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1. Introduction

All graphs considered in this paper are undirected simply connected graphs. Let G = (V,E)

denote a connected graph with vertex set V and edge set E. Let |V (G)| = n and |E(G)| =
m = e(G) be the order and the size of G, respectively. For any vertex vi ∈ V (G), we denote by

di = dvi = dG(vi) the degree of vi. Let π = (d1, d2, . . . , dn) be the degree sequence of G, where

d1 ≤ d2 ≤ · · · ≤ dn. Denote by δ(G) or simple δ the minimum degree of G.

Let G1 and G2 be two graphs. We use G1 +G2 to denote the disjoint union of G1 and G2,

and G1 ∨ G2 to denote the join of G1 and G2. As usual, let Pn and Cn denote the path and

cycle on n vertices, respectively. The dumbbell graph, denoted by Dp,k,q, is the graph obtained

from two cycles Cp, Cq and a path Pk+2 by identifying each pendant vertex of Pk+2 with a

vertex of a cycle, respectively. The θ-graph, denoted by θr,s,t, is the graph formed by joining two

given vertices via three disjoint paths Pr , Ps and Pt, respectively. The p-rose graph is obtained

by p cycles sharing a common vertex v, which is recorded as R(C1, . . . , Cp), where C1, . . . , Cp

represent p cycles with a common vertex v, respectively.

Let D(G) be the diagonal degree matrix, and A(G) the adjacent matrix of G. The ma-

trix L(G) = D(G) − A(G) and L(G) = D(G)−1/2(D(G) − A(G))D(G)−1/2 (i.e., L(G) =

D(G)−1/2L(G)D(G)−1/2) are defined the Laplacian matrix and the normalized Laplacian matrix

of G, respectively. The largest eigenvalue of L(G), denoted by ρ(G), is called the normalized

Laplacian spectral radius of G. In [1], Chung proved that n−1
n ≤ ρ(G) ≤ 2 for a connected graph
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G with n ≥ 2 vertices, the left equality holds if and only if G is a complete graph, and the right

equality holds if and only if G is a bipartite graph.

A path (cycle) that contains every vertex of G is called a Hamilton path (cycle) of G. A graph

is traceable (Hamiltonian) if it contains a Hamilton path (cycle). And G is Hamilton-connected

if every two vertices of G are connected by a Hamilton path.

It is an old problem to determine whether a given graph is traceable or not. Recently, there

are many reasonable sufficient conditions that were given for a graph to be Hamiltonian, traceable

or Hamilton-connected, see references [2–7] and therein. In 2010, Fiedler and Nikiforov [8] gave

strict sufficient conditions for the existence of Hamilton paths and cycles in terms of the adjacency

spectral radius of graphs or the complement of graphs, and Zhou [9] studied the signless Laplacian

spectral radius of the complement of a graph, and presented some conditions for the existence

of Hamilton cycles or paths. Later, Lu et al. [10] showed sufficient conditions for Hamilton

paths in connected graphs and Hamilton cycles in bipartite graphs in terms of the adjacency

spectral radius of a graph. Liu et al. [11] mentioned sufficient conditions on the adjacency

spectral radius for a graph or a bipartite graph to be Hamiltonian and traceable. Recently,

Wang et al. in [12–18] gave some sufficient conditions on adjacency spectral radius, distance

signless Laplacian spectral radius and signless Laplacian spectral radius of G for the graph to

be Hamiltonian, Hamilton-connected and k-connected, respectively. Indeed, more scholars have

focused on sufficient conditions for the hamiltonicity of G in terms of lower bounds on the

adjacency spectral radius and the signless Laplacian spectral radius of G, respectively, but for

the normalized Laplacian spectral radius, it has been rarely mentioned. In fact, the problem of

the sufficient conditions for a graph to be traceable in terms of the normalized Laplacian spectral

radius of the graph has far from been resolved.

In this paper, we first give some sufficient conditions for a graph to be traceable in terms of

its size and order, then establish the sufficient conditions for a graph to be traceable in terms of

the normalized Laplacian spectral radius of the graph.

