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Abstract In the setting of variable exponent, an existence result to a class of parabolic equations

with zero order term is proved. The proof of existence relies essentially on selecting some

suitable test functions based upon the integrability of the source term and the zero order term

simultaneously. By virtue of a priori estimates and some limit analyses, the weak limit of the

nonlinear principal term is identified via the Young measures method.

Keywords nonstandard growth condition; zero order term; weak solutions

MR(2020) Subject Classification 35K10; 35K20; 35K59

1. Introduction

Assume that Ω ⊂ R
N is a bounded Lipschitz domain, ∂Ω is the boundary of Ω, T > 0 is

finite, QT = Ω × (0, T ) is a cylinder, and ΓT = ∂Ω × (0, T ) stands for the lateral boundary.

Consider a class of parabolic equations:





∂tu− divA(x, t,∇u) + g(x, t, u) = f(x, t), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω.

(1.1)

The hypotheses on Eq. (1.1) are given as follows:

(H1) Let p(x) be a continuous function in Ω, p+ := maxΩ p(x), p− := minΩ p(x) and

1 < p− ≤ p(x) ≤ p+ < +∞. Then p(x) is known as the variable exponent. Assume that p(x)

also satisfies the log-Hölder continuity condition in [1], i.e.,

∀x1, x2 ∈ Ω, |x1 − x2| < 1, |p(x1)− p(x2)| < ω(|x1 − x2|),

where ω : (0,∞) → R is a nondecreasing function with lim supα→0+ ω(α) ln( 1
α
) < +∞.

(H2) A(x, t, η) : QT × R
N → R

N is a Carathéodory function and assume that A(x, t, η)

satisfies the structure conditions

[A(x, t, η) −A(x, t, η′)] · (η − η′) > 0; (1.2)

A(x, t, η) · η ≥ α|η|p(x); (1.3)
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|A(x, t, η)| ≤ β|η|p(x)−1, (1.4)

where η, η′ ∈ R
N with η 6= η′; and the constants α, β > 0.

(H3) g(x, t, s) is a Carathéodory function and satisfies

g(x, t, s)s ≥ 0; (1.5)

sup
|s|≤k

|g(x, t, s)| := hk(x, t) ∈ L1(QT ), ∀k > 0. (1.6)

(H4) f ∈ Lm(QT ), m ≥ [p−(1 + 2
N
)]′; here ′ means the Hölder conjugate exponent. Assume

that the initial value u0 ∈ L2(Ω).

The mathematical models with variable exponent p(x), like Problem (1.1), are related to

electro-rheological fluids, which can be seen as a class of non-Newtonian fluids or smart fluids

(see monograph [2] and the references therein). Compared with the constant case p, the variable

exponent p(x) is able to describe the diffusion phenomenon more refined in the divergence term.

In the classical constant exponent setting, [3] investigated a steady problem with zero order

term g(x, u) and a divergence term −divΦ(u), where Φ(u) is only a continuous field. Since

there is no growth condition on Φ(u), the authors had to consider the existence of renormalized

solutions although the source term f(x) ∈ W−1,p′

(Ω). With respect to the elliptic or parabolic

equations with finite Radon measures, we refer to Boccardo and Gallouët’s pioneer work [4], in

which some classical results have been proved. Here we only state them in a simple form: if

p > 2− 1
N
, f ∈ L1(Ω), then the steady equation

{
−∆pu = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω

has a weak solution u ∈ W
1,q
0 (Ω) with 1 ≤ q <

N(p−1)
N−1 . For the time-dependent problem






∂tu−∆pu = f(x, t), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x), x ∈ Ω,

if p > 2 − 1
N+1 , f ∈ L1(QT ), then the problem has a weak solution u ∈ Lq(0, T ;W 1,q

0 (Ω)) with

1 ≤ q < p − N
N+1 . For the variable exponents equations, it should be emphasized that the

functional setting for the parabolic equations with p(x) structure was established in [1]. In the

L1 data framework, the authors of [1] also proved the existence of renormalized solutions without

the zero order term. For the well-posedness of entropy solutions in the elliptic case, see [5].

