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Abstract Based on the residual implication of continuous triangular norms, we obtain the

expression of residual operator for extended operators (type-2 triangular norms) of continuous

triangular norms on convex normal upper semi-continuous fuzzy truth values, answering an open

problem in [D. LI, Inf. Sci., 2015, 317: 259–277].
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1. Introduction and preliminaries

In order to better describe fuzziness and uncertainty, Zadeh [1] introduced the concept of

type-2 fuzzy sets as a generalization of ordinary fuzzy sets in [2], by taking the mappings from

the unit interval to itself as membership functions, which were called “fuzzy truth values”. In

the study of type-2 fuzzy sets, type-2 fuzzy operations on fuzzy truth values are the key and

core. In particular, type-2 t-(co)norms [3–9], type-2 aggregation operations [10–12], and type-2

fuzzy implications [5, 9, 13, 14] based on Zadeh’s extension principle or convolution operations

have been further studied. Let I be the unit interval [0, 1].

Definition 1.1 ([2]) A fuzzy set A on the spaceX is a mapping fromX to I, i.e., A ∈ Map(X, I).

Let A be a fuzzy set on X . For α ∈ (0, 1], the α-cut [A]α of A is [A]α = {x ∈ X | A(x) ≥ α}.

A fuzzy truth value is a fuzzy set on the unit interval I. The set of all fuzzy truth values is

denoted as M.

Definition 1.2 ([6]) A fuzzy truth value f ∈ M is
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(1) normal if sup{f(x) | x ∈ I} = 1;

(2) convex if, for any 0 ≤ x ≤ y ≤ z ≤ 1, f(y) ≥ f(x) ∧ f(z);

(3) upper semi-continuous if [f ]α is a closed subset of I for any α ∈ (0, 1].

For any subset B of X , a special fuzzy set 1B, called the characteristic function of B, is

defined by

1B(x) =

{
1, x ∈ B,

0, x ∈ X\B.

Let I[2] = {[a, b] | 0 ≤ a ≤ b ≤ 1}, N = {f ∈ M | f is normal}, C = {f ∈ M | f is convex},

U = {f ∈ M | f is upper semi-continuous}, and L = N ∩C, Lu = L ∩U.

Based on extension principle, Mizumoto and Tanaka [15] introduced the following basic op-

erations on M, which are the basis of type-2 fuzzy sets and type-2 fuzzy logic systems.

Definition 1.3 ([3, Definition 1.3.7]) The operations of ⊔ (union), ⊓ (intersection), ¬ (comple-

mentation) on M are defined as follows: for f , g ∈ M,

(f ⊔ g)(x) = sup{f(y) ∧ g(z) | y ∨ z = x},

(f ⊓ g)(x) = sup{f(y) ∧ g(z) | y ∧ z = x}

and

(¬f)(x) = sup{f(y) | 1− y = x} = f(1− x).

From [6], it follows that M = (M,⊔,⊓,¬,1{0},1{1}) does not have a lattice structure, al-

though ⊔ and ⊓ satisfy the De Morgan’s laws with respect to the complementation ¬.

Walker and Walker [6] introduced the following partial orders ⊑ and 4 on M.

Definition 1.4 ([6, Definition 13]) f ⊑ g if f ⊓ g = f ; f 4 g if f ⊔ g = g.

It follows from [6, Proposition 14] that both ⊑ and 4 are partial orders on M. Generally,

the partial orders ⊑ and 4 do not coincide. In [6, 16], it was proved that ⊑ and 4 coincide on

L, and the subalgebra L = (L,⊔,⊓,¬,1{0},1{1}) is a bounded complete lattice. In particular,

1{0} and 1{1} are the minimum and the maximum of L, respectively.

Kulisch and Miranker [17] introduced the following partial order .KM for I[2]: for [a, b],

[c, d] ∈ I[2],

[a, b] .KM [c, d] if and only if a ≤ c and b ≤ d.

By Definition 1.3, it can be verified that [a, b] .KM [c, d] if and only if 1[a,b] ⊑ 1[c,d].

