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Abstract An equitable (O1

k,O
2

k, . . . ,O
m
k )-partition of a graph G, which is also called a k cluster

m-partition, is the partition of V (G) into m non-empty subsets V1, V2, . . . , Vm such that for

every integer i in {1, 2, . . . ,m}, G[Vi] is a graph with components of order at most k, and for

each distinct pair i, j in {1, . . . , m}, there is −1 ≤ |Vi| − |Vj | ≤ 1. In this paper, we proved that

every planar graph G with minimum degree δ(G) ≥ 2 and girth g(G) ≥ 12 admits an equitable

(O1

7,O
2

7, . . . ,O
m
7 )-partition, for any integer m ≥ 2.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. For a graph G, we use

V (G) to denote the vertex set. An equitable k-partition of a graph G is a partition of V (G) into

(V1, . . . , Vk) such that −1 ≤ |Vi| − |Vj | ≤ 1 for all 1 ≤ i < j ≤ k. Let Gi be a class of graphs

for 1 ≤ i ≤ k, given a graph G, an equitable (G1,G2, . . . ,Gk)-partition of graph G is an equitable

k-partition of G such that for all 1 ≤ i ≤ k, the induced subgraph G[Vi] belongs to Gi.

The G-equitable partition number of a graph G, denoted by χeG(G), is the smallest integer

k such that G has an equitable (G1, . . . ,Gk)-partition with G1 = G2 = · · · = Gk = G. In contrast

to the ordinary vertex partition, a graph may have an equitable (G1, . . . ,Gk)-partition, but no

equitable (G1, . . . ,Gk,Gk+1)-partition with G1 = · · · = Gk = Gk+1 = G. The G-equitable partition

threshold of G, denoted by χ∗
eG(G), is the smallest integer k such that G has an equitable

(G1, . . . ,Gm)-partition for all m ≥ k with G1 = G2 = · · · = Gm = G.

It is clear that χeG(G) ≤ χ∗
eG(G). In fact, the gap between the two parameters can be

arbitrarily large. Let I, Ok denote the class of independent sets, the class of graphs whose

components have order at most k, respectively. Let g(G) denote the girth of G, which is the

length of the shortest cycle of G.

There are some results in the field of equitable partition of graphs. Hajnal and Szemerédi [1]

proved that for any graph G with maximum degree ∆(G), there is χ∗
eI(G) ≤ ∆(G) + 1. Chen,
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Lih and Wu [2] conjectured that for any connected graph G different from Km, C2m+1 and

K2m+1,2m+1, there is χ∗
eI(G) ≤ ∆(G). If this conjecture is true, it will prove the former result.

For the planar graphs, Zhang, Yap [3] proved that for every planar graph with ∆(G) ≥ 13, there

is χ∗
eI(G) ≤ ∆(G). Wu, Wang [4] proved that for every planar graph with δ(G) ≥ 2, g(G) ≥ 26,

there is χ∗
eI(G) ≤ 3 and for every planar graph with δ(G) ≥ 2, g(G) ≥ 14, there is χ∗

eI(G) ≤ 4.

Later, Luo, Sébastien, Stephens and et al. [5] improved the above results by proving that for

every planar graph with δ(G) ≥ 2, g(G) ≥ 14, there is χ∗
eI(G) ≤ 3 and for every planar graph

with δ(G) ≥ 2, g(G) ≥ 10, there is χ∗
eI(G) ≤ 4.

We are interested in the equitable (Ok, . . . ,Ok)-partition. There are also some results.

Theorem 1.1 ([6]) Every planar graph G with minimum degree δ(G) ≥ 2 and girth g(G) ≥ 10

has an equitable (O1
2 , . . . ,O

m
2 )-partition for any integer m ≥ 3, that is χ∗

eO2
(G) ≤ 3.

