Verma Modules over Some Lie Algebras of W-Type

Congcong CHEN, Yongsheng CHENG*

School of Mathematics and Statistics, Henan University, Henan 475004, P. R. China

Abstract In this paper, we describe the structure of Verma modules over the two kinds of Lie algebras $\mathfrak{g}(\lambda)$ of W-type. We determine the reducibility and the singular vectors of their Verma modules under some conditions.

Keywords W-algebra; Verma module; singular vector

MR(2020) Subject Classification 17B10; 17B65; 17B68

1. Introduction

The twisted Heisenberg-Virasoro algebra HV was first introduced in [1], it is the universal central extension of the Lie algebra of differential operators on a circle of order no more than one. Its structure and representation theory have been discussed by many authors. For example, the irreducibility of Verma modules over HV was discussed in [1,2], its derivations and automorphism group were computed in [3], the classification of irreducible Harish-Chandra modules over HV was discussed in [4].

For $a, b \in \mathbb{C}$, denote by W(a, b) the complex Lie algebra with \mathbb{C} -basis $\{L_n, I_n, | n \in \mathbb{Z}\}$ and define the relations

$$[L_n, L_m] = (m-n)L_{m+n},$$

 $[L_n, I_m] = (a+m+bn)I_{m+n},$
 $[I_n, I_m] = 0, \text{ where } m, n \in \mathbb{Z}.$

The Vir(a, b) is the universal central extension of W(a, b) (see [5]). The algebra Vir(a, b) is very meaningful because it generalizes many important algebras, for example, the algebra Vir(0, 0) is the twisted Heisenberg-Virasoro algebra, the algebra Vir(0, -1) is the W(2, 2) Lie algebra whose representations were discussed in [6]. Classification of non-weight Vir(0, b)-modules over $\mathbb{C}[s, t]$ and the irreducibilities and isomorphic relations of these modules were constructed in [7].

Infinitesimal deformation of a Lie algebra is one way to give new Lie algebra. As a special W-algebra, the twisted Heisenberg-Virasoro algebra HV is a \mathbb{Z} -graded algebra. The infinitesimal deformations of the HV were given in [8], which were called deformed HV algebras. The deformed

Received June 28, 2022; Accepted November 25, 2022

Supported by the National Natural Science Foundation of China (Grant No. 11771122).

* Corresponding author

E-mail address: yscheng@henu.edu.cn (Yongsheng CHENG)

generalized Heisenberg-Virasoro algebra $\mathfrak{g}(G, \lambda)$ was introduced in [9], where λ is a deformation parameter, and G is an additive subgroup of \mathbb{C} such that G is free of rank ν if $\lambda = -2$.

Verma module is a highest weight module, investigation of Verma module on infinite dimensional Lie algebras was initiated in many papers, such as the Verma module and its singular vector of the twisted Heisenberg-Virasoro algebra at level zero were determined in [2], the Verma module and its singular vector of the W-algebra W(2,2) were determined in [6,10–12], the Verma modules over the generalized Heisenberg-Virasoro algebras were determined in [13], the Verma modules over the Virasoro algebra were determined in [14], the generalized Verma modules over some Block Lie algebra were studied in [15]. In [16], the author completely determined the irreducibility of the two type deformed generalized Heisenberg-Virasoro algebras, one is the deformed generalized Heisenberg-Virasoro algebra $\mathfrak{g}(G,\lambda)$ with the deformation parameter $\lambda \neq -1$, where G is an additive subgroup of $\mathbb C$ such that G is free of rank $\nu \geq 1$ if $\lambda = -2$, the other is the deformed Heisenberg-Virasoro algebra $\mathfrak{g}(\mathbb Z,\lambda)$. In particular, the author gave the necessary and sufficient condition of the Verma module over $\mathfrak{g}(G,\lambda)$ with $\lambda \neq 0,-1$.

In this paper, we want to make certain contributions to the reducibility of Verma modules over the two types of Lie algebras $\mathfrak{g}(\mathbb{Z},\lambda)$ of W-type, denoted $\mathfrak{g}(\lambda)$ for short. One is $\mathfrak{g}(-1)$, this is the special Vir(a,b) with $a=0,\,b=1$, the other is $\mathfrak{g}(0)$. The rest of the paper is organized as follows. In Section 2, we introduce the W-algebras $\mathfrak{g}(\lambda)$, and their Verma modules. In Section 3, we determine the necessary and sufficient condition of the irreducibility for Verma module of $\mathfrak{g}(-1)$ and all its singular vectors. In Section 4, we determine the necessary and sufficient condition of the irreducibility condition for Verma module of $\mathfrak{g}(0)$.

