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Abstract Let (X, d, µ) be an RD-space satisfying both the doubling condition in the sense of

Coifman and Weiss and the reverse doubling condition. In this setting, the author obtains the

definition of grand generalized weighted Morrey space on (X, d, µ), and also investigates some p-

roperties of these spaces. As an application, the boundedness of the Hardy-Littlewood maximal

operator and the θ-type Calderón-Zygmund operator on spaces L
p),ϕ,Φ
ω (X) is also obtained.
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1. Introduction

As we all know, to investigate the local behaviour of solutions for the second order partial

differential equations, Morrey in [1] has introduced the Morrey space, which generalizes the

Lebesgue space and has important applications in harmonic analysis [2–4]. On the other hand,

weighted inequalities play a key role in harmonic analysis, but their use is best justified by the

variety of applications. In 2009, Komori and Shirai [5] introduced the weighted Morrey spaces on

the classical Euclidean space equipped with Lebsgue measure, and also obtained the boundedness

of Hardy-Littlewood maximal operator and Calderón-Zygmund operator on this space. In 2016,

Nakamura [6] extended the Komori and Shirai’s results to generalized weighted Morrey spaces.

Moreover, many results from real analysis and harmonic analysis on Euclidean space have been

proved valid underlying spaces replaced by metric measure spaces. One of the most important of

these spaces is the space of homogeneous type in the sense of Coifman andWeiss [7,8]. Since then,

many papers focus on the space of homogeneous type in the sense of Coifman and Weiss. For

example, Nakai in [9] studied the Morrey spaces on the space of homogeneous type. Meskhi and

Sawano provided several structural properties of grand variable exponent Lebesgue and Morrey

spaces over spaces of homogeneous type [10]. In 2021, Kokilashvili and Meskhi in [11] obtained

the boundedness of Hardy-Littlewood maximal operator and Riesz transforms in weighted grand

Morrey spaces over space of homogeneous type. However, in 2008, Han et al. introduced a special
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space of homogeneous type, i.e., RD-space [12]. Recently, we mention that some papers focus on

the different function spaces over RD-spaces and its applications; for example, see [13–16] and

the references therein. For Morrey spaces in other setting of metric measure spaces, such as non-

doubling measure and non-homogeneous metric measure spaces, we refer readers to see [17–20]

and so on.

In this paper, the author first obtains the definition of grand generalized weighted Morrey

space L
p),ϕ,Φ
ω (X) and establishes some properties about spaces L

p),ϕ,Φ
ω (X). Secondly, the author

proves that Hardy-Littlewood maximal operator M is bounded from space L
p),ϕ,Φ,σ
ω (X) into

spaces L
p),ϕ,Φ,σ
ω (X), where 1 < p < ∞, ϕ(·) is a continuous positive function defined on (0, p− 1]

with satisfying limε→0 ϕ(ε) = 0, Φ is an increasing function defined on (0,∞) and 0 < σ < p− 1.

Finally, the boundedness of θ-type Calderón-Zygmund operator Tθ on spaces L
p),ϕ
ω (X) and on

spaces L
p),ϕ,Φ,σ
ω (X) is also investigated.

The definition of spaces of homogeneous type and RD-spaces is as follows.

Definition 1.1 ([8, 21]) Let (X, d) be a metric space equipped with a regular Borel measure µ

such that all balls defined by d have finite and positive measure. Then:

(i) The triple (X, d, µ) is called a space of homogeneous type if there exists a constant

C1 ∈ [1,∞) such that, for any x ∈ X and r ∈ (0,∞),

µ(B(x, 2r)) ≤ C1µ(B(x, r)). (1.1)

(ii) The triple (X, d, µ) is called an RD-space if there exists constants κ ∈ (0, n] and C2 ∈

[1,∞) such that, for any x ∈ X , r ∈ (0, diam(X)/2) and λ ∈ [1, diam(X)/(2r)),

(C2)
−1λκµ(B(x, r)) ≤ µ(B(x, λr)) ≤ C2λ

nµ(B(x, r)), (1.2)

where diam(X) = supx,y∈X d(x, y) and n measures the “dimension” of X .

Remark 1.2 (i) If we take λ = 2 in (1.2), then RD-space is just the space of homogeneous type

in the sense of Coifman and Weiss [7, 8].