Theorem 1.2 ([7]) Every planar graph G with minimum degree δ(G) ≥ 2 and girth g(G) ≥ 8

has an equitable (O1
2 , . . . ,O

m
2 )-partition for any integer m ≥ 4, that is χ∗

eO2
(G) ≤ 4.

Our main result is presented as follows:

Theorem 1.3 Every planar graph G with minimum degree δ(G) ≥ 2 and girth g(G) ≥ 12

admits an equitable (O1
7 ,O

2
7 , . . . ,O

m
7 )-partition for any integer m ≥ 2, that is χ∗

eO7
(G) = 2.

It is not hard to see that Theorem 1.3 gives a threshold of equitable tree partition of planar

graphs by the condition g(G) ≥ 12.

2. The structure of minimal counterexamples

By Theorem 1.1, we only need to show that every planar graph with minimum degree at

least 2 and girth at least 12 has an equitable (O7,O7)-partition. Let G be a counterexample in

this case with smallest order. Before discussing the structure of G, we clarify some necessary

definitions and notations firstly.

The degree of a vertex v in G, written by dG(v) or simply d(v) when there is no confusion,

is the number of edges incident with v in G. A k-vertex, k+-vertex and k−-vertex is a vertex of

degree k, at least k and at most k, respectively. A neighbor of the vertex v with degree k, at

least k and at most k is called a k-neighbor, k+-neighbor and k−-neighbor of v, respectively.

A chain of G is a maximal induced path whose internal vertices all have degree 2. A t-chain

is a chain with t internal vertices. In a chain, the 3+-vertex is called endvertex. Specially, a

cycle with exactly one 3+-vertex and all other vertices of degree 2 is also called a chain, in other

words, the endvertices of chain are identical. Let x be an endvertex of a chain P , y be a vertex

in P , if the distance between x and y is l+1, then we say that y is loosely l-adjacent to x. Thus

“loosely 0-adjacent” is the same as usual “adjacent”.

Let x be a vertex with d(x) ≥ 3. Then x is the endvertex of d(x) different chains. Set

T (x) = (a3, a2, a1, a0), where ai is the number of i-chains incident with x, i ∈ {0, 1, 2, 3}. Let

t(x) = 3a3 + 2a2 + a1, n(x) = t(x) + 1, and A(x) be the vertex set composed of all 2-vertices in
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its incident chains. We call a 3-vertex x bad 3-vertex if d(x) = 3 with t(x) = 4.

Let H be a subgraph of G, for x ∈ V (H), if x has no neighbor in G − H , then we call it

free vertex, otherwise we call it non-free vertex, the neighbors of x in G − H are called outer

neighbors of x.

Lemma 2.1 The graph G is connected.

Proof On the contrary, let H1, H2, . . . , Hk be the connected components of G, where k ≥ 2. By

the minimality of G, both H = H1 ∪ H2 ∪ · · · ∪ Hk−1 and Hk have an equitable (O7,O7)-

partition. An equitable (O7,O7)-partition of H with |V1(H)| ≤ |V2(H)| and an equitable

(O7,O7)-partition of Hk with |V1(Hk)| ≥ |V2(Hk)| generate an equitable (O7,O7)-partition

(V1(H) ∪ V1(Hk), V2(H) ∪ V2(Hk)) of G, which contradicts the choice of G. 2

Lemma 2.2 If G has a t-chain, then t ≤ 3, and G has no chain whose endvertices are identical.

Proof Suppose to the contrary that G has a t-chain P = v0v1 · · · vtvt+1 with t ≥ 4, where

d(v0), d(vt+1) ≥ 3. Let G1 = G− {v1, . . . , vt}.

If v0 6= vt+1 or d(v0) ≥ 4, then δ(G1) ≥ 2. By the minimality of G, the graph G1 has an

equitable (O7,O7)-partition. Let V1, V2 be the two sets with |V1| ≤ |V2|. We can extend the

partition of G1 to an equitable (O7,O7)-partition of G as follows. First put the vertex vi into

the part V1 if i is odd, into V2 if i is even for each i ∈ {1, 2, . . . , t}. Swap the positions of v1 and

v2 if v0 and v1 are put in the same part, and further swap the positions of vt−1 and vt if vt and

vt+1 are put in the same part.