2. W-algebras $\mathfrak{g}(\lambda)$ and their Verma modules

In this section, we recall the W-algebras $\mathfrak{g}(\lambda)$ and their Verma modules. The W-algebras $\mathfrak{g}(\lambda)$ are a kind of infinite-dimensional Lie algebras related with the parameter λ with the \mathbb{C} -basis

$$\{L_n, I_n, C_1, C_2 | n \in \mathbb{Z}\}$$

and the Lie brackets given by

$$[L_n, L_m] = (m-n)L_{m+n} + \delta_{m+n,0} \frac{1}{12} (n^3 - n)C_1,$$

$$[L_n, I_m] = (m-\lambda n)I_{m+n} + \delta_{m+n,0}\delta_{\lambda,1} \frac{1}{12} (n^3 - n)C_2 + \delta_{m+n,0}\delta_{\lambda,-1}nC_2,$$

$$[I_n, I_m] = [C_i, \mathfrak{g}] = 0, \text{ where } m, n \in \mathbb{Z}, i = 1, 2.$$

It is clear that the W-algebras $\mathfrak{g}(\lambda)$ are a kind of \mathbb{Z} -graded Lie algebras and have triangular decomposition

$$\mathfrak{g}(\lambda) = \mathfrak{g}(\lambda)_{(-)} \oplus \mathfrak{g}(\lambda)_{(0)} \oplus \mathfrak{g}(\lambda)_{(+)},$$

where

$$\mathfrak{g}(\lambda)_{(0)} = \operatorname{Span}_{\mathbb{C}}\{L_0, I_0, C_1, C_2\},\$$

$$\mathfrak{g}(\lambda)_{(\pm)} = \operatorname{Span}_{\mathbb{C}}\{L_n, I_n | n \in \pm \mathbb{N}\}.$$

Let $c_1, c_2, h, h_I \in \mathbb{C}$. Denote by $I(c_1, c_2, h, h_I)$ the left ideal of the universal enveloping algebra $U(\mathfrak{g}(\lambda))$ generated by the elements

$$\{L_i, I_i | i, j > 0\} \cup \{L_0 - h, I_0 - h_I, C_1 - c_1, C_2 - c_2\}.$$

The Verma module with highest weight (c_1, c_2, h, h_I) over $\mathfrak{g}(\lambda)$ is defined as

$$M(c_1, c_2, h, h_I) = U(\mathfrak{g})/I(c_1, c_2, h, h_I),$$

which is a highest weight module with a basis consisting of all vectors of the form

$$I_{-m_1}\cdots I_{-m_s}L_{-n_1}\cdots L_{-n_r}v$$
,

where $r, s \ge 0$, $n_1 \ge \cdots \ge n_r > 0$, $m_1 \ge \cdots \ge m_s > 0$, $v = 1 + I(c_1, c_2, h, h_I)$. For simplicity denote $M = M(c_1, c_2, h, h_I)$. Clearly, M is graded by the L_0 -eigenvalues:

$$M = \bigoplus_{n>0} M_n,$$

where

$$M_n = \{ w \in M | L_0 w = (n+h)w \}$$

is spanned by vectors of the form $I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v$ such that $m_1 + \cdots + m_s + n_1 + \cdots + n_r = n$.

A nonzero homogeneous vector ξ in a highest weight $\mathfrak{g}(\lambda)$ -module is called singular if $\mathfrak{g}(\lambda)_{(+)}\xi$ = 0. M has a unique maximal submodule $J(c_1, c_2, h, h_I)$ so that

$$\bar{M}(c_1, c_2, h, h_I) = M/J(c_1, c_2, h, h_I)$$

is an irreducible highest weight module.