Noting that every element of Lu is a fuzzy number on [0, 1], by [18, Chapter 4], we have

Lemma 1.5 ([18, Chapter 4]) Let f ∈ M. Then, f ∈ Lu if and only if [f ]α is a nonempty closed

subinterval of I for all 0 < α ≤ 1.

Lemma 1.6 ([18, Chapter 4]) Let f , g ∈ Lu. Then, the following statements are equivalent:

(i) f ⊑ g;

(ii) For any 0 < α ≤ 1, 1[f ]α ⊑ 1[g]α ;

(iii) For any 0 < α ≤ 1, [f ]α .KM [g]α.
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Definition 1.7 ( [19]) A binary operation ∆ : I2 → I is called triangular norm (or briefly,

t-norm) on I if, for any x, y, z ∈ I, it satisfies the following properties:

(1) x∆y = y∆x (commutativity);

(2) (x∆y)∆z = x∆(y∆z) (associativity);

(3) x∆z ≤ y∆z for x ≤ y (monotonicity);

(4) 1∆x = x (identity).

Recently, Hernández et al. [4] systematically studied type-2 t-norms for the following general

convolution on M.

Definition 1.8 ([4, Definition 14]) Let ∗ be a binary operation on I, ∆ be a t-norm on I, and

∇ be a t-conorm on I. Define the convolution operations ∆̃∗ and ∇̃∗ : M2 → M as follows: for

f, g ∈ M,

(f∆̃∗g)(x) = sup{f(y) ∗ g(z) | y∆z = x} (1.1)

and

(f∇̃∗g)(x) = sup{f(y) ∗ g(z) | y∇z = x}. (1.2)

Clearly, m̃inmin = ⊓ and m̃axmin = ⊔.

Definition 1.9 ([19]) Let ∆ be a left continuous t-norm. The residual implication →∆: I
2 → I

associated with ∆ is defined as

x →∆ y = sup{z ∈ I | x∆z ≤ y}.

Let ∆ be a continuous t-norm on I. The residual operator →∆̃min
of ⊓ and ∆̃min on Lu is

defined in [9, 14] as follows: for f , g ∈ Lu,

f →∆̃min
g = ⊔{h ∈ Lu | f∆̃minh ⊑ g}, (1.3)

where ⊔A is the supremum of a subset A of Lu in (Lu,⊑).

From [3, Theorem 6.8.12], it follows that ∆̃min is left-continuous and f∆̃min(f →∆̃min
g) =

⊔{f∆̃minh | f∆̃minh ⊑ g} ⊑ g. Li [5] studied the residual operators of some special type-2

operations on (Lu,⊑) and proposed the following problem for the residual operator:

Problem 1 ([5, Problem (2)]). What is the residual operator of a left-continuous type-2 t-norm

∆̃T ?

Knowing from [20, Theorem 5.10.58], each α-cut of f∆̃
min

h is equal to [f ]α∆[h]α, this prompts

us to stratify and obtain each α-cut of f →∆̃min
g, thereby deriving the specific expression of

f →∆̃min
g using the representation theorem of fuzzy sets. Therefore, this paper is devoted to

obtaining the specific expression of the residual operator “→∆̃min
” to solve Problem 1. For a

general t-norm T , firstly, the existing literature has not yet provided a characterization of the

left-continuity of ∆̃T . Secondly, there is not a theorem as convenient as [20, Theorem 5.10.58]

to achieve an α-cuts representation of f →∆̃T

g. Therefore, we are currently unable to solve

Problem 1 in the general case.
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2. Answer to Problem 1

Given any fixed f , g ∈ Lu, to obtain the expression of f →∆̃min
g, we follow the steps below:

Step 1. For any α ∈ (0, 1], take the interval [T
(−)
α , T

(+)
α ] as follows:

• If min[f ]α →∆ min[g]α ≤ max[f ]α →∆ max[g]α, then [T
(−)
α , T

(+)
α ] = [min[f ]α →∆

min[g]α,max[f ]α →∆ max[g]α];

• If min[f ]α →∆ min[g]α > max[f ]α →∆ max[g]α, then [T
(−)
α , T

(+)
α ] = [max[f ]α →∆

max[g]α,max[f ]α →∆ max[g]α].