Different from the parabolic problem in [4], in our Problem (1.1), the integrability of f

can ensure the weak energy solutions, other than the solutions like u ∈ Lq(0, T ;W 1,q
0 (Ω)) in

the equations with constant exponent. They are from different perspectives. As stated in [6],

identifying the weak limit of the nonlinear term is vital to the nonlinear problem. Compared with

the steady problem in [3], one should select new and appropriate test functions to the parabolic

equations. To be more specific, as pointed out in [7, Remark 3.3], the time derivative term

prevents us from directly using the test function Ti[u
ǫ − Tj(u)] as in [3]. We need the Landes
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time regularization for help. It is interesting that the integrability of f , assumed in (H4), is

neither high nor low. In [8], in order to establish the strong convergence of the gradient sequence

{∇uǫ}ǫ, the trick is to utilize uǫ − uη as the test function in the difference of the approximate

equation for ǫ and η. However, in our Problem (1.1), the zero order term g(x, t, u) makes this

trick in vain, since the integrability of f is not high enough to ensure the uniform L∞ bound

of the approximate solution uǫ. When g(x, t, u) ≡ 0 and the source term f ǫ is bounded in L1

(non-reflexive Banach space) or weakly converges to L1, the almost everywhere convergence of

the gradient sequence {∇uǫ}ǫ is attributed to the pioneering paper [9]. Nevertheless, in our

problem, since the zero order term exists and f has a relatively higher integrability, the Young

measures method can be more efficiently used to prove the almost everywhere convergence of the

gradient sequence {∇uǫ}ǫ.

We recall the solutions space in [1]: V := {v ∈ Lp−

(0, T ;W
1,p(x)
0 (Ω)), |∇v| ∈ Lp(x)(QT )}.

The norm in V is defined as ‖v‖V = ‖v‖
Lp−(0,T ;W

1,p(x)
0 (Ω))

+ |∇v|Lp(x)(QT ) or an equivalent norm

‖v‖V = |∇v|Lp(x)(QT ). The dual of V is V∗. For more details on functional spaces for the parabolic

equations with p(x) structure, we refer to the fundamental works in [1].

Theorem 1.1 Let the Assumptions (H1)–(H4), be satisfied. Then there exists a weak solution

u to Problem (1.1). Here, we say that u is a weak solution to Eq. (1.1), provided that u ∈

L∞(0, T ;L2(Ω)) ∩ V,

g(x, t, u) ∈ L1(QT ), g(x, t, u)u ∈ L1(QT ); (1.7)

and the equality

−

∫

Ω

u0φ(x, 0)dx−

∫

QT

u∂tφdxdt+

∫

QT

A(x, t, u,∇u) · ∇φdxdt+

∫

QT

g(x, t, u)φdxdt =

∫

QT

fφdxdt (1.8)

holds for every φ ∈ D(Ω× [0, T )).

2. Proof of the existence result

This section is devoted to proving the existence result. For clarity, the proof is divided into

several steps.

Step 1. Approximate problem and some estimates.

We define an approximate equation corresponding to Problem (1.1):





∂tu
ǫ − divA(x, t,∇uǫ) + gǫ(x, t, uǫ) = f ǫ(x, t), (x, t) ∈ QT ,

uǫ(x, t) = 0, (x, t) ∈ ΓT ,

uǫ(x, 0) = u0(x), x ∈ Ω,

(2.1)

where gǫ(x, t, s) = g(x,t,s)
1+ǫ|g(x,t,s)| ; f

ǫ(x, t) = f(x,t)
1+ǫ|f(x,t)| . For fixed 0 < ǫ < 1, the existence of weak

solutions uǫ ∈ V to Problem (2.1) is ensured by the pseudo-monotone operator theory in [10] or

the Rothe method in [11].
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Let us take uǫ as a test function in (2.1); by (1.3) we get

1

2
ess sup
τ∈(0,T )

∫

Ω

|uǫ|2(τ)dx + α

∫

QT

|∇uǫ|p(·)dxdt+

∫

QT

gǫ(x, t, uǫ)uǫdxdt

≤
3

2
‖u0‖

2
2,Ω + 3

∫

QT

f ǫuǫdxdt. (2.2)

Employing the Hölder inequality, parabolic embedding in [12] (the embedding constant is

denoted by γN,p−), Young inequality with ε, we have
∫

QT

f ǫuǫdxdt ≤ ‖f ǫ‖[p−(1+ 2
N

)]′,QT
‖uǫ‖p−(1+ 2

N
),QT

≤ ‖f ǫ‖[p−(1+ 2
N

)]′,QT
γN,p−

[
ess sup
τ∈(0,T )