Let $P = \{(m_1, ..., m_s) | m_1 \ge \cdots \ge m_s > 0, s \in \mathbb{N}\}$. For $a = (a_1, ..., a_k), b = (b_1, ..., b_l) \in P$, denote by |a| the length of a. We may define a total order \succ on P as follows. If k = |a| > |b| = l, set $b_{l+1} = \cdots = b_k = 0$, then

 $a \succ b$ if and only if there exists $1 \le i \le k$ such that $a_i > b_i$ and $a_j = b_j$ for j < i.

The algebra $\mathfrak{g}(\lambda)$ has an anti-involution $\sigma:\mathfrak{g}(\lambda)\to\mathfrak{g}(\lambda)$ defined by

$$\sigma(L_n) = L_{-n}, \ \sigma(I_n) = I_{-n}, \ \sigma(C_i) = C_i, \ \text{for } i = 1, 2.$$

Then we get a symmetric bilinear form $(\cdot|\cdot)$ on M defined by

$$(xv|yv)v = \pi(\widetilde{\sigma}(x)y)v,$$

for $x, y \in U(\mathfrak{g}(\lambda))$, where $\pi : U(\mathfrak{g}(\lambda)) \to U(\mathfrak{g}(\lambda)_{(0)})$ denotes the projection and the anti-involution $\widetilde{\sigma} : U(\mathfrak{g}(\lambda)) \to U(\mathfrak{g}(\lambda))$ is given as follows:

$$\widetilde{\sigma}(x_1 \cdots x_n) = \sigma(x_n) \cdots \sigma(x_1)$$
 for any $x_1, ..., x_n \in \mathfrak{g}(\lambda)$.

Clearly, we get (v|v) = 1 and

$$(L_m \mu | \nu) = (\mu | L_{-m} \nu), (I_m \mu | \nu) = (\mu | I_{-m} \nu),$$

where $m \in \mathbb{Z}$, $\mu, \nu \in M$. Moreover, the distinct graded components of M are orthogonal, that is

$$(M_m|M_n)=0$$
 for $m\neq n$.

We know the radical of the symmetric bilinear form is the maximal $\mathfrak{g}(\lambda)$ -submodule of M. So it is enough to consider the restriction of the bilinear form on each M_n when we determine the irreducibility of M.

Let S_n be the set of the basis of M_n consisting of vectors of the form

$$I_{-m_1}\cdots I_{-m_s}L_{-n_1}\cdots L_{-n_r}v.$$

We introduce the total order on S_n as follows:

$$I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v \succ I_{-k_1} \cdots I_{-k_p} L_{-l_1} \cdots L_{-l_q} v$$

if one of the following conditions stands,

- (1) $\sum m_i < \sum k_i$;
- (2) $\sum m_i = \sum k_i, (m_1, ..., m_s) \succ (k_1, ..., k_p);$
- (3) $\sum m_i = \sum k_i, (m_1, ..., m_s) = (k_1, ..., k_p), (n_1, ..., n_r) \prec (l_1, ..., l_q).$

Clearly, if $S_n = \{\mu_1, ..., \mu_d\}$ with $\mu_i \succ \mu_j$ if i < j, we know that $d = \dim M_n$. For example, when n = 2, we have $L_{-1}^2 v \succ L_{-2} v \succ I_{-1} L_{-1} v \succ I_{-2} v \succ I_{-1}^2 v$ and

$$S_2 = \{L_{-1}^2 v, L_{-2} v, I_{-1} L_{-1} v, I_{-2} v, I_{-1}^2 v\}.$$

Denote by $A_n = (A_{ij})$ the $d \times d$ matrix with $A_{ij} = (\mu_i | \mu_{d+1-j})$, next we compute the determinant $\det A_n$ of A_n .

3. Verma module over the W-algebra $\mathfrak{g}(-1)$

Let $\lambda = -1$. We know that the W-algebra $\mathfrak{g}(-1)$ becomes Vir(0,1) Lie algebra, its Lie brackets are

$$[L_n, L_m] = (m-n)L_{m+n} + \delta_{m+n,0} \frac{1}{12} (n^3 - n)C_1,$$

$$[L_n, I_m] = (m+n)I_{m+n} + \delta_{m+n,0}nC_2,$$

$$[I_n, I_m] = [C_i, \text{Vir}(0, 1)] = 0, \text{ where } m, n \in \mathbb{Z}, i = 1, 2.$$

In this section, we discuss the reducible property of Verma module and the corresponding singular vectors.

