a(c) =

a(c)ada(b)n. Since a(b), a(c) € comm(ad, hg), it follows that
a(b) = ma(c)adadma(c)a(b) = ma(c)hgadmal(c)a(d),
a(c) = a(c)adada(b)na(b)n = a(c)hgada(b)na(b)n
by Lemma 2.7. Therefore, we have
a(b) = ma(c)hga(b) € Ra(c)hga(b),
a(c) = a(c)hga(b)n € a(c)hga(b)R.
Let © = (ad)&b’c). This implies that
z = zadadz® = zhgadz® = zthgz,
xhga(b) = xhgzada(b) = xada(b) = a(b),
alc)hgxr = a(c)adxhgr = a(c)adr = a(c).

Combining with = € a(b)R and = € Ra(c), we get (ad)&b’c) = (hg)((lb’c). Conversely, if hg € R,

(b,0)
fe'

then we can show ad € R similarly. O
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Corollary 3.4 Let R be an abelian ring and let a,b,c,d,g,h € R such that adh = hgh and
hga = ada. Then ad € R if and only if hg € RY C) In this case, (ad) (bre) = (hg)gb’c).
More generally, we can extend Proposition 3.3 to the following new version of Cline’s formula

for a-(b, ¢)-invertible elements.

Theorem 3.5 Let a,b,c,d,g,h € R such that a(b),a(c) € comm(ad,g,h). If h € R with
adh = hgh and hga = ada, then ad € R(b ) if and only if gh € Rg)’c). In this case, we have
(gh)e") = g((ad)”?)h, (ad)y”” = h((gh)s")%g

Proof If gh € R, then there exist s, ¢ € R such that a(b) = sa(c)gha(b) = sa(c)sa(c)ghgho(b)
and a(c) = a(c)gha(d)t = alc)ghgha(b)ta(b)t since a(b), a(c) € comm(gh). Hence a(b) =
(sa(c))?gadha(b) and a(c) = alc)gadh(a(b)t)?. Since h € R there is n/ € R such that
a(c) = a(c)ha(b)n’. Then we have

(sa(c))?gadha(b)n’ = a(b)n’,
ale) = ae)ha(b)n’ gadh(a(b)t)? = alc)a(b)n’ hgadh(a(b)t)?,
since a(b), a(c) € comm(h). This implies that
a(b) = hsa(c)sa(c)gada(b) = hsa(c)sga(c)ada(b) € Ra(c)ada(b)
and a(c)h = ha(c) = ha(c)a(b)n'hgadh(a(b)t)?. Thus, we have
a(c) = a(c)hgadh(a()t?a(b)n’ = a(c)adhgh(a(b)t by
= a(c)adha(b)tsa(c)gha(b)n’ = a(c)ada(b)htsa(c)g € a(c)ada(b)R.

Moreover, it is clear that (gh)fxb’c) = sa(c) = a(b)t. Let y = h((gh)ab’c))Qg. Then yada(b) = a(b)

and «a(c)ady = a(c). Moreover, we have
yady = h((gh)$*))>ghgh((gh) )9 = h((gh)9)’g =y, y = a(b)ht(gh)7g € a(b)R,
y = h((gh)?)%g = h(gh))salc)g = h(gh))sgalc) € Ralc),

that is, (ad)&b’c) = h((gh)g”c))Qg. The converse can be proved similarly. O

Specifically, we have the following Cline’s formula for a-(b, ¢)-invertible elements.

Corollary 3.6 Let a,b, c,d € R such that a(b), a(c) € comm(a,d). Ifa € R then ad € R
if and only if da € R(b *“. In this case, we have (da)((lb’c) = d((ad)(b C)) (ad)&b’c) = ((da)(b C)) d.

Corollary 3.7 Let a,b,c,d € R such that b,c € comm(a,d). If a € R®° then ad € R if
and only if da € R(®°).
A ring R is called semicommutative if ab = 0 implies aRb = 0 for a,b € R. It can be easily

checked that every semicommutative ring is abelian.

