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Abstract An equitable (O}, O3, ..., OF)-partition of a graph G, which is also called a k cluster
m-partition, is the partition of V(G) into m non-empty subsets Vi, Va, ..., Vi, such that for
every integer i in {1,2,...,m}, G[Vi] is a graph with components of order at most k, and for
each distinct pair 4,7 in {1,...,m}, there is —1 < |V;| — |V;| < 1. In this paper, we proved that
every planar graph G with minimum degree 6(G) > 2 and girth ¢g(G) > 12 admits an equitable
(O3, 0%, ..., O)-partition, for any integer m > 2.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. For a graph G, we use
V(G) to denote the vertex set. An equitable k-partition of a graph G is a partition of V(G) into
(Vi,..., V) such that —1 < |[V;| = |V;| < 1lforall 1 <i< j <k LetG bea class of graphs
for 1 <i <k, given a graph G, an equitable (G1,Ga, ..., Gy)-partition of graph G is an equitable
k-partition of G such that for all 1 <i <k, the induced subgraph G[V;] belongs to G;.

The G-equitable partition number of a graph G, denoted by X.g(G), is the smallest integer
k such that G has an equitable (G, ..., Gx)-partition with G; = Go = --- = G = G. In contrast
to the ordinary vertex partition, a graph may have an equitable (Gy, ..., Gi)-partition, but no
equitable (G, ..., Gk, Gr11)-partition with G; = - -+ = G, = Gx41 = G. The G-equitable partition
threshold of G, denoted by xi;(G), is the smallest integer k& such that G has an equitable
(G1,...,Gm)-partition for all m > k with G =Gy =---=G,,, = G.

It is clear that x.g(G) < x;g(G). In fact, the gap between the two parameters can be
arbitrarily large. Let Z, O denote the class of independent sets, the class of graphs whose
components have order at most k, respectively. Let ¢g(G) denote the girth of G, which is the
length of the shortest cycle of G.

There are some results in the field of equitable partition of graphs. Hajnal and Szemerédi [1]
proved that for any graph G with maximum degree A(G), there is x}7(G) < A(G) + 1. Chen,
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Lih and Wu [2] conjectured that for any connected graph G different from K,,, Ca,,y1 and
Kom+1,2m+1, there is x37(G) < A(G). If this conjecture is true, it will prove the former result.
For the planar graphs, Zhang, Yap [3] proved that for every planar graph with A(G) > 13, there
is x37(G) < A(G). Wu, Wang [4] proved that for every planar graph with 6(G) > 2, g(G) > 26,
there is x3;(G) < 3 and for every planar graph with 6(G) > 2, g(G) > 14, there is x’;(G) < 4.
Later, Luo, Sébastien, Stephens and et al. [5] improved the above results by proving that for
every planar graph with §(G) > 2, g(G) > 14, there is x¥7(G) < 3 and for every planar graph
with 6(G) > 2, g(G) > 10, there is x3,(G) < 4.

We are interested in the equitable (O, ..., Oy)-partition. There are also some results.

Theorem 1.1 ([6]) Every planar graph G with minimum degree 6(G) > 2 and girth g(G) > 10
has an equitable (Oy,. .., OF")-partition for any integer m > 3, that is x’p, (G) < 3.

Theorem 1.2 ([7]) Every planar graph G with minimum degree §(G) > 2 and girth g(G) > 8
has an equitable (O3, ..., OM)-partition for any integer m > 4, that is Xio,(G) < 4.

Our main result is presented as follows:

Theorem 1.3 Every planar graph G with minimum degree §(G) > 2 and girth g(G) > 12
admits an equitable (O, 0%, ..., O)-partition for any integer m > 2, that is Xeo, (G) = 2.

It is not hard to see that Theorem 1.3 gives a threshold of equitable tree partition of planar
graphs by the condition ¢g(G) > 12.

2. The structure of minimal counterexamples

By Theorem 1.1, we only need to show that every planar graph with minimum degree at
least 2 and girth at least 12 has an equitable (O7, O7)-partition. Let G be a counterexample in
this case with smallest order. Before discussing the structure of G, we clarify some necessary
definitions and notations firstly.