Clearly,

T (−)
α ≤ min[f ]α →∆ min[g]α and T (+)

α ≤ max[f ]α →∆ max[g]α. (2.1)

Step 2. For any α ∈ (0, 1], calculate L(α) and R(α) as follows:

L(α) = inf{T
(−)
λ | λ ≥ α} (2.2)

and

R(α) = inf{T
(+)
λ | λ ≤ α}. (2.3)

By (2.1), we have

L(α) ≤ T (−)
α ≤ min[f ]α →∆ min[g]α and R(α) ≤ T (+)

α ≤ max[f ]α →∆ max[g]α, (2.4)

implying that

L(α)∆min[f ]α ≤ min[g]α and R(α)∆max[f ]α ≤ max[g]α. (2.5)

Proposition 2.1 For 0 < α1 ≤ α2 ≤ 1, L(α1) ≤ L(α2) and R(α1) ≥ R(α2).

Proof It follows directly from {T
(−)
λ | λ ≥ α1} ⊇ {T

(−)
λ | λ ≥ α2} and {T

(+)
λ | λ ≥ α1} ⊆

{T
(+)
λ | λ ≥ α2}. 2

Step 3. For any α ∈ (0, 1], take the interval [T̃
(−)
α , T̃

(+)
α ] as follows:

(1) If L(1) ≤ R(1), then [T̃
(−)
α , T̃

(+)
α ] = [L(α), R(α)] for all α ∈ (0, 1];

(2) If L(1) > R(1), then

[T̃ (−)
α , T̃ (+)

α ] =

{
[R(1), R(α)], L(α) ≥ R(1),

[L(α), R(α)], L(α) < R(1).
(2.6)

Proposition 2.2 (1) T̃
(−)
α ≤ L(α) and T̃

(+)
α = R(α).

(2) For 0 < α1 ≤ α2 ≤ 1, [T̃
(−)
α1

, T̃
(+)
α1

] ⊇ [T̃
(−)
α2

, T̃
(+)
α2

] 6= ∅.

Proof It follows directly from Proposition 2.1 and the choice of the interval [T̃
(−)
α , T̃

(+)
α ]. 2

Step 4. By the representation theorem of fuzzy sets, take the fuzzy set φ : I → I by

φ(x) = sup{α ∈ (0, 1] | x ∈ [T̃ (−)
α , T̃ (+)

α ]}, (2.7)

where sup∅ = 0.



Residual operator of type-2 triangular norms 289

It follows directly from the representation theorem of fuzzy sets and Proposition 2.2 (2) that,

for any α ∈ (0, 1],

[φ]α =
⋂

λ<α

[T̃
(−)
λ , T̃

(+)
λ ] = [ lim

λ→α−

T̃
(−)
λ , lim

λ→α−

T̃
(+)
λ ] ⊇ [T̃ (−)

α , T̃ (+)
α ]. (2.8)

This, together with Lemma 1.5, implies that φ ∈ Lu.

Lemma 2.3 ([20, Theorem 5.10.58]) Let ∆ be a continuous t-norm on I. Then, for any f ,

g ∈ Lu and any α ∈ (0, 1], we have [f∆̃
min

g]α = [f ]α∆[g]α.

Proposition 2.4 Let φ be defined by Eq. (2.7). Then, f∆̃minφ ⊑ g.