Now suppose that v0 = vt+1 and d(v0) = 3. We know g(G) ≥ 12, so t ≥ 11. Let x be

the neighbor of v0 in G1. If d(x) ≥ 3, consider G2 = G − {v0, v1, . . . , vt}, then δ(G2) ≥ 2. By

the choice of G, the graph G2 has an equitable (O7,O7)-partition with sets V1, V2 such that

|V1| ≤ |V2|. We can extend the partition of G2 to an equitable (O7,O7)-partition of G as follows.

First put the vertex vi into the part V1 if i is even, into V2 if i is odd for each i ∈ {0, 1, . . . , t}.

Swap the positions of v0 and v1 if the vertices v0 and x are put in the same part (the partition of

{v0, v1, . . . , vt} generated in this way admits that the order of each component of each part is at

most 2). If d(x) = 2, then let Q = x0x1x2 · · ·xqxq+1 be the chain with x0 = v0, x1 = x. Consider

the graph G3 = G − {x0, x1, . . . , xq, v1, . . . , vt}, then δ(G3) ≥ 2. By the minimality of G, the

graph G3 has an equitable (O7,O7)-partition with sets V1, V2 such that |V1| ≤ |V2|. We first

extend the partition of G3 to G1 to obtain an equitable (O7,O7)-partition of G − {v1, . . . , vt}

as follows. First put the vertex xi into the part V1 if i is even, into V2 if i is odd for each

i ∈ {0, 1, . . . , q}. If xq and xq+1 are put in the same part, swap the positions of xq−1 and xq.

Next we further extend the partition to G similarly to the case that d(v0) ≥ 4. In any case, we

can always get an equitable (O7,O7)-partition of G. This contradicts the choice of G. Hence,

there is no t-chain with t ≥ 4, and G has no chain whose endvertices are identical. 2

Lemma 2.3 If x is a 3-vertex, then t(x) ≤ 4.
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Proof On the contrary, suppose that x is a 3-vertex with t(x) ≥ 5. Lemma 2.2 implies that x is

not incident with any t-chains, where t ≥ 4. Since t(x) ≥ 5, the vertex x is incident with at least

one 3-chain or at least two 2-chains, then 6 ≤ n(x) ≤ 10. Let A(x) be the vertex set composed

of all 2-vertices in its incident chains and A = A(x)∪{x}. Let N be the set of the three non-free

vertices in A. Then every vertex in N has exactly one outer neighbor in G−A. Since g(G) ≥ 12,

the chains do not share endvertices other than x. So δ(G−A) ≥ 2. By the minimality of G, the

graph G−A has an equitable (O7,O7)-partition. We can extend the partition of G−A to G as

follows. First, we put the non-free vertices into the part that its neighbor in G− A is not in. If

there are i non-free vertices in V1, then we put arbitrary ⌈n(x)
2 ⌉ − i vertices in A − N into V1,

where i ∈ {0, 1, 2, 3}. Then put the other vertices in A into V2. There are at most five vertices

that are put into the same part. In this way, we get an equitable (O7,O7)-partition of G, this

leads to a contradiction. 2

Lemma 2.4 If x is a 4-vertex, then t(x) ≤ 6.

Proof On the contrary, suppose that x is a 4-vertex with t(x) ≥ 7. Lemma 2.2 implies that x

is not incident with any t-chains, where t ≥ 4. Since t(x) ≥ 7, the vertex x is incident with at

least three 2+-chains, or two 3+-chains, or two 2+-chains and two 1-chains, then 8 ≤ n(x) ≤ 13.

Let A(x) be the vertex set composed of all 2-vertices in its incident chains and A = A(x) ∪ {x}.