The degree of a vertex v in G, written by dg(v) or simply d(v) when there is no confusion,
is the number of edges incident with v in G. A k-vertex, kT-vertex and k™ -vertex is a vertex of
degree k, at least k and at most k, respectively. A neighbor of the vertex v with degree k, at
least k and at most k is called a k-neighbor, kT-neighbor and £~ -neighbor of v, respectively.

A chain of G is a maximal induced path whose internal vertices all have degree 2. A t-chain
is a chain with ¢ internal vertices. In a chain, the 37-vertex is called endvertex. Specially, a
cycle with exactly one 37-vertex and all other vertices of degree 2 is also called a chain, in other
words, the endvertices of chain are identical. Let x be an endvertex of a chain P, y be a vertex
in P, if the distance between x and y is [ 4+ 1, then we say that y is loosely [-adjacent to z. Thus
“loosely 0-adjacent” is the same as usual “adjacent”.

Let = be a vertex with d(x) > 3. Then x is the endvertex of d(x) different chains. Set
T(x) = (as,asz,a1,a9), where a; is the number of i-chains incident with z, i € {0,1,2,3}. Let
t(z) = 3as + 2a2 + a1, n(x) = t(x) + 1, and A(z) be the vertex set composed of all 2-vertices in
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its incident chains. We call a 3-vertex x bad 3-vertex if d(x) = 3 with t(z) = 4.
Let H be a subgraph of G, for x € V(H), if x has no neighbor in G — H, then we call it
free vertex, otherwise we call it non-free vertex, the neighbors of z in G — H are called outer

neighbors of x.
Lemma 2.1 The graph G is connected.

Proof On the contrary, let Hy, Ha, ..., Hy be the connected components of G, where k > 2. By
the minimality of G, both H = Hy U Hy U --- U Hy_1 and Hjy have an equitable (O7, Or)-
partition. An equitable (O7, O7)-partition of H with |Vi(H)| < |Va(H)| and an equitable
(07, O7)-partition of Hy with |Vi(Hy)| > |Va(Hy)| generate an equitable (Or, O7)-partition
(Vi(H)UVi(Hy), Va(H) U Va(Hy)) of G, which contradicts the choice of G. O

Lemma 2.2 If G has a t-chain, then t < 3, and G has no chain whose endvertices are identical.

Proof Suppose to the contrary that G has a t-chain P = wvgvy - - - w0441 with ¢ > 4, where
d(vo),d(vit1) > 3. Let Gy = G — {v1,...,0¢}.

If vg # vegq or d(vg) > 4, then 6(G1) > 2. By the minimality of G, the graph G; has an
equitable (Or, O7)-partition. Let Vi, V5 be the two sets with |V3| < |Va|. We can extend the
partition of G7 to an equitable (O7, O7)-partition of G as follows. First put the vertex v; into
the part V7 if 7 is odd, into V4 if i is even for each i € {1,2,...,t}. Swap the positions of v; and
vy if vg and vy are put in the same part, and further swap the positions of v;_1 and v; if v; and
vi41 are put in the same part.

Now suppose that vg = vi41 and d(vg) = 3. We know ¢g(G) > 12, so t > 11. Let z be
the neighbor of vy in G;. If d(x) > 3, consider G = G — {vg,v1,..., v}, then 6(G2) > 2. By
the choice of G, the graph G has an equitable (O, O7)-partition with sets V4, V5 such that
[Vi| < |V2|. We can extend the partition of G to an equitable (O7, O7)-partition of G as follows.
First put the vertex v; into the part V; if i is even, into V4 if 7 is odd for each i € {0,1,...,¢}.
Swap the positions of vy and v; if the vertices vy and z are put in the same part (the partition of
{vog,v1,...,v:} generated in this way admits that the order of each component of each part is at
most 2). If d(x) = 2, then let Q = zoz122 - - - 42¢4+1 be the chain with zy = vy, 21 = 2. Consider
the graph Gs = G — {zo,21,...,24,v1,...,0:}, then 6(G3) > 2. By the minimality of G, the
graph G3 has an equitable (O7, O7)-partition with sets Vi, V5 such that |Vi| < |Va]|. We first
extend the partition of G5 to G to obtain an equitable (O7, O7)-partition of G — {vy,..., v}
as follows. First put the vertex z; into the part Vi if 7 is even, into V5 if ¢ is odd for each
i€ {0,1,...,q}. If z, and 2441 are put in the same part, swap the positions of 41 and xz,.
Next we further extend the partition to G similarly to the case that d(vp) > 4. In any case, we
can always get an equitable (O7, O7)-partition of G. This contradicts the choice of G. Hence,