Lemma 3.1 If
$$(n_1, ..., n_r) \succ (m_1, ..., m_s)$$
, $r, s > 0$, $n_1 \ge \cdots \ge n_r > 0$, $m_1 \ge \cdots \ge m_s > 0$, then
$$(L_{-n_1} \cdots L_{-n_r} v | I_{-m_1} \cdots I_{-m_s} v) = (I_{-m_1} \cdots I_{-m_s} v | L_{-n_1} \cdots L_{-n_r} v) = 0.$$

Proof For any integer $m \geq m_1$, we have

$$\begin{split} L_m I_{-m_1} \cdots I_{-m_s} v = & I_{-m_1} L_m I_{-m_2} \cdots I_{-m_s} v + [L_m, I_{-m_1}] I_{-m_2} \cdots I_{-m_s} v \\ = & I_{-m_1} L_m I_{-m_2} \cdots I_{-m_s} v + (m-m_1) I_{m-m_1} I_{-m_2} \cdots I_{-m_s} v + \\ & \delta_{m-m_1,0} m C_2 I_{-m_2} \cdots I_{-m_s} v. \end{split}$$

Continuing to compute, we get

$$L_m I_{-m_1} \cdots I_{-m_s} v = m C_2 \frac{\partial (I_{-m_1} \cdots I_{-m_s})}{\partial I_{-m}} v.$$

We know there exists $1 \le t \le \min\{r, s\}$ such that $n_t > m_t$ and $n_i = m_i$ for i < t, so we obtain that $L_{n_r} \cdots L_{n_1} I_{-m_1} \cdots I_{-m_s} v = 0$, that is

$$(v|L_{n_r}\cdots L_{n_1}I_{-m_1}\cdots I_{-m_s}v)=(L_{-n_1}\cdots L_{-n_r}v|I_{-m_1}\cdots I_{-m_s}v)=0.$$

Because of the symmetry, we also have

$$(L_{n_r}\cdots L_{n_1}I_{-m_1}\cdots I_{-m_s}v|v) = (I_{-m_1}\cdots I_{-m_s}v|L_{-n_1}\cdots L_{-n_r}v) = 0.$$

Lemma 3.2 The determinant $\det A_n$ is a product of a nonzero integer and some

$$f(m) = mc_2, m \in \mathbb{Z} + .$$

Proof Set $1 \le b < a \le d$, for $\mu_a, \mu_b \in S_n$, we have $\mu_a \prec \mu_b$. Write

$$\mu_a = I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v, \quad \mu_b = I_{-k_1} \cdots I_{-k_r} L_{-l_1} \cdots L_{-l_q} v.$$

Then we obtain

$$\mu_{d+1-a} = I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v,$$

$$\mu_{d+1-b} = I_{-l_1} \cdots I_{-l_a} L_{-k_1} \cdots L_{-k_p} v.$$

Next we consider the three cases of \succ on S_n . If case (1) stands, so we get

$$\sum_{i=1}^{s} m_i < \sum_{j=1}^{q} l_j.$$

Then we have

$$(I_{-n_1}\cdots I_{-n_r}v|L_{-k_1}\cdots L_{-k_n}v)=0.$$

It follows from Lemma 3.1 that $I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v = 0$. Hence

$$L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_n} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_n} v = 0.$$

So

$$\begin{split} A_{ab} &= (\mu_a | \mu_{d+1-b}) = & (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_q} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-k_1} \cdots L_{-k_p} v) \\ &= & 0 \end{split}$$

If case (2) stands, that is $\sum_{i=1}^r n_i = \sum_{j=1}^p k_j$ and $(n_1,...,n_r) \prec (k_1,...,k_p)$, by Lemma 3.1, we have

$$(L_{-k_1}\cdots L_{-k_n}v|I_{-n_1}\cdots I_{-n_r}v)=(I_{-n_1}\cdots I_{-n_r}v|L_{-k_1}\cdots L_{-k_n}v)=0.$$