Cp Cq

Pk+2

Pr

Ps

Pt

C1

C2
C3

Cp

Dp,k,q θr,s,t R(C1, . . . , Cp)

Figure 1 Graphs Dp,k,q, θr,s,t and R(C1, . . . , Cp)

2. Lemmas and main results

Firstly, we give some lemmas which are used to prove the main results.

Lemma 2.1 ([19]) Let G be a nontrivial simple graph with degree sequence π = (d1, d2, . . . , dn),

where d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 4. Suppose that there is no integer k < n+1
2 such that
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dk ≤ k − 1 and dn−k+1 ≤ n− k − 1. Then G is traceable.

Lemma 2.2 ([20]) Let G be a connected graph on n ≥ 4 vertices of m edges with δ ≥ 1. If

m ≥
(

n− 2

2

)

+ 2,

then G contains a Hamilton path unless G ∈ {K1 ∨ (Kn−3 + 2K1),K1 ∨ (K1,3 +K1),K2,4,K2 ∨
4K1,K2 ∨ (3K1 +K2),K1 ∨K2,5,K3 ∨ 5K1,K2 ∨ (K1,4 +K1),K4 ∨ 6K1}.

A sequence π is called a permissible graphic sequence if there is a simple graph with degree

sequence π. According to Lemma 2.2, we can obtain the following corollary. In order to enhance

its readability, we also give a new proof subsequently.

Corollary 2.3 Let G be a connected graph on n ≥ 4 vertices of m edges with δ ≥ 2. If

m >
n2 − 4n+ 1

2
, (2.1)

then G is traceable unless G ∈ {K3 ∨ 5K1,K2 ∨ (K1 +K1,4),K1 ∨K2,5,K2 ∨ (K2 + 3K1),K2 ∨
4K1,K2,4}.

Proof Let π be a permissible graphic sequence satisfying the condition of Lemma 2.1. Assume

that G is not a traceable graph with degree sequence d1 ≤ d2 ≤ · · · ≤ dn. Then by Lemma 2.1,

there is an integer k < n+1
2 such that dk ≤ k− 1 and dn−k+1 ≤ n− k− 1. Obviously, dn ≤ n− 1.

Thus,

2m =

n
∑

i=1

di =

k
∑

i=1

di +

n−k+1
∑

i=k+1

di +

n
∑

i=n−k+2

di

≤ k(k − 1) + (n− 2k + 1)(n− k − 1) + (n− 1)(k − 1)

= n2 − 4n+ 1 + f(k), (2.2)

where f(k) = 3k2 − (2n+ 1)k+3n− 1. Combining (2.1) and (2.2) we have f(k) > 0. Moreover,

we notice that 5 ≤ 2δ+1 ≤ 2(dk +1)− 1 ≤ 2k− 1 < n and 3 ≤ δ+1 ≤ dk +1 ≤ k < n+1
2 , which

implies that n ≥ 6 and 3 ≤ k < n+1
2 .

It follows that the two roots of f(k) = 0 are

k1 =
2n+ 1−

√
4n2 − 32n+ 13

6
, k2 =

2n+ 1 +
√
4n2 − 32n+ 13

6
,

respectively. Since f(k) > 0 and 3 ≤ k < n+1
2 , we have either 3 ≤ k < k1 or k2 < k < n+1

2 .

For 3 ≤ k < k1, together with k1 = 2n+1−
√
4n2−32n+13
6 we have n ≤ 7.

For k2 < k < n+1
2 , if n is even, then k2 ≤ n

2 , together with k2 = 2n+1+
√
4n2−32n+13
6 we have

2 ≤ n ≤ 8. Otherwise, k2 ≤ n−1
2 , similarly, 1 ≤ n ≤ 7. Thus, 1 ≤ n ≤ 8.

On the other hand, we notice that n ≥ 6. Hence, from above we have n = 6, 7, 8. Now we

discuss two cases below.

Case 1. n = 7 or n = 8.

Note that if n = 7 or n = 8, then ⌊n2−4n+1
2 ⌋ + 1 =

(

n−2
2

)

+ 2. Since m is an integer and
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m > n2−4n+1
2 , we have

m ≥ ⌊n
2 − 4n+ 1

2
⌋+ 1 =

(

n− 2

2

)

+ 2.