there is no ¢-chain with ¢ > 4, and G has no chain whose endvertices are identical. O

Lemma 2.3 Ifz is a 3-vertex, then t(x) < 4.
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Proof On the contrary, suppose that x is a 3-vertex with ¢(x) > 5. Lemma 2.2 implies that z is
not incident with any ¢-chains, where ¢ > 4. Since ¢(x) > 5, the vertex z is incident with at least
one 3-chain or at least two 2-chains, then 6 < n(z) < 10. Let A(x) be the vertex set composed
of all 2-vertices in its incident chains and A = A(z)U{x}. Let N be the set of the three non-free
vertices in A. Then every vertex in N has exactly one outer neighbor in G — A. Since g(G) > 12,
the chains do not share endvertices other than z. So §(G — A) > 2. By the minimality of G, the
graph G — A has an equitable (O7, O7)-partition. We can extend the partition of G — A to G as
follows. First, we put the non-free vertices into the part that its neighbor in G — A is not in. If
there are ¢ non-free vertices in Vi, then we put arbitrary [@] — 4 vertices in A — N into Vi,
where ¢ € {0,1,2,3}. Then put the other vertices in A into V5. There are at most five vertices
that are put into the same part. In this way, we get an equitable (Or, O7)-partition of G, this

leads to a contradiction. O
Lemma 2.4 Ifx is a 4-vertex, then t(z) < 6.

Proof On the contrary, suppose that x is a 4-vertex with ¢(z) > 7. Lemma 2.2 implies that x
is not incident with any ¢-chains, where ¢ > 4. Since t(z) > 7, the vertex z is incident with at
least three 2*-chains, or two 3"-chains, or two 2" -chains and two 1-chains, then 8 < n(z) < 13.
Let A(z) be the vertex set composed of all 2-vertices in its incident chains and A = A(z) U {z}.
Let N be the set of the four non-free vertices in A. Then every vertex in N has exactly one
outer neighbor in G — A. Since g(G) > 12, the chains do not share endvertices other than z. So
§(G — A) > 2. By the minimality of G, the graph G — A has an equitable (O7, O7)-partition.
We can extend the partition of G — A to G as follows. First, we put the non-free vertices into
the part that its neighbor in G — A is not in. If there are i non-free vertices in Vi, then we
put arbitrary fnTx)} — ¢ vertices in A — N into Vi, where i € {0,1,2,3,4}. Then put the other
vertices in A into V5. There are at most seven vertices that are put into the same part. In this

way, we get an equitable (O, O7)-partition of G, this leads to a contradiction. O
Lemma 2.5 Ifx is a 5-vertex, then t(z) <8 or T(x) = (3,0,0,2).

Proof On the contrary, suppose that x is a 5-vertex with ¢(z) > 9 and T'(z) # (3,0,0,2).
Lemma 2.2 implies that z is not incident with any ¢-chains, where ¢t > 4. So 10 < n(z) < 16.
Let A(z) be the vertex set composed of all 2-vertices in its incident chains and A = A(z) U {z}.
Let N be the set of the five non-free vertices in A. Then every vertex in N has exactly one
outer neighbor and z has at most one outer neighbor. Since g(G) > 12, the chains do not share
endvertices other than z. So 6(G — A) > 2. By the minimality of G, the graph G — A has an
equitable (O7, O7)-partition. We can extend the partition of G — A to G as follows. First, we
put the non-free vertices into the part that its neighbor in G — A is not in. For 10 < n(z) < 14,
if there are ¢ non-free vertices in Vi, then we choose [@] — i vertices in A — N arbitrarily into
Vi, where i € {0,1,2,3,4,5}. Then put the other vertices in A into V5. For 15 < n(z) < 16,
=