(ii) Han et al. in [12] have showed that, if measure µ satisfies (1.1), then µ satisfies (1.2) if

and only if there exists a0, C0 ∈ (1,∞) such that, for any x ∈ X and r ∈ (0, diam(X)/a0),

µ(B(x, a0r)) ≥ C0µ(B(x, r))

and equivalently, for any x ∈ X and r ∈ (0, diam(X)/a0), B(x, a0r) \B(x, r) 6= ∅.

Throughout the paper, C represents a positive constant being independent of the main pa-

rameters involved, but it may be different from line to line. For any ball B, we use cB and rB

to denote its center and radius, respectively. Given any ball B and β ∈ (0,∞), βB represents

the ball which has the same center as ball B and radius is β times of B. For any p ∈ [1,∞), we

denote by p′ its conjugate index, i.e., 1
p
+ 1

p′
= 1. Given a measurable set E ⊂ X , χE denotes

its characteristic function.
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2. Grand generalized weighted Morrey spaces

In this section, we establish two classes of definitions of grand generalized weighted Morrey

spaces on RD-spaces, and then obtain the embedding, density and equivalence properties about

the grand generalized weighted Morrey spaces on RD-spaces.

Here and in what follows, we always assume that (X, d, µ) is an RD-space with µ(X) < ∞,

and a function ω is called a weight if it is a locally integrable function on (X, d, µ) and take

values in (0,∞) almost everywhere. Moreover, for any measurable set E ⊂ X and a weighted ω,

we have ω(E) =
∫

E
ω(x)dµ(x).

Definition 2.1 (grand generalized weighted Morrey space) Let 1 < p < ∞, ϕ : (0, p−1] → (0,∞)

be a continuous positive function satisfying the condition limε→0 ϕ(ε) = 0, ω be a weight and

Φ : (0,∞) → (0,∞) be an increasing function. Then the grand generalized weighted Morrey

space L
p),ϕ,Φ
ω (X) is defined by setting

Lp),ϕ,Φ
ω (X) := {f ∈ Lp

loc(ω,X) : ‖f‖
L

p),ϕ,Φ
ω (X)

< ∞},

where

‖f‖
L

p),ϕ,Φ
ω (X)

:= sup
0<ε<p−1

sup
B

ϕ(ε)
( 1

Φ(ω(B))

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε

= sup
0<ε<p−1

sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε

‖f‖Lp−ε
ω (B) (2.1)

and the supremum is taken over all balls B ⊂ X .

We also denote by WL
p),ϕ,Φ
ω (X) the grand generalized weighted weak Morrey space of all

locally integrable functions satisfying

‖f‖
WL

p),ϕ,Φ
ω (X)

:= sup
0<ε<p−1

sup
B

sup
t>0

ϕ(ε)[Φ(ω(B))]−
1

p−ε t[ω({x ∈ B : |f(x)| > t})]
1

p−ε . (2.2)

Moreover, for any f ∈ L
p),ϕ,Φ
ω (X), by applying (2.1) and (2.2), it is easy to verify that

‖f‖
WL

p),ϕ,Φ
ω (X)

≤ ‖f‖
L

p),ϕ,Φ
ω (X)

.

Remark 2.2 (1) If we take ϕ(ε) = ε
θ

p−ε with θ > 0 in (2.1) and (2.2), then L
p),θ,Φ
ω (X) :=

L
p),ϕ,Φ
ω (X) and WL

p),θ,Φ
ω (X) := WL

p),ϕ,Φ
ω (X), which are the grand generalized weighted Morrey

space and the grand generalized weighted weak Morrey space in the original form.

(2) If we take ω ≡ 1 in Definition 2.1, then spaces L
p),ϕ,Φ
ω (X) and spaces WL

p),ϕ,Φ
ω (X)

are just the grand generalized Morrey space Lp),ϕ,Φ(X) and the grand generalized weak Morrey

space WLp),ϕ,Φ(X), respectively.

(3) If we take Φ(t) = t
p−ε
q

−1 with t > 0 and 1 < p ≤ q < ∞ in (2.1) and (2.2), then grand

generalized weighted Morrey space L
p),ϕ,Φ
ω (X) and grand generalized weighted weakMorrey space

WL
p),ϕ,Φ
ω (X) are just the grand weighted Morrey spaceM

p),q,ϕ
ω (X) and the grand weighted weak

Morrey space WM
p),q,ϕ
ω (X), respectively, see [11].