Thus

$$A_{ab} = (\mu_a | \mu_{d+1-b}) = (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_a} L_{-k_1} \cdots L_{-k_n} v)$$

$$=(v|L_{m_s}\cdots L_{m_1}I_{n_r}\cdots I_{n_1}I_{-l_1}\cdots I_{-l_q}L_{-k_1}\cdots L_{-k_p}v)$$

$$=(v|L_{m_s}\cdots L_{m_1}I_{-l_1}\cdots I_{-l_q}I_{n_r}\cdots I_{n_1}L_{-k_1}\cdots L_{-k_p}v)$$

$$=(L_{-m_1}\cdots L_{-m_s}v|I_{-l_1}\cdots I_{-l_q}v)(I_{-n_1}\cdots I_{-n_r}v|L_{-k_1}\cdots L_{-k_p}v)$$

$$=0.$$

If case (3) stands, that is $\sum_{i=1}^{r} n_i = \sum_{j=1}^{p} k_j$, $(n_1, ..., n_r) = (k_1, ..., k_p)$, $(m_1, ..., m_s) \succ (l_1, ..., l_q)$, by Lemma 3.1, we have

$$(L_{-m_1}\cdots L_{-m_s}v|I_{-l_1}\cdots I_{-l_q}v) = (I_{-l_1}\cdots I_{-l_q}v|L_{-m_1}\cdots L_{-m_s}v) = 0.$$

Thus

$$\begin{split} A_{ab} &= (\mu_a | \mu_{d+1-b}) = & (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_q} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-k_1} \cdots L_{-k_p} v) \\ &= & 0. \end{split}$$

From the above three cases, we see that if $1 \le b < a \le d$, we have $A_{ab} = 0$, so the matrix A_n is upper triangular. Thus the determinant det A_n is the product of diagonal elements. By Lemma 3.1, we have

$$\begin{split} A_{aa} &= (\mu_a | \mu_{d+1-a}) = & (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{-m_1} \cdots I_{-m_s} I_{n_r} \cdots I_{n_1} L_{-n_1} \cdots L_{-n_r} v) \\ &= & (L_{-m_1} \cdots L_{-m_s} v | I_{-m_1} \cdots I_{-m_s} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-n_1} \cdots L_{-n_r} v) \\ &= & K_a \prod_{i=1}^s f(m_i)^{x_i} \prod_{j=1}^r f(n_j)^{y_j}, \end{split}$$

where K_a is some nonzero integers, x_i , y_j are the times of n_i , m_i appearing in $(n_1, ..., n_r)$, $(m_1, ..., m_s)$. This completes the proof of the lemma. \square

Next is our main result.

Theorem 3.3 The Verma module M over $\mathfrak{g}(-1)$ is irreducible if and only if $c_2 \neq 0$.

Proof If $c_2 \neq 0$, then $f(m) \neq 0$ for any $m \in \mathbb{Z}_+$. So the bilinear form on M is non-degenerate. The radical as the max submodule of M is zero, which implies that the $\mathfrak{g}(-1)$ -module M is irreducible.

Suppose $c_2 = 0$, the bilinear form on M is degenerate, so the radical of the bilinear form is nonzero and is a proper $\mathfrak{g}(-1)$ -submodule of M, which contradicts the irreducibility of M. \square

Next, we suppose $c_2 = 0$, then $J(c_1, 0, h, h_I) \neq 0$.

Lemma 3.4 The singular vectors of the Verma module $M(c_1, 0, h, h_I)$ must be in $U(I_-)v$ where $I_- = \bigoplus_{n \in \mathbb{N}} \mathbb{C}I_{-n}$.

Proof Suppose $s \in M(c_1, 0, h, h_I)$ is a singular vector and homogeneous, then we can write s = Sv for some $S \in U(Vir(0, 1)_-)$. We can obtain

$$I_0s = I_0Sv = SI_0v + [I_0, S]v = h_Is + [I_0, S]v.$$

It is easy to see that if $S \notin U(I_{-})$, $[I_0, S] \neq kS$ for any $k \in \mathbb{C}$. So $s \in U(I_{-})v$. \square

Lemma 3.5 If $c_2 = 0$, then the Verma module $M(c_1, 0, h, h_I)$ possesses a singular vector $\mu' \in M(c_1, 0, h, h_I)_p$ for some $p \in \mathbb{N}$, and up to a scalar factor, it is unique and can be written as

$$\mu' = I_{-1}^p v.$$

Proof It is easy to show that $I_m I_{-1}^p v = 0$ for $m \ge 1$, $I_0 I_{-1}^p v = h_I I_{-1}^p v$ and

$$L_m I_{-1}^p v = p I_{-1}^{p-1} [L_m, I_{-1}] v = p(m-1) I_{-1}^{p-1} I_{m-1} v = 0 \text{ for } m \ge 1.$$