∫

Ω

|uǫ|2(τ)dx +

∫

QT

|∇uǫ|p
−

dxdt
] 1+

p−

N

p−(1+ 2
N

)

≤ ε
[
ess sup
τ∈(0,T )

∫

Ω

|uǫ|2(τ)dx +

∫

QT

|∇uǫ|p(·)dxdt + |QT |
]
+

ε
−

1+
p−

N

p−(1+ 1
N

)−1 [γN,p−‖f‖[p−(1+ 2
N

)]′,QT
]

p−(1+ 2
N

)

p−(1+ 1
N

)−1 , (2.3)

where |QT | is the Lebesgue measure of QT .

Denote Qt = Ω× (0, t) and define

E(uǫ; 0, t) := sup
τ∈(0,t)

∫

Ω

|uǫ|2(τ)dx +

∫

Qt

|∇uǫ|p(·)dxdt.

Choosing ε = 1
6 min{ 1

2 , α} in (2.3) and from (1.5), (2.2), we actually see that

1

2
min{

1

2
, α}E(uǫ; 0, T ) ≤ C; (2.4)

∫

QT

gǫ(x, t, uǫ)uǫdxdt ≤ C (2.5)

with

C =
3

2
‖u0‖

2
2,Ω + 3(

1

6
min{

1

2
, α})

−
1+

p−

N

p−(1+ 1
N

)−1 [γN,p−‖f‖[p−(1+ 2
N

)]′,QT
]

p−(1+ 2
N

)

p−(1+ 1
N

)−1+

1

6
min{

1

2
, α}|QT |,

which is independent of ǫ.

The estimates (2.4), (2.5) and (1.5) show that {uǫ}ǫ is bounded in L∞(0, T ;L2(Ω))∩V; and

{gǫ(x, t, uǫ)uǫ}ǫ is bounded in L1(QT ). Thus, there exist a function u ∈ L∞(0, T ;L2(Ω)) ∩ V

and a subsequence of {uǫ}ǫ, not relabeled again, such that uǫ ⇀ u weakly* in L∞(0, T ;L2(Ω));

uǫ ⇀ u weakly in V; and

∇uǫ ⇀ ∇u weakly in (Lp(·)(QT ))
N . (2.6)

Inequalities (1.4) and (2.4) lead to that |A(x, t,∇uǫ)|p
′(·) ≤ (β+1)(p

′)+ |∇uǫ|p(·), which implies

that the sequence {A(x, t,∇uǫ)}ǫ is bounded in (Lp′(·)(QT ))
N . Hence there exists a function
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ξ ∈ (Lp′(·)(QT ))
N such that

A(x, t,∇uǫ) ⇀ ξ weakly in (Lp′(·)(QT ))
N . (2.7)

Now we claim that

{gǫ(x, t, uǫ)}ǫ is equi-integrable in L1(QT ). (2.8)

In fact, given any ε > 0 and any measurable subset E ⊂ QT , by means of (1.5), (1.6) and

(2.5),
∫

E

|gǫ(x, t, uǫ)|dxdt

=

∫

E∩{(x,t)∈QT :|uǫ(x,t)|≤k}

|gǫ(x, t, uǫ)|dxdt +

∫

E∩{(x,t)∈QT :|uǫ(x,t)|>k}

|gǫ(x, t, uǫ)|dxdt

≤

∫

E

sup
|s|≤k

|g(x, t, s)|dxdt +
1

k

∫

E∩{(x,t)∈QT :|uǫ(x,t)|>k}

gǫ(x, t, uǫ)uǫdxdt

≤

∫

E

hk(x, t)dxdt +
C

k
.

First, we choose k ≥ k̂ sufficiently large so that C
k

< ε
2 . Secondly, by the absolute continuity

of the integral, and since h
k̂
(x, t) ∈ L1(QT ) is assumed in (1.6),

∫
E
h
k̂
(x, t)dxdt can be smaller

than ε
2 when |E| is small enough.

Thanks to the Dunford-Pettis Theorem, the equi-integrability of {gǫ(x, t, uǫ)}ǫ in (2.8) implies

that it is weak compact in L1(QT ). In addition, {gǫ(x, t, uǫ)}ǫ is bounded in L1(QT ).