Let N be the set of the four non-free vertices in A. Then every vertex in N has exactly one

outer neighbor in G−A. Since g(G) ≥ 12, the chains do not share endvertices other than x. So

δ(G − A) ≥ 2. By the minimality of G, the graph G − A has an equitable (O7,O7)-partition.

We can extend the partition of G − A to G as follows. First, we put the non-free vertices into

the part that its neighbor in G − A is not in. If there are i non-free vertices in V1, then we

put arbitrary ⌈n(x)
2 ⌉ − i vertices in A −N into V1, where i ∈ {0, 1, 2, 3, 4}. Then put the other

vertices in A into V2. There are at most seven vertices that are put into the same part. In this

way, we get an equitable (O7,O7)-partition of G, this leads to a contradiction. 2

Lemma 2.5 If x is a 5-vertex, then t(x) ≤ 8 or T (x) = (3, 0, 0, 2).

Proof On the contrary, suppose that x is a 5-vertex with t(x) ≥ 9 and T (x) 6= (3, 0, 0, 2).

Lemma 2.2 implies that x is not incident with any t-chains, where t ≥ 4. So 10 ≤ n(x) ≤ 16.

Let A(x) be the vertex set composed of all 2-vertices in its incident chains and A = A(x) ∪ {x}.

Let N be the set of the five non-free vertices in A. Then every vertex in N has exactly one

outer neighbor and x has at most one outer neighbor. Since g(G) ≥ 12, the chains do not share

endvertices other than x. So δ(G − A) ≥ 2. By the minimality of G, the graph G − A has an

equitable (O7,O7)-partition. We can extend the partition of G − A to G as follows. First, we

put the non-free vertices into the part that its neighbor in G−A is not in. For 10 ≤ n(x) ≤ 14,

if there are i non-free vertices in V1, then we choose ⌈n(x)
2 ⌉ − i vertices in A−N arbitrarily into

V1, where i ∈ {0, 1, 2, 3, 4, 5}. Then put the other vertices in A into V2. For 15 ≤ n(x) ≤ 16,

if there are i non-free vertices in V1, then we can choose ⌈n(x)
2 ⌉ − i vertices in A − N into V1,

where i ∈ {0, 1, 2, 3, 4, 5}, then put the other vertices in A into V2 such that A has an equitable
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(O7,O7)-partition with |V1| ≥ |V2|. In this way, we get an equitable (O7,O7)-partition of G, this

leads to a contradiction. 2

Lemma 2.6 Let x be a bad 3-vertex with T (x) = (0, 1, 2, 0) or T (x) = (1, 0, 1, 1), and let y be

a 3+-vertex that is loosely 1-adjacent to x. Then

(i) d(y) = 3 with t(y) ≤ 2 or

(ii) d(y) = 4 with t(y) ≤ 4 or

(iii) d(y) = 5 with t(y) ≤ 6 or T (y) = (2, 0, 1, 2), or

(iv) d(y) ≥ 6.

Proof Let x be a bad 3-vertex with T (x) = (0, 1, 2, 0) or T (x) = (1, 0, 1, 1), and let y be a

3+-vertex that is loosely 1-adjacent to x. Suppose to the contrary that d(y) = 3 with t(y) ≥ 3

or d(y) = 4 with t(y) ≥ 5 or d(y) = 5 with t(y) ≥ 7 and T (y) 6= (2, 0, 1, 2). By Lemmas 2.2–2.5,

if d(y) = 3, then 3 ≤ t(y) ≤ 4; if d(y) = 4, then 5 ≤ t(y) ≤ 6; if d(y) = 5, then 7 ≤ t(y) ≤ 8

and T (y) 6= (2, 0, 1, 2). Let B = A(x) ∪ A(y) ∪ {x, y}, |B| = t(x) + t(y) + 1 = t(y) + 5. Let N

be the subset of B composed of all non-free vertices in B. |N | = d(x) + d(y) − 2 = d(y) + 1

and each vertex in N has exactly one outer neighbor in G− B. Since g(G) ≥ 12, the chains do

not share endvertices other than x and y. So δ(G−B) ≥ 2. By the minimality of G, the graph