Proposition 3.8 Let R be a semicommutative ring and let a,b,c,d,g,h € R such that
adh = hgh and hga = ada. Then ad € R(b ) if and only if gh € Réb’c). In this case, we
have (gh)&"” = g((ad)")?h, (ad)§™ = h((gh)3*)*gad.
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Proof If ad € R, then there exist m,n € R such that a(b) = ma(c)ada(b) = ma(c)hgo(b)
and a(c) = a(c)ada(b)n = a(c)hga(b)n by Corollary 3.4. Since hga = ada and ada(b)n, ma(c)hg,
hga(b)n € E(R), we conclude that

a(b) = ma(c)ada(b)nada(b) = a(b)ma(c)adada(b)n

= a(b)yma(c)hgada(b)n = a(b)ma(c)hada(b)ng,
hgma(c) = hgma(c)hga(b)n = ma(c)hghga(b)n = ma(c)hg.
Therefore, we have
a(b)h = a(b)yma(c)ada(b)nhada(b)ngh = a(b)adada(b)na(b)nma(c)hadmal(c)gh
= a(b)hgad(a(b)n)*hadma(c)gh = a(b)hg(a(b)n)*hadmal(c)gh,

that is, a(b)(h — hg(a(b)n)?hadma(c)gh) = 0. Since R is semicommutative, we get a(b)nh =

)
a(b)nhg(a(b)n)?hadmal(c)gh. Hence a(b)nh(l — g(a(b)n)?hadma(c)gh) = 0. Then we have
a(b)nhg = a(b)nhg?(a(b)n)?hadmal(c)gh. This shows that

(
a(b) = a(b)nhga(b) = a(b)nhg?(a(b)n)*hadmal(c)gha(b) € Ra(c)gha(b).
Next, we have
a(c) = ada(b)na(c) = ma(c)adada(b)na(c)
= ma(c)hgada(b)na(c) = ma(c)hada(b)nga(c).
This implies that (1 — ma(c)hada(b)ng)a(c) = 0. Since R is a semicommutative ring, we have
ma(c) = ma(c)hada(b)ngmal(c). Therefore, we have
ma(c)hg = ma(c)hgada(b)ngma(c)h = gma(c)hgada(b)nma(c)h
= ghgma(c)ada(b)nma(c)h = ghma(c)adgma(c)mal(c)h,
since ma(c)h(1 — ada(b)ngma(c)h) = 0. Then we have
ac) = a(e)hga(b)n = alc)hgma(c) = alc)mal(c)hg
= a(c)gha(b)nadgma(c)ma(c)h € alc)gha(b)R.
It is clear that ma(c) = a(b)n is the a-(b, c)-inverse of ad. Let z = (ad). Then z = maf(c) =

a(b)n. Thus, z = (hg)(b "“) by Corollary 3.4. Since zad = adz € E(R), we conclude that

a(b) = a(b)nhg*(a(b)n)*hadma(c)gha(b) = ma(c)hg*a(b)na(b)nhgha(b).

) =
Since ma(c)hga(b) = a(b), we have (ma(c)hg — 1)a(b) = 0. Thus we get ma(c)hg?a(b) = ga(b).
Therefore, a(b) = ga(b)na(b)nhgha(b) = gr*hgha(b). Similarly, we obtain
alc) = ale)gha(b)nadgma(c)ma(c)h = a(c)ghgma(c)ma(c)h = a(c)ghgz>h.
Let y = gz%h. Then «a(b) = ygha(b) and a(c) = a(c)ghy. And we have
yghy = gr’hghgx®h = gz®h =y, gx’h = gz’hadma(c) € Ra(c),

gz*h = gma(c)ada(b)nzh = a(b)nadgz®h € a(b)R.
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This implies that gr?hR = a(b)R and Rgx?h = Ra(c). Therefore, we have (gh)g”c) =y =
gr’h = g((ad)g”c))Qh. The converse can be proved similarly. O

Proposition 3.9 Let a,b,c,d,g € R such that a(ga)? = adaga and agada = (ad)?a. If R is a
semicommutative ring, then ad € RS’” if and only if ga € RS”C’.