Based upon the previous analysis, we deduce from ∂tu
ǫ = divA(x, t,∇uǫ) − gǫ(x, t, uǫ) +

f ǫ(x, t) that

{∂tu
ǫ}ǫ is bounded in V

∗ + L1(QT ). (2.9)

From the embedding relationship V
∗ →֒ L1(0, T ;W−1,p′(x)(Ω)) and by (2.9), we know that

{∂tu
ǫ}ǫ is bounded in L1(0, T ;W−1,(p+)′(Ω)) + L1(QT ). Furthermore, we have that

‖∂tu
ǫ‖

L1(0,T ;W−s,(p+)′ (Ω)) ≤ C (2.10)

with the choice of s > max{ N
p+ , 1}, where the positive constant C is independent of ǫ.

Using the embedding V →֒ Lp−

(0, T ;W 1,p−

0 (Ω)) and by (2.4), we have that

{uǫ}ǫ is bounded in L1(0, T ;W 1,p−

0 (Ω)). (2.11)

SinceW 1,p−

0 (Ω)
compact

→֒ Lp−

(Ω) →֒ W−s,(p+)′(Ω), by virtue of (2.10) and (2.11), we may apply

the Simon Compactness Theorem in [13] and infer that {uǫ}ǫ is compact in L1(0, T ;Lp−

(Ω)).

By extracting a subsequence of {uǫ}ǫ if necessary, we obtain that as ǫ tends to zero,

uǫ → u a.e. in QT . (2.12)

Observe that g is a Carathéodory function; thus, by (2.12),

gǫ(x, t, uǫ) → g(x, t, u) a.e. in QT . (2.13)
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It follows from (2.13), (2.8) and the Vitali Theorem that

gǫ(x, t, uǫ) → g(x, t, u) strongly in L1(QT ). (2.14)

From (2.5), (1.5), (2.12), Fatou Lemma yields
∫

QT

g(x, t, u)udxdt ≤ lim inf
ǫ→0

∫

QT

gǫ(x, t, uǫ)uǫdxdt ≤ C.

Noting (1.5) again, we find that g(x, t, u)u ∈ L1(QT ). Thus, (1.7) is obtained.

Denote Tk(s) = min{k,max{−k, s}}, Gk(s) = s − Tk(s). We now take Gk(u
ǫ) as a test

function in (2.1) to obtain, by (1.3), that

1

2
ess sup
τ∈(0,T )

∫

Ω

|Gk(u
ǫ)|2(τ)dx + α

∫

QT

|∇Gk(u
ǫ)|p(·)dxdt+

∫

QT

gǫ(x, t, uǫ)Gk(u
ǫ)dxdt

≤
3

2
‖Gk(u0)‖

2
2,Ω + 3

∫

QT

f ǫGk(u
ǫ)dxdt. (2.15)

From |Gk(u
ǫ)| ≤ |uǫ| and (2.4), we have that 1

2 min{ 1
2 , α}E(Gk(u

ǫ); 0, T ) ≤ C, which implies

that {Gk(u
ǫ)}ǫ is bounded in Lp−(1+ 2

N
)(QT ) by parabolic embedding. This, combined with

the almost everywhere convergence of uǫ in (2.12), results in that Gk(u
ǫ) ⇀ Gk(u) weakly in

Lp−(1+ 2
N

)(QT ), as ǫ → 0. Thus, dropping the nonnegative terms and taking limit in (2.15), we

obtain that

lim sup
ǫ→0

∫

QT

|∇Gk(u
ǫ)|p(·)dxdt ≤

3

2α
‖Gk(u0)‖

2
2,Ω +

3

α

∫

QT

fGk(u)dxdt, (2.16)

for every k > 0.

Notice that u and u0 are both finite almost everywhere; thus, as k tends to infinity, Gk(u) → 0

a.e. in QT and Gk(u0) → 0 a.e. in Ω. Using the Lebesgue Dominated Convergence Theorem in

(2.16), we get that

lim sup
k→∞

lim sup
ǫ→0

∫

{(x,t)∈QT :|uǫ(x,t)|>k}

|∇uǫ|p(·)dxdt = 0. (2.17)

Step 2. Landes time regularization and its related limit.