So $I_{-1}^p v$ is singular vector. By Lemma 3.4 and the definition of $M(c_1, 0, h, h_I)_p$, if

$$(aI_{-p} + bI_{-(p-1)}I_{-1} + cI_{-(p-2)}I_{-2} + dI_{-(p-2)}I_{-1}^2 + \dots + eI_{-2}I_{-1}^{p-2})v,$$

where $a, b, c, ..., e \in \mathbb{C}$, is also singular vector, for $i \geq 1$, we have

$$L_{i}(aI_{-p} + bI_{-(p-1)}I_{-1} + cI_{-(p-2)}I_{-2} + dI_{-(p-2)}I_{-1}^{2} + \dots + eI_{-2}I_{-1}^{p-2})v$$

$$= (a(i-p)I_{i-p} + b(i+1-p)I_{i+1-p}I_{-1} + b(i-1)I_{-(p-1)}I_{i-1} + \dots + e(i-2)I_{i-2}I_{-1}^{p-2})v.$$

Then, choosing different i, we obtain that these coefficients $a=b=c=\cdots=e=0$. So the singular vector $\mu' \in M(c_1,0,h,h_I)_p$ is $I_{-1}^p v$ for some $p \in \mathbb{N}$. \square

Theorem 3.6 Let $c_2 = 0$. Up to a scalar vector, all the singular vectors of $M(c_1, 0, h, h_I)$ are $(\mu')^n v$ for $n \ge 1$.

Proof By Lemma 3.5, we have

$$I_m(I_{-1}^p)^n v = 0$$
, for $m > 1$,

$$I_0(I_{-1}^p)^n v = h_I(I_{-1}^p)^n v$$

and

$$L_m(I_{-1}^p)^n v = npI_{-1}^{np-1}[L_m, I_{-1}]v = np(m-1)I_{-1}^{np-1}I_{m-1}v = 0, \text{ for } m \ge 1.$$

So $(I_{-1}^p)^n v$ is singular vector. If there are some other singular vectors ν , then by Lemma 3.4, we have $\nu \in U(I_-)v$. Choosing the leading term of ν to be I_{-q} , and using L_{q-1} to act on ν , we get $L_{q-1}\nu \neq 0$. So all the singular vectors of $M(c_1, 0, h, h_I)$ are $(\mu')^n v$ for $n \geq 1$. \square

4. Verma module over the W-algebra $\mathfrak{g}(0)$

When $\lambda = 0$, the basis of the Lie algebra $\mathfrak{g}(0)$ is

$$\{L_n, I_n, C_1 | n \in \mathbb{Z}\}$$

with the Lie brackets given by

$$[L_n, L_m] = (m-n)L_{m+n} + \delta_{m+n,0} \frac{1}{12} (n^3 - n)C_1,$$

$$[L_n, I_m] = mI_{m+n},$$

$$[I_n, I_m] = [C_1, \mathfrak{g}(0)] = 0, \text{ where } m, n \in \mathbb{Z}.$$

In this section, we discuss its Verma module and the corresponding singular vectors.

Lemma 4.1 If
$$(n_1, ..., n_r) \succ (m_1, ..., m_s), r, s > 0, n_1 \ge \cdots \ge n_r > 0, m_1 \ge \cdots \ge m_s > 0$$
, then

$$(L_{-n_1}\cdots L_{-n_r}v|I_{-m_1}\cdots I_{-m_s}v) = (I_{-m_1}\cdots I_{-m_s}v|L_{-n_1}\cdots L_{-n_r}v) = 0.$$

Proof For any integer $m \geq m_1$, we have

$$L_m I_{-m_1} \cdots I_{-m_s} v = I_{-m_1} L_m I_{-m_2} \cdots I_{-m_s} v + [L_m, I_{-m_1}] I_{-m_2} \cdots I_{-m_s} v$$

$$= I_{-m_1} L_m I_{-m_2} \cdots I_{-m_s} v + (-m_1) I_{m-m_1} I_{-m_2} \cdots I_{-m_s} v.$$