if there are i non-free vertices in Vj, then we can choose [ — ¢ vertices in A — N into Vi,

where i € {0,1,2,3,4,5}, then put the other vertices in A into V5 such that A has an equitable
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(O7, O7)-partition with |V4]| > |Va|. In this way, we get an equitable (O7, O7)-partition of G, this

leads to a contradiction. O

Lemma 2.6 Let x be a bad 3-vertex with T'(x) = (0,1,2,0) or T'(z) = (1,0,1,1), and let y be
a 3T-vertex that is loosely 1-adjacent to x. Then

(i) d(y) =3 with t(y) <2 or

(ii) d(y) =4 with t(y) <4 or

(iii) d(y) =5 with t(y) <6 or T(y) = (2,0,1,2), or

(iv) d(y) = 6.

Proof Let x be a bad 3-vertex with T'(z) = (0,1,2,0) or T(x) = (1,0,1,1), and let y be a
3T-vertex that is loosely 1-adjacent to x. Suppose to the contrary that d(y) = 3 with ¢(y) > 3
or d(y) = 4 with t(y) > 5 or d(y) =5 with ¢(y) > 7 and T(y) # (2,0,1,2). By Lemmas 2.2-2.5,
if d(y) = 3, then 3 < t(y) < 4; if d(y) = 4, then 5 < t(y) < 6; if d(y) = 5, then 7 < #(y) < 8
and T'(y) # (2,0,1,2). Let B = A(z) U A(y) U{z,y}, |B| = t(z) +t(y) + 1 =t(y) + 5. Let N
be the subset of B composed of all non-free vertices in B. |N| = d(z) + d(y) — 2 = d(y) + 1
and each vertex in N has exactly one outer neighbor in G — B. Since g(G) > 12, the chains do
not share endvertices other than x and y. So §(G — B) > 2. By the minimality of G, the graph
G — B has an equitable (O7, O7)-partition. First, we put the non-free vertices into the part that
its neighbor in G — B is not in. If there are ¢ non-free vertices in N that are put into V;, then
we put f%] — ¢ vertices in B — N into V; and put the other vertices in B into V5 such that B
has an equitable (O7, O7)-partition with |V;| > |Va|, where ¢ € {0,1,...,6}. This can be done
because |[N| = d(y) + 1 < £(t(y) +5) = £|B|. If [N| = 4, then |B| € {8,9}; if [N| = 5, then
|B| € {10,11}; if |N| = 6, then |B| € {12,13}. So there are at most seven vertices that are put
in the same part. In this way, we obtain an equitable (O7, O7)-partition of G, this leads to a

contradiction. O

Lemma 2.7 Every 3-vertex y with T'(y) = (0,0,2,1) is loosely 1-adjacent to at most one bad

3-vertex.

Proof Suppose to the contrary that there are two bad 3-vertices that are both loosely 1-adjacent
to y. Let y be a 3-vertex with T'(y) = (0,0,2,1) and let z; and z2 be bad 3-vertices that are
loosely 1-adjacent to y. Let C = A(z1) U A(a2) U A(y) U {z1,22,y}. Let N be the subset of
C' composed of all non-free vertices in C. Since g(G) > 12, we can claim that §(G — C) > 2.
Otherwise, z1 and x2 are bad 3-vertices with T'(z;) = (1,0, 1,1) for i = 1,2. Denote the vertices
loosely 3-adjacent to x1 and x5 as y; and yo, respectively, the vertices y; and ys are the same
vertices and d(y;) = 3, then we have y; is a 3-vertex with ¢(y1) = 6, this contradicts Lemma 2.3.
Hence, we always have 6(G — C') > 2. By the minimality of G, the graph G — C has an equitable
(07, O7)-partition. |N| = d(z1) + d(z2) + d(y) —4 =5, |C| = t(z1) + t(x2) +t(y) + 1 = 11.
Every vertex in N has exactly one outer neighbor. We can extend the partition of G — C to G
as follows. First, we put the non-free vertices into the part that its neighbor in G — C' is not in.