(4) If we take Φ(t) ≡ 1 with t > 0 in (2.1) and (2.2), then grand generalized weighted

Morrey space L
p),ϕ,Φ
ω (X) and grand generalized weighted weak Morrey space WL

p),ϕ,Φ
ω (X) are
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just the grand weighted Lebesgue space L
p),ϕ
ω (X) and the grand weighted weak Lebesgue space

WL
p),ϕ
ω (X).

We now recall the following notion of Muckenhoupt class Ap(µ).

Definition 2.3 ([22]) Let 1 < p < ∞. A weight ω belongs to the Muckenhoupt Ap(µ) if

‖ω‖Ap(µ) := sup
B

( 1

µ(B)

∫

B

ω(x)dµ(x)
){ 1

µ(B)

∫

B

[ω(x)]1−p′

dµ(x)
}p−1

< ∞, (2.3)

where the supremum is taken over all balls B ⊂ X .

Further, a weight ω is called an A1(µ) weight if there exists a positive constant C such that,

for any ball B ⊂ X ,
1

µ(B)

∫

B

ω(x)dµ(x) ≤ C ess inf
y∈B

ω(y). (2.4)

As in the classical setting, let A∞(µ) :=
⋃∞

p=1 Ap(µ).

The embedding and density properties on the spaces L
p),ϕ,Φ
ω (X) are as follows.

Lemma 2.4 (embedding property) Let 1 < r < p < ∞. Assume that the mapping t 7→ Φ(t)/t

is almost decreasing, namely, there exists a constant c > 0 such that

Φ(s)

s
≤ c

Φ(t)

t
for all s ≥ t > 0. (2.5)

Then

Lp,Φ
ω (X) →֒ Lp),θ,Φ

ω (X) →֒ Lr),θ,Φ
ω (X).

Moreover, if µ(X) < ∞, then

Lp),ϕ,Φ
ω (X) →֒ Lr),ϕ,Φ

ω (X). (2.6)

Proof For any f ∈ Lp,Φ
ω (X), by applying (2.1) and the Hölder inequality with exponent p

p−ε
,

we have

‖f‖
L

p),θ,Φ
ω (X)

= sup
0<ε<p−1

sup
B

[
εθ

Φ(ω(B))
]

1
p−ε

(

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε

= sup
0<ε<p−1

sup
B

[
εθ

Φ(ω(B))
]

1
p−ε

{

∫

B

|f(x)|p−ε[ω(x)]
p−ε
p

+ ε
p dµ(x)

}
1

p−ε

≤ sup
0<ε<p−1

sup
B

[
εθ

Φ(ω(B))
]

1
p−ε

{

∫

B

|f(x)|pω(x)dµ(x)
}

1
p
(

∫

B

ω(x)dµ(x)
)

1
p(p−ε)

= sup
0<ε<p−1

sup
B

ε
θ

p−ε

{ 1

Φ(ω(B))

∫

B

|f(x)|pω(x)dµ(x)
}

1
p

[
Φ(ω(B))

ω(B)
]
1
p
− 1

p−ε .

Case 1. If rB < 1, then from (2.5) and the monotonicity on function t
1
p
− 1

p−ε with t > 0 and

0 < ε < p− 1, it follows that

‖f‖
L

p),θ,Φ
ω (X)

≤Cp sup
0<ε<p−1

sup
B

{ 1

Φ(ω(B))

∫

B

|f(x)|pω(x)dµ(x)
}

1
p

[
1

c
×

Φ(ω(B(cB , 1)))

ω(B(cB , 1))
]
1
p
− 1

p−ε

≤Cp‖f‖Lp,Φ
ω (X).



Grand generalized weighted Morrey spaces for RD-spaces 461

Case 2. If rB ≥ 1, then by applying (2.5), we can deduce that

sup
0<ε<p−1

sup
B

ε
θ

p−ε

{ 1

Φ(ω(B))

∫

B

|f(x)|pω(x)dµ(x)
}

1
p

[
Φ(ω(B))

ω(B)
]
1
p
− 1

p−ε

≤ Cp‖f‖Lp,Φ
ω (X) sup

0<ε<p−1
sup
B

[
Φ(ω(B))

ω(B)
×

ω(B(cB , 1))

Φ(ω(cB, 1))
]
1
p
− 1

p−ε [
Φ(ω(cB, 1))

ω(B(cB, 1))
]
1
p
− 1

p−ε

≤ Cp‖f‖Lp,Φ
ω (X).