Continuing to compute, we get

$$L_m I_{-m_1} \cdots I_{-m_s} v = -m h_I \frac{\partial (I_{-m_1} \cdots I_{-m_s})}{\partial I_m} v.$$

We know there exists $1 \le t \le \min\{r, s\}$ such that $n_t > m_t$ and $n_i = m_i$ for i < t, so we obtain that $L_{n_r} \cdots L_{n_1} I_{-m_1} \cdots I_{-m_s} v = 0$, that is

$$(v|L_{n_r}\cdots L_{n_1}I_{-m_1}\cdots I_{-m_s}v)=(L_{-n_1}\cdots L_{-n_r}v|I_{-m_1}\cdots I_{-m_s}v)=0.$$

Because of the symmetry, we also have

$$(L_{n_r}\cdots L_{n_1}I_{-m_1}\cdots I_{-m_s}v|v) = (I_{-m_1}\cdots I_{-m_s}v|L_{-n_1}\cdots L_{-n_r}v) = 0.$$

Lemma 4.2 The determinant $\det A_n$ is a product of a nonzero integer and some

$$f(m) = -mh_I, m \in \mathbb{Z}_+.$$

Proof Set $1 \le b < a \le d$, for $\mu_a, \mu_b \in S_n$, we have $\mu_a \prec \mu_b$. Write

$$\mu_a = I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v, \quad \mu_b = I_{-k_1} \cdots I_{-k_n} L_{-l_1} \cdots L_{-l_a} v.$$

Then we obtain

$$\mu_{d+1-a} = I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v,$$

$$\mu_{d+1-b} = I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v.$$

Next we consider the three cases of \succ on S_n . If case (1) stands, so we get $\sum_{i=1}^s m_i < \sum_{j=1}^q l_j$. Then we have

$$(I_{-n_1}\cdots I_{-n_n}v|L_{-k_1}\cdots L_{-k_n}v)=0.$$

It follows from Lemma 4.1 that $I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v = 0$. Hence

$$L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_a} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_n} v = 0.$$

Thus we have

$$\begin{split} A_{ab} &= (\mu_a | \mu_{d+1-b}) = & (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_q} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-k_1} \cdots L_{-k_p} v) \\ &= & 0. \end{split}$$

If case (2) stands, that is $\sum_{i=1}^r n_i = \sum_{j=1}^p k_j$ and $(n_1,...,n_r) \prec (k_1,...,k_p)$, by Lemma 4.1, we have

$$(L_{-k_1}\cdots L_{-k_p}v|I_{-n_1}\cdots I_{-n_r}v) = (I_{-n_1}\cdots I_{-n_r}v|L_{-k_1}\cdots L_{-k_p}v) = 0.$$

Thus

$$A_{ab} = (\mu_a | \mu_{d+1-b}) = (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v)$$

$$= (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v)$$

$$= (v | L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_q} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v)$$

$$= (L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-k_1} \cdots L_{-k_p} v)$$

$$= 0.$$

If case (3) stands, that is $\sum_{i=1}^{r} n_i = \sum_{j=1}^{p} k_j$, $(n_1, ..., n_r) = (k_1, ..., k_p)$, $(m_1, ..., m_s) \succ (l_1, ..., l_q)$, by Lemma 4.1, we have

$$(L_{-m_1}\cdots L_{-m_s}v|I_{-l_1}\cdots I_{-l_a}v) = (I_{-l_1}\cdots I_{-l_a}v|L_{-m_1}\cdots L_{-m_s}v) = 0.$$

Thus

$$\begin{split} A_{ab} &= (\mu_a | \mu_{d+1-b}) = & (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-l_1} \cdots I_{-l_q} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{-l_1} \cdots I_{-l_q} I_{n_r} \cdots I_{n_1} L_{-k_1} \cdots L_{-k_p} v) \\ &= & (L_{-m_1} \cdots L_{-m_s} v | I_{-l_1} \cdots I_{-l_q} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-k_1} \cdots L_{-k_p} v) \\ &= & 0 \end{split}$$