Recall a special time regularization of Tj(u) in [1]. Consider (Tj(u))µ ∈ V ∩ L∞(QT ) as a

solution to {
∂t[(Tj(u))µ] = µ[Tj(u)− (Tj(u))µ] in D′(QT ),

(Tj(u))µ(x, 0) = v
µ
0 in Ω,

where vµ0 → Tj(u0) a.e. in Ω as µ → ∞. vµ0 ∈ W
1,p(·)
0 ∩L∞(Ω), ‖vµ0 ‖L∞(Ω) ≤ j, and ∂t(Tj(u))µ ∈

V; moreover, as µ → ∞, (Tj(u))µ → Tj(u) a.e. in QT , weakly* in L∞(QT ), and strongly

in V; furthermore, ‖(Tj(u))µ‖L∞(QT ) ≤ j. This regularization is known as the Landes time

regularization. For its role in the parabolic equations, see [7].

Let us choose Ti[u
ǫ − (Tj(u))µ] as a test function in Problem (2.1); then

∫

QT

A(x, t,∇uǫ) · ∇Ti[u
ǫ − (Tj(u))µ]dxdt = −

∫ T

0

〈∂tu
ǫ, Ti[u

ǫ − (Tj(u))µ]〉dt
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−

∫

QT

gǫ(x, t, uǫ)Ti[u
ǫ − (Tj(u))µ]dxdt+

∫

QT

f ǫTi[u
ǫ − (Tj(u))µ]dxdt. (2.18)

Here, the bracket 〈·, ·〉 is the duality pairing betweenW−1,p′(·)(Ω)+L1(Ω) andW
1,p(·)
0 (Ω)∩L∞(Ω).

In order to deal with the time derivative term, we use a scheme that goes back to [14]. The

method is modified according to a nonzero initial value function u0.
∫ T

0

〈∂tu
ǫ, Ti[u

ǫ − (Tj(u))µ]〉dt

=

∫ T

0

〈∂t[u
ǫ − (Tj(u))µ], Ti[u

ǫ − (Tj(u))µ]〉dt+

∫ T

0

〈∂t(Tj(u))µ, Ti[u
ǫ − (Tj(u))µ]〉dt

=

≥0︷ ︸︸ ︷∫

Ω

T̃i[u
ǫ(T )− (Tj(u))µ(T )]dx−

∫

Ω

T̃i[u0 − (Tj(u))µ(0)]dx+

µ

∫

QT

[Tj(u)− (Tj(u))µ]Ti[u
ǫ − (Tj(u))µ]dxdt,

where T̃k(s) =
∫ s

0 Tk(σ)dσ is the primitive function of Tk(s). It is obvious that T̃k(s) is non-

negative. As ǫ → 0, Ti[u
ǫ − (Tj(u))µ] converges to Ti[u − (Tj(u))µ] a.e. in QT and weakly* in

L∞(QT ). Employing the Lebesgue Dominated Convergence Theorem, it yields that

lim
ǫ→0

∫

QT

[Tj(u)− (Tj(u))µ]Ti[u
ǫ − (Tj(u))µ]dxdt =

≥0 was proved in [14]︷ ︸︸ ︷∫

QT

[Tj(u)− (Tj(u))µ]Ti[u− (Tj(u))µ]dxdt .

As a consequence,

lim sup
ǫ→0

[
−

∫ T

0

〈∂tu
ǫ, Ti[u

ǫ − (Tj(u))µ]〉dt
]
≤

∫

Ω

T̃i(u0 − v
µ
0 )dx. (2.19)

Noting (2.19), (2.14) and the strong compactness of f ǫ in L1(QT ) and taking the limit in

(2.18), we discover that

lim sup
ǫ→0

∫

QT

A(x, t,∇uǫ) · ∇Ti[u
ǫ − (Tj(u))µ]dxdt

≤

∫

Ω

T̃i(u0 − v
µ
0 )dx −

∫

QT

g(x, t, u)Ti[u− (Tj(u))µ]dxdt+

∫

QT

fTi[u− (Tj(u))µ]dxdt.