Thus, from Lemma 2.2 and δ ≥ 2 one can obtain that

G ∈ {K3 ∨ 5K1,K2 ∨ (K1 +K1,4),K1 ∨K2,5,K2 ∨ (K2 + 3K1)}.

Case 2. n = 6.

If n = 6, then 7 = ⌊n2−4n+1
2 ⌋+ 1 <

(

n−2
2

)

+ 2 = 8. Since m > n2−4n+1
2 , we have

⌊n
2 − 4n+ 1

2
⌋+ 1 ≤ m <

(

n− 2

2

)

+ 2 or m ≥
(

n− 2

2

)

+ 2,

i.e., 7 ≤ m < 8 or m ≥ 8. On the other hand, since 3 ≤ k < n+1
2 = 3.5, we get k = 3, and so

f(3) = 5. Furthermore, combining (2.1) and (2.2), one can obtain 13 <
∑6

i=1 di = 2m ≤ 18, and

so
∑6

i=1 di = 2m = 14, 16, 18, i.e., m = 7, 8, 9.

Subcase 2.1. m = 8 or m = 9.

Clearly, m = 8 =
(

n−2
2

)

+ 2 and m = 9 >
(

n−2
2

)

+ 2 if n = 6. Thus, it follows from Lemma

2.2 and δ ≥ 2 that G ∈ {K2 ∨ 4K1,K2,4}.
Subcase 2.2. m = 7.

It is easy to see that k = 3. Then by Lemma 2.1 we have that d1 ≤ d2 ≤ d3 ≤ d4 ≤ 2.

Obviously, d5 ≤ d6 ≤ 5. Hence, the permissible graphic sequences π and G are as follows.
{

π = (2, 2, 2, 2, 2, 4), G ∼= R(C3, C4),

π = (2, 2, 2, 2, 3, 3), G ∼= θ4,3,3, D3,0,3, θ4,4,2, θ5,3,2.

Now we prove that those permissible graphic sequences do exist. Since d1 ≤ d2 ≤ d3 ≤ d4 ≤ 2

and δ(G) ≥ 2, we have d1 = d2 = d3 = d4 = 2, and thus, it follows from
∑6

i=1 di = 2m = 14 that

d5 + d6 = 6. Since d5 ≤ d6 ≤ 5 and d5 ≥ d4 = 2, we have either d5 = 2, d6 = 4 or d5 = d6 = 3.

Hence the permissible graphic sequences are π = (2, 2, 2, 2, 2, 4) and π = (2, 2, 2, 2, 3, 3).

Next we show that R(C3, C4) is determined by the degree sequence π = (2, 2, 2, 2, 2, 4).

Clearly, the vertex of degree 4 must be adjacent to four vertices of degree 2, it implies that there

is one vertex of degree 2 adjacent to two vertices of degree 2, and so, together with its adjacent

vertices and the vertex of degree 4 these form a C4. At this time, the other two vertices of degree

2 must be adjacent to meet the requirement of degree 2, so they form a C3 with the vertex of

degree 4. Hence G is 2-rose graph with C3 and C4, i.e., G ∼= R(C3, C4).

Finally, we verify that θ4,3,3, D3,0,3, θ4,4,2 and θ5,3,2 are also determined by π = (2, 2,

2, 2, 3, 3).

(i) If the two vertices of degree 3 are not adjacent, then they should be adjacent to three

vertices of degree 2, but their neighbors in these vertices of degree 2 are not same exactly, since

if not, a loop must appear, it is a contradiction. At this time, in these four vertices of degree 2,

there must be two vertices receiving degree 2 and two vertices receiving degree 1 from others,

so the temporary two vertices of degree 1 must be adjacent. Hence G is θ-graph, obtained by

joining two vertices of degree 3 via three disjoint paths P4, P3, P3, respectively, i.e., G ∼= θ4,3,3.
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(ii) If two vertices of degree 3 are adjacent in π = (2, 2, 2, 2, 3, 3), then they should be

adjacent to two vertices of degree 2. Next we discuss whether their neighbors of the 3-degree

vertices are the same or not. When these neighbours are different exactly and two parts are not

adjacent each other, it implies that two vertices of degree 2 are adjacent in each part. Thus, the

two vertices of degree 3 and its neighbours form two distinct C3. So, G is dumbbell graph and