Combining the Cases 1 and 2, we obtain that the embedding Lp,Φ
ω (X) →֒ L

p),θ,Φ
ω (X).

Now we show the embedding L
p),θ,Φ
ω (X) →֒ L

r),θ,Φ
ω (X). For any f ∈ L

p),θ,Φ
ω (X), from (2.1),

Remark 2.2 (1) and the Hölder inequality with exponent p−ε
r−ε

, it then follows that

[
εθ

Φ(ω(B))
]

1
r−ε ‖f‖Lr−ε

ω (B)

= [
εθ

Φ(ω(B))
]

1
r−ε

{

∫

B

|f(x)|r−ε[ω(x)]
r−ε
p−ε

+ p−r
p−ε dµ(x)

}
1

r−ε

≤ [
εθ

Φ(ω(B))
]

1
r−ε

(

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε

×
(

∫

B

ω(x)dµ(x)
)

p−r
(p−ε)(r−ε)

≤ εθ(
1

r−ε
− 1

p−ε
)[
Φ(ω(B)

ω(B)
]

1
p−ε

− 1
r−ε

( εθ

Φ(ω(B))

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε

≤ Cp‖f‖Lp),θ,Φ
ω (X)

.

Taking the supremum for 0 < ε < r − 1 at the left of the above inequality, we have

‖f‖
L

r),θ,Φ
ω (X)

≤ Cp‖f‖Lp),θ,Φ
ω (X)

.

Thus, we complete the proof of Lemma 2.4. 2

Example 2.5 Let (X, d, µ) := (R, | · |, dx), where | · | denotes the Euclidean distance and dx

represents the Lebesgue measure on R, namely, let I = (0, 1] ⊂ R, p ∈ (1,∞), ω(x) ≡ 1, ϕ(ε) =

ε
1

p−ε , f(x) = x− 1
pχI(x) and Φ(t) ≡ t with t > 0. Then it is easy to show that f ∈ Lp),ϕ,Φ(I)

and f /∈ Lp,Φ(I).

Lemma 2.6 (density property) Let 1 < p < ∞, ω be a weight, (X, d, µ) be an RD-space, and

µ(X) < ∞. Then, for all f ∈ L
p),ϕ,Φ

ω (X), the following equation limε→0 ‖f‖Lp−ε,Φ
ω (X) = 0 holds,

where L
p),ϕ,Φ

ω (X) is the closure of space Lp,Φ
ω (X) in space L

p),ϕ,Φ
ω (X).

Proof Let f ∈ L
p),ϕ,Φ

ω (X) and ǫ > 0. Assume that the mapping t 7→ Φ(t)/t is almost decreasing

which satisfies (2.5). Then there exists a function fn0 ∈ Lp,Φ
ω (X) such that

‖f − fn0‖Lp),ϕ,Φ
ω (X)

<
ǫ

2
. (2.7)

For fn0 and ǫ, by applying Definition 2.1, the Hölder inequality with exponent p
p−ε

and (2.5),

we obtain

sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε

‖fn0‖Lp−ε
ω (B)
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= sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε

{

∫

B

|fn0(x)|
p−ε[ω(x)]

p−ε
p

+ ε
p dµ(x)

}
1

p−ε

≤ sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε

(

∫

B

|fn0(x)|
pω(x)dµ(x)

)
1
p

[ω(B)]
1

p−ε
− 1

p

= sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε
− 1

p

( 1

Φ(ω(B))

∫

B

|fn0(x)|
pω(x)dµ(x)

)
1
p

[ω(B)]
1

p−ε
− 1

p

≤ Mϕ(ε)‖fn0‖Lp,Φ
ω (X) <

ǫ

2
,

when ε is sufficiently small, because limε→0 ϕ(ε) = 0 and M = supB[
Φ(ω(B))
ω(B) ]

1
p
− 1

p−ε .