Proof If ad € R, then there exist m,n € R such that a(b) = ma(c)ada(b) and a(c) =
a(c)ada(b)n. Because R is semicommutative (hence abelian), we conclude that
a(b)n = a(b)nma(c)adadada(b)na(b)n = a(b)nma(c)agadada(b)na(b)n

= a(b)nma(c)aada(b)nada(b)ng = a(b)nada(b)nma(c)aada(b)ng.
Then a(b)na = a(b)nada(b)nma(c)aada(b)nga. Since R is semicommutative and a(b)na(l —
da(b)nma(c)aada(b)nga) = 0, we have

a(b) = a(b)nada(b) = a(b)nad’a(b)nma(c)a®da(b)ngac(b)

= da(b)nma(c)a*dma(c)gaa(b) € Ra(c)gaa(b).
Since a(c) = ma(c)adadada(b)na(b)nal(c) = ma(c)agada(b)nada(b)na(c), we get
(1 — ma(c)agada(b)n)a(c) = 0.
Then ma(c)a = ma(c)agada(b)nma(c)a and thus
ma(c)ad = ma(c)adgada(b)nma(c)a = gama(c)ad*a(b)nma(c)a.

Also it is clear that ma(c)ad = adma(c) since ada(b)n, ma(c)ad € E(R). Then we have a(c) =

a(c)gaa(b)nad?*a(b)nmalc)a € alc)gaa(b)R, which implies that ga € R The converse can

be proved in a similar way. O

Corollary 3.10 Let R be a semicommutative ring and a,b,c,d € R. Then ad € R if and
only if da € R,

It is well-known that 1 + ab is invertible if and only if 1 + ba is invertible, it is called the
Jacobson’s Lemma [14, Exercise 1.6]. The next proposition shows the similar result for a-(b, ¢)-

invertible elements.

Proposition 3.11 Let a,b,c,d, g, h € R such that «(b), a(c) € comm(ad, hg), adh = hgh and
hga = ada. Then (1 —ad) € R if and only if (1—hg) € R,

Proof If (1 —ad) € R then there exist m,n € R such that a(b) = ma(c)(1 — ad)a(b) and
alc) = ale)(1 — ad)a(b)n. Since adh = hgh and hga = ada, we get (hg — ad)(1 — hg) = hg — ad
and (1 — hg)(hg — ad) = (1 — ad)(hg — ad). Therefore, we have
a(b) = ma(e)(1 — hg)a(b) + ma(c)(hg — ad)a(b)
= ma(c)(1 = hg)a(b) + m(hg — ad)a(c)(1 — hg)a(b),
= [m +m(hg — ad)]a(c)(1 — hg)a(b) € Ra(c)(1 — hg)a(b)
alc) = a(c)(1 = hg)a(b)n + a(c)(hg — ad)(1 — ad)a(b)n
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= a(e)(1 = hg)a(b)n + a(c)ma(c)(1 — ad)(hg — ad)a(b)n(1l — ad)
= a(e)(1 — hg)a(b)n + a(c)ma(c)(l — hg)(hg — ad)a(b)n(l — ad),
since a(b), a(c) € comm(ad, hg). This shows that
a(e)(1 — ad)a(b) = (1 — ad) (¢)a(b)
= (1 —ad)a(c)(1 = hg)a(b)na(b) + a(c)(1 - hg)(hg — ad)a(D)
= (1 - ad)a(e)(1 — hg)a(b)na(b) + a(c)(1 — hg)a(b)(hg — ad).
Since (hg — ad)(hg — ad) = 0, it follows that
ma(c)(1 — ad)a(b)(hg — ad) = m(1 — ad)a(c)(1 — hg)a(b)na(b)(hg — ad).
This implies that a(b)(hg —ad)n = (1 — ad)a(b)n(1 — hg)a(b)na(b)(hg — ad)n, that is, a(c)(hg —
ad)a(b)n = alc)(1 — hg)a(b)n(hg — ad)a(b)n. Therefore, we conclude that
alc) = ale)(1 = hg)a(b)n + a(e)(1 — hg)a(b)n(hg — ad)a(b)n
= a(e)(1 = hg)alb)[n + n(hg — ad)a(b)n] € a(c)(1 — hg)a(b)R,
proving (1 — hg) € R&b’c). The converse can be proved similarly. O
Corollary 3.12 Let a,b,c,d € R such that a(b),a(c) € comm(ad,da), ad?* = dad and da® =
ada. Then (1 —ad) € R if and only if (1 —da) € RO,

If R is an abelian ring, then we have the similar result as follows.