G−B has an equitable (O7,O7)-partition. First, we put the non-free vertices into the part that

its neighbor in G − B is not in. If there are i non-free vertices in N that are put into V1, then

we put ⌈ |B|
2 ⌉ − i vertices in B −N into V1 and put the other vertices in B into V2 such that B

has an equitable (O7,O7)-partition with |V1| ≥ |V2|, where i ∈ {0, 1, . . . , 6}. This can be done

because |N | = d(y) + 1 ≤ 1
2 (t(y) + 5) = 1

2 |B|. If |N | = 4, then |B| ∈ {8, 9}; if |N | = 5, then

|B| ∈ {10, 11}; if |N | = 6, then |B| ∈ {12, 13}. So there are at most seven vertices that are put

in the same part. In this way, we obtain an equitable (O7,O7)-partition of G, this leads to a

contradiction. 2

Lemma 2.7 Every 3-vertex y with T (y) = (0, 0, 2, 1) is loosely 1-adjacent to at most one bad

3-vertex.

Proof Suppose to the contrary that there are two bad 3-vertices that are both loosely 1-adjacent

to y. Let y be a 3-vertex with T (y) = (0, 0, 2, 1) and let x1 and x2 be bad 3-vertices that are

loosely 1-adjacent to y. Let C = A(x1) ∪ A(x2) ∪ A(y) ∪ {x1, x2, y}. Let N be the subset of

C composed of all non-free vertices in C. Since g(G) ≥ 12, we can claim that δ(G − C) ≥ 2.

Otherwise, x1 and x2 are bad 3-vertices with T (xi) = (1, 0, 1, 1) for i = 1, 2. Denote the vertices

loosely 3-adjacent to x1 and x2 as y1 and y2, respectively, the vertices y1 and y2 are the same

vertices and d(y1) = 3, then we have y1 is a 3-vertex with t(y1) = 6, this contradicts Lemma 2.3.

Hence, we always have δ(G−C) ≥ 2. By the minimality of G, the graph G−C has an equitable

(O7,O7)-partition. |N | = d(x1) + d(x2) + d(y) − 4 = 5, |C| = t(x1) + t(x2) + t(y) + 1 = 11.

Every vertex in N has exactly one outer neighbor. We can extend the partition of G − C to G

as follows. First, we put the non-free vertices into the part that its neighbor in G−C is not in.

If there are i vertices in N that are put into V1, then put 6− i vertices in C −N into V1, where
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i ∈ {0, 1, . . . , 5}. Last we put the other vertices in C into V2. In this way, we obtain an equitable

(O7,O7)-partition of G, this leads to a contradiction. 2

Lemma 2.8 There is no 3-vertex y with T (y) = (0, 0, 2, 1) which is loosely 1-adjacent to a bad

3-vertex and adjacent to a bad 3-vertex simultaneously.

Proof Suppose to the contrary that there is a 3-vertex y with T (y) = (0, 0, 2, 1) that is loosely

1-adjacent to a bad 3-vertex x1 and adjacent to a bad 3-vertex x2 simultaneously. Let C =

A(x1)∪A(x2)∪A(y)∪{x1, x2, y}. Let N be the subset of C composed of all non-free vertices in

C. Since g(G) ≥ 12, the chains do not share endvertices other than x1, x2 and y. So δ(G−C) ≥ 2.

By the minimality of G, the graph G− C has an equitable (O7,O7)-partition.

|N | = d(x1) + d(x2) + d(y)− 4 = 5, |C| = t(x1) + t(x2) + t(y) + 2 = 12.

Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the

part that its neighbor in G−C is not in. If there are i vertices in N that are put into V1, then put

6− i vertices in C −N into V1, where i ∈ {0, 1, . . . , 5}. Last we put the other vertices in C into

V2. In this way, we obtain an equitable (O7,O7)-partition of G, this leads to a contradiction. 2

Lemma 2.9 Let x be a bad 3-vertex with T (x) = (0, 2, 0, 1) or T (x) = (1, 0, 1, 1), and let y be

the 3+-neighbor of x. Then

(i) d(y) = 3 with t(y) ≤ 1 or

(ii) d(y) = 4 with t(y) ≤ 3 or

(iii) d(y) ≥ 5.

Proof Let x be a bad 3-vertex with T (x) = (0, 2, 0, 1) or T (x) = (1, 0, 1, 1), and let y be the

3+-neighbor of x. Suppose to the contrary that d(y) = 3 with t(y) ≥ 2 or d(y) = 4 with t(y) ≥ 4.

By Lemmas 2.2–2.4, if d(y) = 3, then 2 ≤ t(y) ≤ 4; If d(y) = 4, then 4 ≤ t(y) ≤ 6. Let

B = A(x) ∪A(y) ∪ {x, y}, |B| = t(x) + t(y) + 2 = t(y) + 6.

Let N be the subset of B composed of all non-free vertices in B. |N | = d(x)+d(y)−2 = d(y)+1.

Each vertex in N has exactly one outer neighbor. Since g(G) ≥ 12, the chains do not share

endvertices other than x and y. So δ(G − B) ≥ 2. By the minimality of G, the graph G − B

has an equitable (O7,O7)-partition. First, we put the non-free vertices into the part that its

neighbor in G − B is not in. If there are i non-free vertices in N that are put into V1, then we

put ⌈ |B|
2 ⌉ − i vertices in B − N into V1 and put the other vertices in B into V2 such that B

has an equitable (O7,O7)-partition with |V1| ≥ |V2|, where i ∈ {0, 1, . . . , 5}. This can be done

because |N | = d(y) + 1 ≤ 1
2 (t(y) + 6) = 1

2 |B|. If |N | = 4, then |B| ∈ {8, 9, 10}; if |N | = 5, then

|B| ∈ {10, 11, 12}. So at most six vertices are put in the same part. In this way, we obtain an

equitable (O7,O7)-partition of G, this leads to a contradiction. 2

Lemma 2.10 Every 3-vertex y with T (y) = (0, 0, 1, 2) is adjacent to at most one bad 3-vertex.

Proof Suppose to the contrary that there is a 3-vertex y with T (y) = (0, 0, 1, 2) that is adjacent
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to two bad 3-vertices x1 and x2 . Let C = A(x1)∪A(x2)∪A(y)∪{x1 , x2, y}. Let N be the subset

of C composed of all non-free vertices in C. Since g(G) ≥ 12, the chains do not share endvertices

other than x1, x2 and y. So δ(G − C) ≥ 2. By the minimality of G, the graph G − C has an

equitable (O7,O7)-partition. |N | = d(x1)+d(x2)+d(y)−4 = 5, |C| = t(x1)+t(x2)+t(y)+2 = 12.

Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the

part that its neighbor in G−C is not in. If there are i vertices in N that are put into V1, then put

6− i vertices in C −N into V1 , where i ∈ {0, 1, . . . , 5}. Last, we put the other vertices in C into

V2. In this way, we obtain an equitable (O7,O7)-partition of G, this leads to a contradiction. 2

Lemma 2.11 Every 3-vertex y with T (y) = (0, 1, 0, 2) is adjacent to at most one bad 3-vertex.