Further, taking such function fn0 , for any small ǫ, by the Minkowski inequality, we have

ϕ(ε)‖f‖
L

p−ε,Φ
ω (X) ≤ ϕ(ε)‖f − fn0‖Lp−ε,Φ

ω (X) + ϕ(ε)‖fn0‖Lp−ε,Φ
ω (X) <

ǫ

2
+

ǫ

2
< ǫ,

moreover, ϕ defined on (0, p− 1] is a continuous positive function. Thus, we complete the proof

of Lemma 2.6. 2

We now introduce another definition of grand generalized weighted Morrey space depending

on more parameters, σ ∈ (0, p− 1), and is defined by

‖f‖
L

p),ϕ,Φ,σ
ω (X)

:= sup
0<ε<σ

sup
B

ϕ(ε)
( 1

Φ(ω(B))

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε

, 1 < p < ∞. (2.8)

The following lemma is valid.

Lemma 2.7 Assume that the mapping t 7→ Φ(t)/t is almost decreasing and satisfying (2.5).

Then the norm ‖f‖
L

p),ϕ,Φ,σ
ω (X)

is equivalent to ‖f‖
L

p),ϕ,Φ
ω (X)

; that is, there exists a constant c > 1

independent of f such that

c−1‖f‖
L

p),ϕ,Φ,σ
ω (X)

≤ ‖f‖
L

p),ϕ,Φ
ω (X)

≤ c‖f‖
L

p),ϕ,Φ,σ
ω (X)

.

Proof From Definition 2.1 and (2.8), it is easy to see that ‖f‖
L

p),ϕ,Φ,σ
ω (X)

≤ ‖f‖
L

p),ϕ,Φ
ω (X)

holds.

Hence, we only need to show that there exists some constant Cϕ,σ,p > 0 such that

‖f‖
L

p),ϕ,Φ
ω (X)

≤ Cϕ,σ,p‖f‖Lp),ϕ,Φ,σ
ω (X)

.

Since

sup
0<ε<p−1

sup
B

ϕ(ε)
[ 1

Φ(ω(B))

∫

B

|f(x)|p−εω(x)dµ(x)
]

1
p−ε

≤ sup
0<ε<σ

sup
B

ϕ(ε)
[ 1

Φ(ω(B))

∫

B

|f(x)|p−εω(x)dµ(x)
]

1
p−ε

+

sup
σ≤ε<p−1

sup
B

ϕ(ε)
[ 1

Φ(ω(B))

∫

B

|f(x)|p−εω(x)dµ(x)
]

1
p−ε

,

we only need to estimate the second part of the right hand. For σ ≤ ε < p− 1, by applying the

Hölder inequality with p−σ
p−ε

, we have

ϕ(ε)

[Φ(ω(B))]
1

p−ε

(

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε
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=
ϕ(ε)

[Φ(ω(B))]
1

p−ε

{

∫

B

|f(x)|p−ε[ω(x)]
p−ε
p−σ

+ ε−σ
p−σ dµ(x)

}
1

p−ε

≤
ϕ(ε)

[Φ(ω(B))]
1

p−ε

(

∫

B

|f(x)|p−σω(x)dµ(x)
)

1
p−σ

[ω(B)]
ε−σ

(p−ε)(p−σ)

≤
ϕ(ε)

[Φ(ω(B))]
1

p−ε

ϕ(σ)

[Φ(ω(B))]−
1

p−σ

[ω(B)]
ε−σ

(p−ε)(p−σ)×

ϕ(σ)
( 1

Φ(ω(B))

∫

B

|f(x)|p−σω(x)dµ(x)
)

1
p−σ

≤ ‖f‖
L

p),ϕ,Φ,σ
ω (X)

ϕ(p− 1)[ϕ(σ)]−1[
Φ(ω(B))

ω(B)
]

1
p−σ

− 1
p−ε

≤ Cϕ,σ,p‖f‖Lp),ϕ,Φ,σ
ω (X)

.

Thus, we obtain the desired result. 2

3. Boundedness of Hardy-Littlewood maximal operators

In this section, we investigate the boundedness of Hardy-Littlewood maximal operator M

on spaces L
p),ϕ,Φ,σ
ω (X). Respectively, the Hardy-Littlewood maximal operator M is defined by

setting

Mf(x) := sup
B

1

µ(B)

∫

B

|f(y)|dµ(y), for any x ∈ X. (3.1)

The main results of this section are stated as follows.

Theorem 3.1 Let 1 < p < ∞, µ(X) < ∞, ω ∈ Ap(X) and ϕ : (0, p − 1] → (0,∞) be a

continuous positive function satisfying the condition limε→0 ϕ(ε) = 0. Then M defined as in

(3.1) is bounded on spaces L
p),ϕ
ω (X).