Proposition 3.13 Let R be an abelian ring such that adh = hgh and hga = ada for
a,b,c,d,g,h € R. Then (1 —ad) € R if and only if (1 — hg) € R,

Proof If (1—ad) € R then there exist m,n € R such that a(b) = ma(e)(1—ad)a(b), alc) =
alc)(1 — ad)a(b)n. Since R is an abelian ring, we have ma(c)(1 — ad) = (1 — ad)ma(c) € C(R).
This shows that

a(b)n

a(b)nma(c)(1 — hg) + a(b)nma(c)(hg — ad)
= a(b)nma(c)(1 — hg) + a(b)nma(c)(hg — ad)(1 — hg)
= a(b)nma(c)(1 — hg) + a(b)na(b)n(hg — ad)(1 — ad)ma(c)(1 — hg)
since adh = hgh and hga = ada. Tt follows that a(b)n(1 — ad) = ma(c)(1 — hg) + mal(c)(hg —
ad)ma(c)(1 — hg). Therefore, we have

a(b) = ma(e)(1 — hg)a(b) + ma(c)(hg — ad)ma(c)(1 — hg)a(b)

= [m +ma(c)(hg — ad)m]a(c)(1 — hg)a(b) € Ra(c)(1 — hg)a(b).

Next, since (hg — ad)(1 — ad) = hg — ad, we also have

ma(c) = (1 — hg + hg — ad)a(b)nma(c)
= (1 — hg)a(b)nma(c) + ma(c)(1 — ad)(hg — ad)ma(c)

(
= (1 = hg)a(b)nma(c) + ma(c)(1 — hg)(hg — ad)(1 — ad)ma(c)
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= (1 = hg)a(b)nma(c) + ma(c)(1 — hg)(hg — ad).

Then ma(c)(1—ad) = (1 —hg)ma(c)+ma(c)(1 —hg)(hg —ad). Since (hg —ad)(hg—ad) = 0, we
deduce that ma(c)(1—ad)(hg—ad) = (1—hg)ma(c)(hg —ad). This implies that ma(c)(1—ad) =
(1 =hg)ad)n+ (1 — hg)a(b)n(hg — ad). Hence, we have

ac) = ale)(1 — ad)a(b)n = a(c)ma(c)(1 — ad)
= a(c)(1 — hg)a(b)[n +n(hg — ad)] € a(c)(1 — hg)a(b)R.

The converse can be proved similarly. O
It was shown in [9, Theorem 2.19] that (b, ¢)-inverse has the analogous version for Jacobson’s

lemma. Similarly, we have the following result for a-(b, ¢)-inverses.

Proposition 3.14 Let a,b,c,m € R. If y € R is the a-(b,c)-inverse of a, then the following
statements are equivalent:

(1) me R";

(2) 14 (m — a)y is invertible;

(3) 1+ y(m — a) is invertible.

Proof The proof is similar to that of [9, Theorem 2.19]. O
The following theorem shows the strongly clean decompositions for a-(b, ¢)-invertible ele-

ments.

Theorem 3.15 Let a,b,c € R with a(b), a(c) € comm?(a). Then the following statements are
equivalent:

(1) ac RY and a € REY;

(2) a(b) =u+e, alc) = v+ e are strongly clean decompositions, ea(b) = a(b)e = ea(c) =
alc)e =0, a(b) € Ra(c)a, alc) € aa(b)R and a(c) € Ra(b)a, a(b) € aa(c)R, where u,v € U(R),
e € E(R);

(3) ad) =u+e, alc) =v+e, ue = eu, ve = ev, a(b)RNeR = a(c)RNeR = {0} and
a(b) € Ra(c)a, alc) € aa(b)R, a(c) € Ra(b)a, a(b) € aa(c)R, where u,v € U(R) and e € E(R).