Proof Suppose to the contrary that there is a 3-vertex y with T (y) = (0, 1, 0, 2) that is adjacent

to two bad 3-vertices x1 and x2. Let C = A(x1)∪A(x2)∪A(y)∪{x1 , x2, y}. Let N be the subset

of C composed of all non-free vertices in C. Since g(G) ≥ 12, the chains do not share endvertices

other than x1, x2 and y. So δ(G − C) ≥ 2. By the minimality of G, the graph G − C has an

equitable (O7,O7)-partition. |N | = d(x1)+d(x2)+d(y)−4 = 5, |C| = t(x1)+t(x2)+t(y)+3 = 13.

Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the

part that its neighbor in G−C is not in. If there are i vertices in N that are put into V1, then put

7− i vertices in C −N into V1, where i ∈ {0, 1, . . . , 5}. Last, we put the other vertices in C into

V2. In this way, we obtain an equitable (O7,O7)-partition of G, this leads to a contradiction. 2

Lemma 2.12 Every 4-vertex y with T (y) = (1, 0, 3, 0) is loosely 1-adjacent to at most one bad

3-vertex.

Proof Suppose to the contrary that there is a 4-vertex y with T (y) = (0, 1, 3, 0) that is loosely

1-adjacent to at least two bad 3-vertices x1 and x2. Let C = A(x1) ∪A(x2) ∪A(y) ∪ {x1, x2, y}.

Let N be the subset of C composed of all non-free vertices in C. Since g(G) ≥ 12, we can claim

that δ(G−C) ≥ 2. Otherwise, x1 and x2 are bad 3-vertices with T (xi) = (1, 0, 1, 1) at the same

time, i = 1, 2. Denote the vertices loosely 3-adjacent to x1 and x2 as y1 and y2, respectively,

the vertices y1 and y2 are the same vertices and d(y1) = 3, then we have y1 is a 3-vertex with

t(y1) = 6, this contradicts Lemma 2.3. Hence, we always have δ(G−C) ≥ 2. By the minimality

of G, the graph G− C has an equitable (O7,O7)-partition. |N | = d(x1) + d(x2) + d(y)− 4 = 6,

|C| = t(x1) + t(x2) + t(y) + 1 = 15. Every vertex in N has exactly one outer neighbor. First, we

put the non-free vertices into the part that its neighbor in G−C is not in. If there are i vertices

in N that are put into V1, then put 8− i vertices in C −N into V1, where i ∈ {0, 1, . . . , 6}. Last,

we put the other vertices in C into V2. In this way, we obtain an equitable (O7,O7)-partition of

G, this leads to a contradiction. 2
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3. Discharging

The maximum average degree of a graph G is

mad(G) = max{
2|E(H)|

|V (H)|
|H ⊆ G}.

By Euler’s formula, a planar graph G with girth g satisfies mad(G) < 2g
g−2 (see [8]). Consider

the minimal counterexample G. Since g(G) ≥ 12, we have mad(G) < 12
5 . For any x ∈ V (G), let

µ(x) = d(x)− 12
5 be the initial charge. We have

∑

x∈V (G)

µ(x) =
∑

x∈V (G)

(d(x) −
12

5
) < 0.

Next, we redistribute the charges among vertices according to the following rules:

(R1) Every 3+-vertex gives 1
5 to each 2-vertex in its incident chains.

(R2) Every 3+-vertex y gives 1
5 to each bad 3-vertex x that is loosely 1-adjacent to y, where

d(x) = 3, T (x) = (0, 1, 2, 0) or T (x) = (1, 0, 1, 1).

(R3) Every 3+-vertex y gives 1
5 to each bad 3-vertex x that is adjacent to y, where d(x) = 3,

T (x) = (0, 2, 0, 1) or T (x) = (1, 0, 1, 1).

Let µ′(x) be the final charge of x after applying rules (R1)–(R3). Next, we prove µ′(x) ≥ 0

for all x ∈ V (G).

Let x ∈ V (G). If d(x) = 2, then µ′(x) = (2− 12
5 ) + 1

5 × 2 = 0 by (R1).