From the Lebesgue Dominated Convergence Theorem and the properties of (Tj(u))µ, it fol-

lows that

lim sup
µ→∞

lim sup
ǫ→0

∫

QT

A(x, t,∇uǫ) · ∇Ti[u
ǫ − (Tj(u))µ]dxdt

≤

∫

Ω

T̃i(Gj(u0))dx −

∫

QT

g(x, t, u)θij(u)dxdt+

∫

QT

fθij(u)dxdt, (2.20)

where θij(s) = Ti[s− Tj(s)].

As j → ∞, T̃i(Gj(u0)) → 0 a.e. in Ω; while |T̃i(Gj(u0))| ≤ i|u0|. Thus, utilizing the

Lebesgue Dominated Convergence Theorem, one has limj→∞

∫
Ω T̃i(Gj(u0))dx = 0, for every
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i > 0. Similarly, as j → ∞, noting that θij(u) → 0 a.e. in QT and |θij(u)| ≤ i, the last two terms

in (2.20) tend to zero. As a result, for every i > 0,

lim sup
j→∞

lim sup
µ→∞

lim sup
ǫ→0

∫

QT

A(x, t,∇uǫ) · ∇Ti[u
ǫ − (Tj(u))µ]dxdt ≤ 0. (2.21)

Now we focus on the integral
∫

QT

A(x, t,∇uǫ) · ∇(uǫ − u)dxdt

=

(A1)︷ ︸︸ ︷∫

QT

A(x, t,∇uǫ) · ∇Ti[u
ǫ − (Tj(u))µ]dxdt+

(A2)︷ ︸︸ ︷∫

{(x,t)∈QT :|uǫ(x,t)−(Tj(u))µ(x,t)|>i}

A(x, t,∇uǫ) · ∇[uǫ − (Tj(u))µ]dxdt

(A3)︷ ︸︸ ︷
−

∫

QT

A(x, t,∇uǫ) · ∇[u − (Tj(u))µ]dxdt .

1⋄. By (2.21), lim supj→∞ lim supµ→∞ lim supǫ→0(A1) ≤ 0.

2⋄. Let i > j > 0, then

{(x, t) ∈ QT : |uǫ(x, t)− (Tj(u))µ(x, t)| > i} ⊂ {(x, t) ∈ QT : |uǫ(x, t)| > i− j}.

In view of (1.4) and by the Young inequality, (A2) can be estimated in the following manner:

|(A2)| ≤

∫

{(x,t)∈QT :|uǫ(x,t)|>i−j}

β|∇uǫ|p(·)−1(|∇uǫ|+ |∇(Tj(u))µ|)dxdt

≤β(1 +
1

(p′)−
)

∫

{(x,t)∈QT :|uǫ(x,t)|>i−j}

|∇uǫ|p(·)dxdt+

β

p−

∫

{(x,t)∈QT :|uǫ(x,t)|>i−j}

|∇(Tj(u))µ|
p(·)dxdt.

First, let ǫ → 0, and then let µ → ∞; using the property that ∇(Tj(u))µ → ∇Tj(u) strongly

in (Lp(·)(QT ))
N , we obtain that

lim sup
µ→∞

lim sup
ǫ→0

|(A2)| ≤β(1 +
1

(p′)−
) lim sup

ǫ→0

∫

{(x,t)∈QT :|uǫ(x,t)|>i−j}

|∇uǫ|p(·)dxdt+

β

p−

∫

{(x,t)∈QT :|u(x,t)|≥i−j}

|∇u|p(·)dxdt.

Observing (2.17), and the absolute continuity of the integral (|∇u|p(·) ∈ L1(QT )), we conclude

that lim supµ→∞ lim supǫ→0 |(A2)| can be sufficiently small when i− j is large enough.

3⋄. For fixed µ > 0, it follows from (2.7) that limǫ→0(A3) = −
∫
QT

ξ · ∇[u − (Tj(u))µ]dxdt.

Taking into account the strong convergence of ∇(Tj(u))µ in (Lp(·)(QT ))
N , we see that for fixed

j > 0, limµ→∞ limǫ→0(A3) = −
∫
QT

ξ · ∇Gj(u)dxdt. As j → ∞, Gj(u) → 0 a.e. in QT , while

{Gj(u)}j is bounded in the reflexive Banach space V, we have that ∇Gj(u) ⇀ 0 weakly in

(Lp(·)(QT ))
N . Consequently, limj→∞ limµ→∞ limǫ→0(A3) = 0.
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In summary, the above limit analyses and (2.7) establish that

lim sup
ǫ→0

∫

QT

A(x, t,∇uǫ) · ∇uǫdxdt ≤

∫

QT

ξ · ∇udxdt. (2.22)

Step 3. Almost everywhere convergence of the gradient sequence {∇uǫ}ǫ.