G ∼= D3,0,3. When the neighbours of two vertices of degree 3 are different exactly and they are

adjacent each other between two parts. Hence G is obtained by joining two vertices of degree

3 via three disjoint paths P4, P4, P2, respectively. That is, G ∼= θ4,4,2. When the neighbours

of two vertices of degree 3 are not same exactly, there must be one vertex receiving degree 2,

two vertices receiving degree 1 and an isolated vertex in these four vertices of degree 2, so the

temporary two vertices of degree 1 and an isolated vertex are adjacent to satisfy the requirement

of degree 2. Hence G can be obtained by joining two vertices of degree 3 via three disjoint paths

P5, P3, P2, respectively, i.e., G ∼= θ5,3,2. When the neighbours of two vertices of degree 3 are

same exactly, the two vertices of degree 2 form two loops, hence it is impossible.

In fact, R(C3, C4), θ4,3,3, D3,0,3, θ4,4,2 and θ5,3,2 in above contain Hamilton path, which con-

tradict our assumption.

Summing up above, G ∈ {K3 ∨ 5K1,K2 ∨ (K1 + K1,4),K1 ∨ K2,5,K2 ∨ (K2 + 3K1),K2 ∨
4K1,K2,4}, and thus, the proof is completed. 2

Lemma 2.4 ([21]) Let G be a graph of order n and size m. Let a = maxuv∈E(G){d(u) + d(v)}
and b = maxuv/∈E(G){d(u) + d(v)}. Then

(1) ρ(G) ≥ 2m(a−2)
a(2m−a) and the equality holds if G ∼= Kn;

(2) ρ(G) ≥ 2m
2m−b and the equality holds if G ∼= K2,n−2, where G ∼= K2,n−2 is the complete

bipartite graph with parts of cardinalities 2 and n− 2.

Lemma 2.5 ([22]) Let X be an eigenvector of L(G) corresponding to ρ(G). Then, for any

v ∈ V (G), we have
∑

uv∈E(G)

Xu√
du

=
√

dv(1− ρ(G))Xv. (2.3)

For n ≥ 4 and 2 ≤ k < n+1
2 , we define

Hk
n = Kk−1 ∨ (Kn−(2k−1) + kK1).

Furthermore, for ℓ ≥ 1, let Hk
n(ℓ) denote the set of all possible graphs obtained from Hk

n by

deleting exactly ℓ edges such that δ ≥ 3. Obviously, Hk
n(0) = Hk

n if ℓ = 0.

Theorem 2.6 Let G be a connected graph on n ≥ 10 vertices of m edges with δ ≥ 3. If

m ≥
(

n− 3

2

)

+ 7, (2.4)

then G is traceable unless G ∈ {H5
10(ℓ), H

5
11, H

6
12(ℓ), H

7
14,K5∨ (K1+K1,7),K4∨K2,8|ℓ = 0, 1, 2}.

Proof Let π be a permissible graphic sequence satisfying the condition of Lemma 2.1. Assume

that G is not traceable graph with π = (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 10.
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By Lemma 2.1 there exists an integer k < n+1
2 such that dk ≤ k − 1 and dn−k+1 ≤ n − k − 1.

Clearly, dn ≤ n− 1. Thus,

m =
1

2

n
∑

i=1

di =
1

2

(

k
∑

i=1

di +

n−k+1
∑

i=k+1

di +

n
∑

i=n−k+2

di

)

≤ 1

2
(k(k − 1) + (n− 2k + 1)(n− k − 1) + (n− 1)(k − 1))

=

(

n− 3

2

)

+ 7 +
f(k)

2
, (2.5)

where f(k) = 3k2− (2n+1)k+6n− 26. Combining (2.4) and (2.5) we have f(k) ≥ 0. Moreover,

we notice that 4 ≤ δ + 1 ≤ dk + 1 ≤ k < n+1
2 , which implies that 4 ≤ k < n+1

2 .