Theorem 3.2 Let 1 < p < ∞, µ(X) < ∞, ω ∈ Ap(X), ϕ : (0, p− 1] → (0,∞) be a continuous

positive function satisfying the condition limε→0 ϕ(ε) = 0, Φ : (0,∞) → (0,∞) be an increasing

function and σ ∈ (0, p − 1). Then the operator M defined as in (3.1) is bounded on spaces

L
p),ϕ,Φ,σ
ω (X).

Once Theorem 3.2 holds, by applying Lemma 2.7, it is easy to obtain the following corollary.

Corollary 3.3 Let 1 < p < ∞, µ(X) < ∞, ω ∈ Ap(X), ϕ : (0, p− 1] → (0,∞) be a continuous

positive function satisfying the condition limε→0 ϕ(ε) = 0, Φ : (0,∞) → (0,∞) be an increasing

function and σ ∈ (0, p − 1). Then the operator M defined as in (3.1) is bounded on spaces

L
p),ϕ,Φ
ω (X).

To prove the above main theorems, we need to recall the following lemma in [23].

Lemma 3.4 Let p ∈ [1,∞) and ω ∈ Ap(X). Then M defined as in (3.1) is bounded on spaces

Lp(ω) for p ∈ (1,∞) and bounded from spaces L1(ω) to spaces L1,∞(ω).

Proof of Theorem 3.1 By the openness property of the Muckenhoupt class Ap(X) (see [23]),

there exists some number δ such that 0 < δ < p − 1 and ω ∈ Ap(µ). By applying Lemma 3.4,
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we have

‖Mf‖
L

p−δ
ω (X) ≤ C1‖f‖Lp−δ

ω (X), f ∈ Lp−δ
ω (X),

‖Mf‖Lp
ω(X) ≤ C2‖f‖Lp

ω(X), f ∈ Lp
ω(X),

where the positive constants C1 and C2 are independent of f .

By virtue of Calderón-Zygmund interpolation theorem for sublinear operators, we conclude

that there exists some constant C > 0 independent of ε and f such that

‖Mf‖Lp−ε
ω (X) ≤ C2‖f‖Lp−ε

ω (X), f ∈ Lp−ε
ω (X), 0 < ε < δ. (3.2)

Write

‖Mf‖
L

p),ϕ
ω (X)

= sup
0<ε<p−1

ϕ(ε)
(

∫

X

|Mf(x)|p−εω(x)dµ(x)
)

1
p−ε

≤ sup
0<ε<δ

ϕ(ε)
(

∫

X

|Mf(x)|p−εω(x)dµ(x)
)

1
p−ε

+

sup
δ≤ε<p−1

ϕ(ε)
(

∫

X

|Mf(x)|p−εω(x)dµ(x)
)

1
p−ε

= : D1 +D2.

By (3.2), we have

D1 ≤ sup
0<ε<δ

ϕ(ε)‖Mf‖Lp−ε
ω (X) ≤ C sup

0<ε<δ

ϕ(ε)‖f‖Lp−ε
ω (X) ≤ C‖f‖

L
p),ϕ
ω (X)

.

From the Hölder inequality with exponent p−δ
p−ε

and Lemma 3.4, it then follows that

D2 ≤ sup
δ≤ε<p−1

ϕ(ε)
(

∫

X

|Mf(x)|p−δω(x)dµ(x)
)

1
p−δ

[ω(X)]
ε−δ

(p−ε)(p−δ)

≤C sup
δ≤ε<p−1

ϕ(ε)[ϕ(δ)]−1ϕ(δ)
(

∫

X

|f(x)|p−δω(x)dµ(x)
)

1
p−δ

[ω(X)]
ε−δ

(p−ε)(p−δ)

≤C‖f‖
L

p),ϕ
ω (X)

ϕ(p− 1)[ϕ(δ)]−1[ω(X)]p−1−δ ≤ Cp‖f‖Lp),ϕ
ω (X)

.

Combining with the estimate of D1, we complete the proof of Theorem 3.1. 2

Proof of Theorem 3.2 By applying (2.8) and (3.2), we have

sup
0<ε<σ

sup
B

ϕ(ε)
( 1

Φ(ω(B))

∫

B

|Mf(x)|p−εω(x)dµ(x)
)

1
p−ε

≤ sup
0<ε<σ

sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε

‖Mf‖Lp−ε
ω (X)

≤ C sup
0<ε<σ

sup
B

ϕ(ε)

[Φ(ω(B))]
1

p−ε

(

∫

B

|f(x)|p−εω(x)dµ(x)
)

1
p−ε

≤ C‖f‖
L

p),ϕ,Φ,σ
ω (X)

.