Proof Given any fixed α ∈ (0, 1], it is clear that min[f ]α− 1

n

ր min[f ]α and max[f ]α− 1

n

ց

max[f ]α. Together with Lemma 2.3, Proposition 2.2 (1), and Eq. (2.8), since ∆ is continuous and

increasing, we have

(i) min[f∆̃minφ]α = min[f ]α∆min[φ]α = min[f ]α∆( lim
λ→α−

T̃
(−)
λ )

= lim
n→+∞

(min[f ]α− 1

n

∆T̃
(−)

α− 1

n

) ≤ lim
n→+∞

(min[f ]α− 1

n

∆L(α−
1

n
))

≤ lim
n→+∞

min[g]α− 1

n

= min[g]α by Eq. (2.5);

(ii) max[f∆̃minφ]α = max[f ]α∆max[φ]α = max[f ]α∆( lim
λ→α−

T̃
(+)
λ )

= lim
n→+∞

(max[f ]α− 1

n

∆T̃
(+)

α− 1

n

) = lim
n→+∞

(max[f ]α− 1

n

∆R(α−
1

n
))

≤ lim
n→+∞

max[g]α− 1

n

= max[g]α by Eq. (2.5),

implying that [f∆̃minφ]α .KM [g]α. Thus, f∆̃minφ ⊑ g by Lemma 1.6. 2

Theorem 2.5 The fuzzy set φ obtained by Eq. (2.7) is equal to f →∆̃min
g.

Proof By Proposition 2.4 and Eq. (1.3), it suffices to show that, for any h ∈ Lu with f∆̃minh ⊑ g,

we have h ⊑ φ.

Claim 1. For any α ∈ (0, 1], [h]α .KM [T
(−)
α , T

(+)
α ].

By Lemmas 1.6 and 2.3, noting that f∆̃minh ⊑ g, we have min[f ]α∆min[h]α ≤ min[g]α and

max[f ]α∆max[h]α ≤ max[g]α, implying that min[h]α ≤ min[f ]α →∆ min[g]α and max[h]α ≤

max[f ]α →∆ max[g]α. Then [h]α .KM [T
(−)
α , T

(+)
α ] by the construction of [T

(−)
α , T

(+)
α ].

Claim 2. For any α ∈ (0, 1], min[h]α ≤ L(α) and max[h]α ≤ R(α).

It is clear that min[h]α = inf{min[h]λ | λ ≥ α} and max[h]α = inf{max[h]λ | λ ≤ α}.

This, together with Claim 1, implies that min[h]α ≤ inf{T
(−)
λ | λ ≥ α} = L(α) and max[h]α ≤

inf{T
(+)
λ | λ ≤ α} = R(α).

Claim 3. For any α ∈ (0, 1], [h]α .KM [T̃
(−)
α , T̃

(+)
α ].

By the choice of the interval [T̃
(−)
α , T̃

(+)
α ], consider the following two cases:

Case 1. If L(1) ≤ R(1), by Claim 2, it is clear that [h]α .KM [L(α), R(α)] = [T̃
(−)
α , T̃

(+)
α ];

Case 2. If L(1) > R(1), by Claim 2, we have min[h]α ≤ min[h]1 ≤ min{L(1), R(1)} = R(1)
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and max[h]α ≤ R(α), and thus [h]α .KM [T̃
(−)
α , T̃

(+)
α ] by Eq. (2.6).

Claim 4. For any α ∈ (0, 1], [h]α .KM [φ]α, i.e., h ⊑ φ.

By [h]α =
⋂

λ<α[h]λ, noting that each α-cut of h is a nonempty closed subinterval of I

(by Lemma 1.5), we have min[h]α = limλ→α− min[h]λ and max[h]α = limλ→α− max[h]λ. This,

together with Eq. (2.8) and Claim 3, implies that min[h]α = limλ→α− min[h]λ ≤ limλ→α− T̃
(−)
λ =

min[φ]α and max[h]α = limλ→α− max[h]λ ≤ limλ→α− T̃
(+)
λ = max[φ]α, i.e., [h]α .KM [φ]α. 2

Processing Steps 1–4, by Theorem 2.5, we have

• 1[a,b] →∆̃min
1[c,d] =

{
1[a→∆c,b→∆d], a →∆ c ≤ b →∆ d,

1{b→∆d}, a →∆ c > b →∆ d.
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