Inspired by the idea in [15], in order to prove the almost everywhere convergence of the

gradient sequence, we take advantage of the Young measures method.

We infer from (2.6) that ∇uǫ ⇀
∫
RN+1 λdνt,x(λ) weakly in (L1(QT ))

N , where νt,x is the

Young measure generated by {∇uǫ}ǫ. Therefore,

∇u =

∫

RN+1

λdνt,x(λ) a.e. in QT . (2.23)

It follows from (2.7) that {A(x, t,∇uǫ)}ǫ is weakly compact in (L1(QT ))
N . Note also that A

is a Carathéodory function; thus

A(x, t,∇uǫ) ⇀

∫

RN+1

A(x, t, λ)dνt,x(λ) weakly in (L1(QT ))
N .

Hence for the weak limit ξ in (2.7) we have

ξ =

∫

RN+1

A(x, t, λ)dνt,x(λ) a.e. in QT . (2.24)

Since νt,x is a probability measure, it is obvious that
∫
RN+1 dνt,x(λ) = 1. Using (2.23), we

see that
∫

QT

∫

RN+1

A(x, t,∇u) · (λ−∇u)dνt,x(λ)dxdt

=

∫

QT

A(x, t,∇u) ·

∫

RN+1

λdνt,x(λ)dxdt−

∫

QT

A(x, t,∇u) · ∇u

∫

RN+1

dνt,x(λ)dxdt = 0. (2.25)

The assumption (1.3) says that A(x, t,∇uǫ) ·∇uǫ ≥ 0. Obviously, the negative part [A(x, uǫ,

∇uǫ) · ∇uǫ]− is weakly compact in L1(QT ). Thanks to the Fatou type Lemma in [16], we obtain

lim inf
ǫ→0

∫

QT

A(x, t,∇uǫ) · ∇uǫdxdt ≥

∫

QT

∫

RN+1

A(x, t, λ) · λdνt,x(λ)dxdt. (2.26)

Combining (2.22), (2.26) with (2.24), we conclude that
∫

QT

∫

RN+1

A(x, t, λ) · λdνt,x(λ)dxdt ≤

∫

QT

ξ · ∇udxdt =

∫

QT

∫

RN+1

A(x, t, λ)dνt,x(λ) · ∇udxdt.

Consequently,
∫

QT

∫

RN+1

A(x, t, λ) · (λ−∇u)dνt,x(λ)dxdt ≤ 0. (2.27)

From (2.25) and (2.27), it follows that
∫

QT

∫

RN+1

[A(x, t, λ) −A(x, t,∇u)] · (λ−∇u)dνt,x(λ)dxdt ≤ 0. (2.28)
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Moreover, due to the monotonicity of the operator A in (1.2), estimate (2.28) implies that
∫

RN+1

[A(x, t, λ) −A(x, t,∇u)] · (λ−∇u)dνt,x(λ) = 0 a.e. in QT .

Since νt,x ≥ 0 is a probability measure and A is strictly monotone, we conclude that

[A(x, t, λ) − A(x, t,∇u)] · (λ − ∇u) is strictly positive for all λ 6= ∇u and thus supp νt,x :=

{λ : νt,x(λ) 6= 0} = {∇u(x, t)} a.e. (x, t) ∈ QT . In other words, νt,x = δ∇u(x,t). Since |QT | < ∞,

according to [17, Proposition 1], we have that ∇uǫ → ∇u in measure. Hence one can extract a

subsequence of {∇uǫ}ǫ, denoted by itself for the sake of simplicity, such that

∇uǫ → ∇u a.e. in QT . (2.29)

Let φ ∈ D([0, T ) × Ω) be a test function to Problem (2.1). In (2.7), once the weak limit

of A(x, t,∇uǫ) is identified as A(x, t,∇u) through (2.29), the weak formulation (1.8) can be

obtained through a standard limit process. This finally proves that u is a weak solution to

Problem (1.1). 2
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