Hence, the proof of Theorem 3.2 is completed. 2
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4. Boundedness of θ-tyep Calderón-Zygmund operators

Before stating the main theorems of this section, we first recall some necessary definitions

and notation and give the lemma needed in the proof.

For any x, y ∈ X and δ ∈ (0,∞), set

Vδ(x) := µ(B(x, δ)) and V (x, y) := µ(x, d(x, y)).

It follows from (1.1) that V (x, y) ∼ V (y, x).

We now recall the definition of θ-type Calderón-Zygmund integral operator as follows

Definition 4.1 ([24]) Let θ be a non-negative, non-decreasing function defined on [0,+∞) and

satisfy the following condition
∫ 1

0

θ(t)

t
dt < ∞. (4.1)

And a measurable function Kθ(·, ·) on X ×X \ {(x, x) : x ∈ X} is called a θ-type kernel if there

exists some constant C > 0 such that

(i) For all x, y ∈ X with x 6= y,

|Kθ(x, y)| ≤
C

V (x, y)
. (4.2)

(ii) For all x, x′, y ∈ X satisfying d(x, x′) ≤ 2d(x, y),

|Kθ(x, y)−Kθ(x
′, y)|+ |Kθ(y, x)−Kθ(y, x

′)| ≤ Cθ(
d(x, x′)

d(x, y)
)

1

V (x, y)
. (4.3)

Let L∞
b (µ) be the space of all L∞(µ) functions with bounded support. A linear operator Tθ

is called a θ-type Calderón-Zygmund singular integral operator with kernel Kθ satisfying (4.2)

and (4.3) if, for all f ∈ L∞
b (µ) and x ∈ (X \ supp(f)),

Tθ(f)(x) :=

∫

X

Kθ(x, y)f(y)dµ(y). (4.4)

The main theorems of this section are stated as follows:

Theorem 4.2 Let 1 < p < ∞, µ(X) < ∞, ω ∈ Ap(X) and ϕ : (0, p − 1] → (0,∞) be a

continuous positive function satisfying the condition limε→0 ϕ(ε) = 0. Suppose that the θ-type

Calderón-Zygmund operator Tθ defined by (4.4) is bounded on L2(µ). Then Tθ is bounded on

spaces L
p),ϕ
ω (X).

Theorem 4.3 Let 1 < p < ∞, µ(X) < ∞, ω ∈ Ap(X), ϕ : (0, p− 1] → (0,∞) be a continuous

positive function satisfying the condition limε→0 ϕ(ε) = 0, Φ : (0,∞) → (0,∞) be an increasing

function and σ ∈ (0, p− 1). Suppose that the θ-type Calderón-Zygmund operator Tθ defined as

in (4.4) is bounded on L2(µ). Then Tθ is bounded on spaces L
p),ϕ,Φ,σ
ω (X).

To prove the above theorems, we need to recall the following lemma in [24].

Lemma 4.4 Let 1 < p < ∞ and ω ∈ Ap(X). Suppose that the θ-type Calderón-Zygmund

operator Tθ defined as in (4.4) is bounded on L2(µ). Then Tθ is bounded on spaces Lp
ω(X) for
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p ∈ (1,∞), and also bounded from spaces L1
ω(X) to spaces L1,∞(ω).

Remark 4.5 By using Lemma 4.4 and similar arguments used in the proofs of Theorems 3.1

and 3.2, it is easy to show that Theorems 4.2 and 4.3 hold, respectively.
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[23] J.-O. STRÖMBERG, A. TORCHINSKY. Weighted Hary Space. Lecture Notes in Mathematics, 1381,
Springer, 1989.

[24] X. T. DUONG, Ruming GONG, M. S. KUFFNER, et al. Two weight commutators on spaces of homoheneous

type and applications. J. Geom. Anal., 2021, 31(1): 980–1038.


	1. Introduction
	2. Grand generalized weighted Morrey spaces
	3. Boundedness of Hardy-Littlewood maximal operators
	4. Boundedness of -tyep Calderón-Zygmund operators