Assume d(x) = 3, it follows from Lemma 2.3 that t(x) ≤ 4. If t(x) = 0, then x is adjacent to

at most three bad 3-vertices, thus µ′(x) ≥ (3− 12
5 )− 1

5 × 3 = 0 by (R3). If t(x) = 1, then Lemma

2.10 implies that x is adjacent to at most one bad 3-vertex, thus µ′(x) ≥ (3− 12
5 )−

1
5×1− 1

5×2 = 0

by (R1), (R2) and (R3). If t(x) = 2 with T (x) = (0, 0, 2, 1), then Lemmas 2.7, 2.8 imply that x is

loosely 1-adjacent to at most one bad 3-vertex, and it is impossible that x is loosely 1-adjacent to a

bad 3-vertex and adjacent to a bad 3-vertex at the same time, thus µ′(x) ≥ (3− 12
5 )− 1

5×2− 1
5×1 =

0 by (R1), (R2) and (R3). If t(x) = 2 with T (x) = (0, 1, 0, 2), then Lemma 2.11 implies that x

is adjacent to at most one bad 3-vertex, thus µ′(x) ≥ (3− 12
5 )−

1
5 × 2− 1

5 × 1 = 0 by (R1), (R2)

and (R3). If t(x) = 3, then Lemma 2.6 implies x is not loosely 1-adjacent to bad 3-vertex, and

Lemma 2.9 implies x is not adjacent to bad 3-vertex, thus µ′(x) ≥ (3− 12
5 )−

1
5 × 3 = 0 by (R1).

If t(x) = 4, then µ′(x) ≥ (3− 12
5 )−

1
5 × 4 + 1

5 × 1 = 0 by (R1), (R2) and (R3).

Assume d(x) = 4, it follows from Lemma 2.4 that t(x) ≤ 6. If t(x) ≤ 4, then x is loosely

1-adjacent to or adjacent to at most four bad 3-vertices, so µ′(x) ≥ (4− 12
5 )− 1

5 ×4− 1
5 ×4 = 0 by

(R1), (R2) and (R3). If t(x) = 5, then x is incident with at least one 2+-chain, namely, x is loosely

1-adjacent to or adjacent to at most three bad 3-vertices, hence µ′(x) ≥ (4− 12
5 )−

1
5×5− 1

5×3 = 0

by (R1), (R2) and (R3). If t(x) = 6 with T (x) = (1, 0, 3, 0), then Lemma 2.12 implies that x is

loosely 1-adjacent to at most one bad 3-vertex, thus µ′(x) ≥ (4 − 12
5 ) − 1

5 × 6 − 1
5 × 1 = 1

5 by

(R1), (R2) and (R3). If t(x) = 6 with T (x) 6= (1, 0, 3, 0), then x is incident with at least two

2+-chains, hence µ′(x) ≥ (4− 12
5 )−

1
5 × 6− 1

5 × 2 = 0 by (R1), (R2) and (R3).

Assume d(x) = 5, it follows from Lemma 2.5 that t(x) ≤ 8 or T (x) = (3, 0, 0, 2). If t(x) ≤ 8,
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then x is loosely 1-adjacent to or adjacent to at most five bad 3-vertices, so µ′(x) ≥ (5− 12
5 )−

1
5 ×

8− 1
5×5 = 0 by (R1), (R2) and (R3). If T (x) = (3, 0, 0, 2), then µ′(x) ≥ (5− 12

5 )− 1
5×9− 1

5×2 = 2
5

by (R1), (R2) and (R3).

Assume d(x) ≥ 6, then µ′(x) ≥ (d(x) − 12
5 ) − 1

5 × 3 × d(x) = 2
5d(x) −

12
5 ≥ 0 by (R1), (R2)

and (R3).

We have proved that µ′(x) ≥ 0 for all x ∈ V (G), then
∑

x∈V (G) µ
′(x) ≥ 0, this contradicts

∑
x∈V (G) µ(x) < 0. This completes the proof. 2

Acknowledgements We thank the referees for their time and comments.

References
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