Proof (1)= (2). If a € R then there exist m,n € R such that a(b) = ma(c)aa(b) and
ale) = a(c)aa(d)n. If a € RYY) | then there exist s, € R such that alc) = sa(b)aa(c) and
a(b) = a(b)aa(c)t. By Lemma 2.7, we have

ma(c)a(b) = a(b)ma(c), ma(c)alc) = a(c)ma(c),

since a(b),a(c) € comm?(a). This shows that a(b) € Ra(c)a,alc) € aa(b)R and a(c) €
Ra(b)a,a(b) € aa(c)R. Let p € rann(a(b)). Then we have ma(c)ap = msa(b)aa(c)ap =
msaa(c)aa(b)p = 0, that is, rann(a (b)) C rann(ma(c)a). It follows that ma(c)anaa(b) =

ma(c)a since a(b)naa(b) = a(b). Also since a(b)nama(c)a = a(b)na, we get ma(c)anama(c)a =
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ma(c)ana. Let u = a(b) — 1 + ma(c)a. Then we have
(a(b) — 1 + ma(c)a)(ma(c)ana — 1 + ma(c)a)
= (ma(c)ana — 1 + ma(c)a)(a(d) — 1 + ma(c)a) = 1,
which shows u € U(R). Take e = 1 — ma(c)a. Then a(b) = u + e and ea(b) = a(b)e = eafc) =
a(c)e = 0. Similarly, let k& € lann(a(c)). We deduce that

kEma(c)a = ka(b)na = ka(b)aa(c)tna = ka(c)a(b)atna = 0,
that is, lann(a(c)) C lann(ma(c)a

). Because a(c)ama(c) = a(c) and ama(c)ama(c) = ama(c),
we also have a(c)amma(c)a = ma(c)a, and ama(c)amma(c)a = amma(c)a. This shows that

(a(c) — 1+ ma(c)a)(amama(c) — 1 + ma(c)a)

= (amama(c) — 1 + ma(c)a)(alc) — 1 + ma(c)a) = 1.
Let v = a(c) — 1 4+ ma(c)a. Then v € U(R) and a(c) = v +e.

(2)= (1). Since a(b) = u+e and a(c) = v + e, we get a(b)a(b) = (u + e)a(b) = ua(b) and
alc)a(c) = alc)(v + e) = alc)v. Because u,v € U(R),a(b) € Ra(c)a and a(c) € aa(b)R, we
have a(b) = u~ta(b)a(b) € Ra(c)aa(b), a(c) = alc)a(c)v™! € a(c)aa(b)R. Similarly, we can
get a(b) € a(b)aa(c)R and a(c) € Ra(b)aa(c), that is, a € RY and a € R,

(2)< (3). It is obvious. O

Theorem 3.16 Let R be an abelian ring and a € Ry, Then ab) =u+e, alc) =v+e are
strongly clean decompositions, where u,v € U(R) and e € E(R).

Proof (1)= (2). If a € R then there exist m,n € R such that a(b) = ma(c)aa(b) and
alc) = alc)aa(b)n. It follows that naa(b), a(c)am € E(R) since a(b)n = ma(c). Also since R is
an abelian ring, we get
a(b)na = a(b)naa(b)na = naa(b),
ma(c)a = a(c)amma(c)a = alc)am = amalc).
This yields that
(a(d) — 1+ ma(ec)a)(ma(c)ana — 1 + ma(c)a)
= (ma(c)ana — 1 + ma(c)a)(a(d) — 1 + ma(c)a) = 1.

Let u = a(b) —1+ma(c)a. Then u € U(R). Take e = 1 —ma(c)a. Then a(b) = u+e. Similarly,

let v = a(c) — 1 4+ ma(c)a. Then we have
(a(c) — 1+ ma(c)a)(amama(c) — 1 + mal(c)a)
= (amama(c) — 1 + ma(c)a)(alc) — 1 + ma(c)a) = 1.
Thus, v € U(R) and a(c) =v+e. O

Corollary 3.17 If R is an abelian ring and a € R, then b = u + e, ¢ = v + e are strongly
clean decompositions, where u,v € U(R), e € E(R) and a,b,c € R.
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According to [4], a € R is Bott-Duffin (e, f)-invertible if there is y € R such that y = ey = yf,
yae = e and fay = f, where e, f € E(R).

Corollary 3.18 If R is an abelian ring and a € R is Bott-Dulffin (e, f)-invertible, then e = u+w
and [ = v+ w are strongly clean decompositions, where u,v € U(R) and e, f,w € E(R).
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