From the above three cases, we see that if $1 \le b < a \le d$, we have $A_{ab} = 0$, so the matrix A_n is upper triangular. Thus the determinant $det A_n$ is the product of diagonal elements. By Lemma 4.1, we have

$$\begin{split} A_{aa} &= (\mu_a | \mu_{d+1-a}) = & (I_{-n_1} \cdots I_{-n_r} L_{-m_1} \cdots L_{-m_s} v | I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{n_r} \cdots I_{n_1} I_{-m_1} \cdots I_{-m_s} L_{-n_1} \cdots L_{-n_r} v) \\ &= & (v | L_{m_s} \cdots L_{m_1} I_{-m_1} \cdots I_{-m_s} I_{n_r} \cdots I_{n_1} L_{-n_1} \cdots L_{-n_r} v) \\ &= & (L_{-m_1} \cdots L_{-m_s} v | I_{-m_1} \cdots I_{-m_s} v) (I_{-n_1} \cdots I_{-n_r} v | L_{-n_1} \cdots L_{-n_r} v) \\ &= & K_a \prod_{i=1}^s f(m_i)^{x_i} \prod_{j=1}^r f(n_j)^{y_j}, \end{split}$$

where K_a is some nonzero integers, x_i, y_j are the times of n_i, m_i appearing in (n_1, \ldots, n_r) , (m_1, \ldots, m_s) . This completes the lemma. \square

Next is our main result.

Theorem 4.3 The Verma module M over the W-algebra $\mathfrak{g}(0)$ is irreducible if and only if $h_I \neq 0$. It follows from a similar proof as the one of Theorem 3.3.

Acknowledgements The authors would like to thank the referees for a number of helpful comments that greatly improved the presentation of this paper.

References

- E. ARBARELLO, C. CONCINI, V. G. KAC, et al. Moduli spaces of curves and representation theory. Comm. Math. Phys., 1988, 117(1): 1–36.
- [2] Y. BILLIG. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad. Math. Bull., 2003, 46(4): 529–537.
- [3] Ran SHEN, Cuipo JIANG. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra. Commun. Algebra, 2006, **34**(7): 2547–2558.
- [4] Rencai LÜ, Kaiming ZHAO. Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. Commun. Contemp. Math., 2010, 12(2): 183–205.
- [5] Shoulan GAO, Cuipo JIANG, Yufeng PEI. Low-dimensional cohomology groups of the Lie algebras W(a, b). Comm. Algebra, 2011, 39(2): 397–423.
- [6] Wei ZHANG, Chongying DONG. W-algebra W(2,2) and the vertex operator algebra $L(\frac{1}{2}) \otimes L(\frac{1}{2})$. Commun. Math. Phys., 2009, **285**(5): 991–1004.
- [7] Jianzhi HAN, Qiufan CHEN, Yucai SU. Modules over the algebra Vir(a, b). Linear Algebra Appl., 2017, 515: 11–23.
- [8] Dong LIU, Yufeng PEI. Deformations on the twisted Heisenberg-Virasoro algebra. Chinese Ann. Math. Ser. B, 2019, 40(1): 111–116.
- [9] Chengkan XU. Deformed higher rank Heisenberg-Virasoro algebras. Internat. J. Algebra Comput., 2021, 31(3): 501-517.
- [10] Wei JIANG, Yufeng PEI. On the structure of Verma modules over the W-algebra W(2,2). J. Math. Phys., 2010, $\mathbf{51}(2)$: 022303, 8 pp.
- [11] Wei JIANG, Wei ZHANG. Verma modules over the W(2,2) algebras. J. Geom. Phys., 2015, 98: 118–127.
- [12] G. RADOBOLJA. Subsingular vectors in Verma modules, and tensor product modules over the twisted Heisenberg-Virasoro algebra and W(2,2) algebra. J. Math. Phys., 2013, $\bf 54$ (7): 071701, 24 pp.
- [13] Ran SHEN, Qifen JIANG, Yucai SU. Verma modules over the generalized Heisenberg-Virasoro algebras. Commun. Algebra, 2008, **36**(4): 1464–1473.
- [14] B. FEIGIN, D. FUCHS. Verma Modules over the Virasoro Algebra. Springer, Berlin, 1984.
- [15] Yongsheng CHENG, Yucai SU. Generalized Verma modules over some Block algebras. Front. Math. China, 2008, 3(1): 37–47.
- [16] Chengkang XU. Verma modules over deformed generalized Heisenberg-Virasoro algebras. J. Pure Appl. Algebra, 2021, 225(11): Paper No. 106723, 10 pp.