If there are 7 vertices in IV that are put into Vj, then put 6 — ¢ vertices in C'— N into V;j, where



Equitable cluster partition of planar graphs with girth at least 12 157

1€{0,1,...,5}. Last we put the other vertices in C into V5. In this way, we obtain an equitable
(07, O7)-partition of G, this leads to a contradiction. O

Lemma 2.8 There is no 3-vertex y with T'(y) = (0,0, 2, 1) which is loosely 1-adjacent to a bad

3-vertex and adjacent to a bad 3-vertex simultaneously.

Proof Suppose to the contrary that there is a 3-vertex y with T'(y) = (0,0, 2, 1) that is loosely
l-adjacent to a bad 3-vertex z; and adjacent to a bad 3-vertex zo simultaneously. Let C' =
A(x1)UA(z2) UA(y) U{z1, z2,y}. Let N be the subset of C' composed of all non-free vertices in
C'. Since g(G) > 12, the chains do not share endvertices other than z1, 25 and y. So §(G—C) > 2.
By the minimality of G, the graph G — C has an equitable (O, O7)-partition.

IN| =d(z1) + d(z2) +d(y) —4 =5, |C| =t(x1) + t(x2) + t(y) +2 = 12.

Every vertex in IV has exactly one outer neighbor. First, we put the non-free vertices into the
part that its neighbor in G—C' is not in. If there are ¢ vertices in N that are put into V, then put
6 — ¢ vertices in C'— N into Vi, where i € {0,1,...,5}. Last we put the other vertices in C' into
V5. In this way, we obtain an equitable (O, O7)-partition of G, this leads to a contradiction. O

Lemma 2.9 Let x be a bad 3-vertex with T'(x) = (0,2,0,1) or T'(z) = (1,0, 1,1), and let y be
the 3% -neighbor of x. Then

(i) d(y) =3 witht(y) <1 or

(i) d(y) = 4 with t(y) < 3 or

(iii) d(y) > 5.

Proof Let z be a bad 3-vertex with T'(z) = (0,2,0,1) or T'(z) = (1,0,1,1), and let y be the
3*-neighbor of z. Suppose to the contrary that d(y) = 3 with t(y) > 2 or d(y) = 4 with t(y) > 4.
By Lemmas 2.2-2.4, if d(y) = 3, then 2 < t(y) < 4; If d(y) = 4, then 4 < ¢(y) < 6. Let

B = A(z) UA(y) U{z,y}, |B] = t(z) +t(y) +2 = i(y) + 6.

Let N be the subset of B composed of all non-free vertices in B. |N| = d(z)+d(y)—2 = d(y)+1.
Each vertex in N has exactly one outer neighbor. Since g(G) > 12, the chains do not share
endvertices other than = and y. So §(G — B) > 2. By the minimality of G, the graph G — B
has an equitable (O7, O7)-partition. First, we put the non-free vertices into the part that its
neighbor in G — B is not in. If there are ¢ non-free vertices in N that are put into V;, then we
put (li;‘] — ¢ vertices in B — N into V7 and put the other vertices in B into Vs such that B
has an equitable (O7, O7)-partition with |Vi| > |V3|, where ¢ € {0,1,...,5}. This can be done
because |N| = d(y) + 1 < 3(t(y) +6) = 3|B|. If [N| = 4, then |B| € {8,9,10}; if [N| = 5, then
|B| € {10,11,12}. So at most six vertices are put in the same part. In this way, we obtain an

equitable (O7, O7)-partition of G, this leads to a contradiction. O
Lemma 2.10 Every 3-vertex y with T'(y) = (0,0, 1,2) is adjacent to at most one bad 3-vertex.

Proof Suppose to the contrary that there is a 3-vertex y with T'(y) = (0,0, 1, 2) that is adjacent
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to two bad 3-vertices z1 and 2 . Let C' = A(z1)UA(z2)UA(y)U{z1,22,y}. Let N be the subset
of C' composed of all non-free vertices in C. Since g(G) > 12, the chains do not share endvertices
other than z1,22 and y. So §(G — C) > 2. By the minimality of G, the graph G — C has an
equitable (O7, O7)-partition. |N| = d(x1)+d(x2)+d(y)—4 =5, |C| = t(x1)+t(x2)+t(y)+2 = 12.
Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the
part that its neighbor in G—C'is not in. If there are i vertices in N that are put into V4, then put
6 — i vertices in C'— N into Vi , where i € {0,1,...,5}. Last, we put the other vertices in C' into
V5. In this way, we obtain an equitable (O7, O7)-partition of G, this leads to a contradiction. O

Lemma 2.11 Every 3-vertex y with T'(y) = (0,1, 0, 2) is adjacent to at most one bad 3-vertex.

Proof Suppose to the contrary that there is a 3-vertex y with T'(y) = (0, 1,0, 2) that is adjacent
to two bad 3-vertices x1 and xo. Let C' = A(z1) UA(x2) UA(y) U{x1,z2,y}. Let N be the subset
of C' composed of all non-free vertices in C. Since g(G) > 12, the chains do not share endvertices
other than 1,22 and y. So §(G — C) > 2. By the minimality of G, the graph G — C has an
equitable (O7, O7)-partition. |N| = d(x1)+d(x2)+d(y)—4 =5, |C| = t(x1)+t(x2)+t(y)+3 = 13.
Every vertex in N has exactly one outer neighbor. First, we put the non-free vertices into the
part that its neighbor in G—C'is not in. If there are i vertices in N that are put into V4, then put
7 — i vertices in C'— N into Vi, where i € {0,1,...,5}. Last, we put the other vertices in C' into
V5. In this way, we obtain an equitable (O7, O7)-partition of G, this leads to a contradiction. O

Lemma 2.12 Every 4-vertex y with T'(y) = (1,0, 3,0) is loosely 1-adjacent to at most one bad

3-vertex.

Proof Suppose to the contrary that there is a 4-vertex y with T'(y) = (0,1, 3,0) that is loosely
1-adjacent to at least two bad 3-vertices x; and zo. Let C'= A(x1) U A(x2) U A(y) U {x1, 22,y }.
Let N be the subset of C' composed of all non-free vertices in C'. Since g(G) > 12, we can claim
that §(G — C) > 2. Otherwise, z1 and x2 are bad 3-vertices with T'(z;) = (1,0, 1, 1) at the same
time, ¢ = 1,2. Denote the vertices loosely 3-adjacent to 1 and zo as y; and ys, respectively,
the vertices y; and ys are the same vertices and d(y;) = 3, then we have y; is a 3-vertex with
t(y1) = 6, this contradicts Lemma 2.3. Hence, we always have §(G — C) > 2. By the minimality
of G, the graph G — C has an equitable (O7, O7)-partition. |N| = d(x1) + d(z2) + d(y) — 4 = 6,
|C| = t(x1) + t(x2) + t(y) + 1 = 15. Every vertex in N has exactly one outer neighbor. First, we
put the non-free vertices into the part that its neighbor in G — C' is not in. If there are i vertices
in N that are put into V4, then put 8 — ¢ vertices in C'— N into Vi, where i € {0,1,...,6}. Last,
we put the other vertices in C' into V5. In this way, we obtain an equitable (O7, O7)-partition of

G, this leads to a contradiction. O



Equitable cluster partition of planar graphs with girth at least 12 159

3. Discharging

The maximum average degree of a graph G is

mad(G) = max{%|H C G}.

By Euler’s formula, a planar graph G with girth g satisfies mad(G) < % (see [8]). Consider
the minimal counterexample G. Since g(G) > 12, we have mad(G) < % For any = € V(G), let

p(z) = d(x) — L2 be the initial charge. We have

> )= Y () - ) <0

zeV(G) zeV(G)

Next, we redistribute the charges among vertices according to the following rules:

(R1) Every 3T-vertex gives £ to each 2-vertex in its incident chains.

(R2) Every 3*-vertex y gives % to each bad 3-vertex x that is loosely 1-adjacent to y, where
d(z) =3, T(x)=(0,1,2,0) or T'(z) = (1,0,1,1).

(R3) Every 3T-vertex y gives % to each bad 3-vertex x that is adjacent to y, where d(z) = 3,
T(x) =(0,2,0,1) or T'(z) = (1,0,1,1).

Let p/(z) be the final charge of x after applying rules (R1)-(R3). Next, we prove p’(z) > 0
for all x € V(G).

Let x € V(G). If d(z) = 2, then ¢/(z) = (2 - 42) + £ x 2 =0 by (R1).

Assume d(z) = 3, it follows from Lemma 2.3 that ¢(x) < 4. If ¢(x) = 0, then z is adjacent to

at most three bad 3-vertices, thus p/(z) > (3—£2) — 1 x 3 =0 by (R3). If () = 1, then Lemma

2.10 implies that « is adjacent to at most one bad 3-vertex, thus p/(z) > (3—2)—Lix1-1x2=0
by (R1), (R2) and (R3). If t(z) = 2 with T'(z) = (0,0, 2, 1), then Lemmas 2.7, 2.8 imply that = is

loosely 1-adjacent to at most one bad 3-vertex, and it is impossible that z is loosely 1-adjacent to a

bad 3-vertex and adjacent to a bad 3-vertex at the same time, thus p/(z) > (3—12)—1x2-1x1=

0 by (R1), (R2) and (R3). If t(z) = 2 with T'(x) = (0,1,0,2), then Lemma 2.11 implies that x

is adjacent to at most one bad 3-vertex, thus p/(z) > (3 —42) — £ x2— 1 x 1 =0 by (R1), (R2)

and (R3). If t(z) = 3, then Lemma 2.6 implies z is not loosely 1-adjacent to bad 3-vertex, and

Lemma 2.9 implies  is not adjacent to bad 3-vertex, thus z/(z) > (3 — 1) — 1 x 3 =0 by (R1).

If t(x) = 4, then p/(z) > (3 — %) — % x 4+ % x 1 =0 by (R1), (R2) and (R3).

Assume d(z) = 4, it follows from Lemma 2.4 that t(x) < 6. If ¢(x) < 4, then x is loosely

1-adjacent to or adjacent to at most four bad 3-vertices, so pi/(z) > (4— 1) -1 x4-1x4=0by

, an It t(x) = 5, then x 1s incident with at least one 2™-chain, namely, x 1s loosely
R1), (R2 d (R3). If 5, th is incid ith at 1 27 -chai 1 is 1 1

1-adjacent to or adjacent to at most three bad 3-vertices, hence pi/(z) > (4—2)— 1+ x5—-£+x3 =0

by (R1), (R2) and (R3). If ¢(x) = 6 with T'(x) = (1,0, 3,0), then Lemma 2.12 implies that x is

12 1

loosely 1-adjacent to at most one bad 3-vertex, thus p/(z) > (4 — 2) -1 x6—-1x1=1by

(R1), (R2) and (R3). If t(x) = 6 with T'(z) # (1,0,3,0), then = is incident with at least two
2"-chains, hence p/(z) > (4 — ) — 1 x 6 — £ x 2 =0 by (R1), (R2) and (R3).
Assume d(x) = 5, it follows from Lemma 2.5 that t(x) < 8 or T'(z) = (3,0,0,2). If ¢(x) <8,
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then z is loosely 1-adjacent to or adjacent to at most five bad 3-vertices, so p'(x) > (5 % X
8—1x5=0by (R1), (R2) and (R3). If T'(z) = (3,0,0,2), then y//(z) > (5—12)—1x9-Lix2=2
by (R1), (R2) and (R3).

Assume d(z) > 6, then p/(z) > (d(z) — ) — 1 x 3 x d(z) = 2d(z) — 2 > 0 by (R1), (R2)
and (R3).

We have proved that y/(z) > 0 for all z € V(G), then 3, v #/(z) = 0, this contradicts
> rev(a) M) < 0. This completes the proof. O
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