It is easy to obtain that the two roots of f(k) = 0 are

k1 =
2n+ 1−

√
4n2 − 68n+ 313

6
, k2 =

2n+ 1 +
√
4n2 − 68n+ 313

6
.

Since f(k) ≥ 0 and 4 ≤ k < n+1
2 , we have either 4 ≤ k ≤ k1 or k2 ≤ k < n+1

2 .

For 4 ≤ k ≤ k1, it follows that n < 9. In fact, n ≥ 10. Thus, there is no required graph.

For k2 ≤ k < n+1
2 , if n is even, then k2 ≤ n

2 , we notice that k2 = 2n+1+
√
4n2−68n+313

6 , it

follows that 6 ≤ n ≤ 14. Otherwise, k2 ≤ n−1
2 . Similarly we can get 9 ≤ n ≤ 11. Thus,

combining with n ≥ 10 we have n = 10, 11, 12, 14.

Now we consider k and f(k) again in the following.

If n = 10, then k2 ≈ 4.46 < k < 10+1
2 , i.e., k = 5. By a simple calculation, we have f(5) = 4;

If n = 11, then k2 = 5 ≤ k < 11+1
2 , i.e., k = 5, and so f(5) = 0;

If n = 12, then k2 ≈ 5.59 < k < 12+1
2 , i.e., k = 6, and so f(6) = 4;

If n = 14, then k2 ≈ 6.84 < k < 14+1
2 , i.e., k = 7, and so f(7) = 2.

From the calculating results above, we distinguish the following four cases.

Case 1. n = 10 and k = 5.

By Lemma 2.1 we have

d1 ≤ d2 ≤ d3 ≤ d4 ≤ d5 ≤ d6 ≤ 4. (2.6)

Clearly,

d7 ≤ d8 ≤ d9 ≤ d10 ≤ 9. (2.7)

Furthermore, we notice that f(5) = 4 when n = 10. Combining (2.4) and (2.5), one can obtain

28 ≤ m ≤ 30.

If m = 30, then all inequalities in (2.5) should hold. Thus, G is a graph with d1 = d2 =

d3 = d4 = d5 = d6 = 4, d7 = d8 = d9 = d10 = 9, which implies G ∼= H5
10. Next we prove

the uniqueness of the graph G determined by the degree sequence π = (4, 4, 4, 4, 4, 4, 9, 9, 9, 9).

Clearly, the four vertices of degree 9 must be adjacent to every vertex, so these induce a subgraph

K4. Furthermore, the remaining six vertices now have degree 4, so they induce a 6K1. Hence

G ∼= H5
10. If 28 ≤ m ≤ 29, we may assume that

e(G) = 30− ℓ = e(H5
10)− ℓ, ℓ ∈ {1, 2}. (2.8)
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From
∑10

i=1 di = 60 − 2ℓ ≥ 56 we conclude that G has at least one 4-degree vertex since if not,

we have d1 = d2 = d3 = d4 = d5 = d6 = 3 due to δ ≥ 3, d7 ≤ d8 ≤ d9 ≤ d10 ≤ 9, i.e.,
∑10

i=1 di = 60− 2ℓ ≤ 54 < 56, a contradiction.

Suppose that dG(x0) = 4 and H1 = G[V (G) \ {x0}]. It is easy to see that |V (H1)| = 9

and δ(H1) ≥ 2 since δ(G) ≥ 3. Moreover, we notice that e(H1) = e(G) − 4 ≥ 28 − 4 = 24 >
(

9−2
2

)

+ 2 = 23, and thus, H1 is traceable by Lemma 2.2, which implies that there exist two

vertices w and w′ such that they are connected by a path passing through all vertices in H1.

Assume that wPw′ is a Hamilton path from w to w′ (say) in H1. Let u be a vertex of the path.

We denote by u+ and u− the successor and predecessor of u, respectively. We suppose that

y1, y2, y3, y4 are the neighbors of x0 on wPw′, successively. To promote the proof, we need to

show the following claim.

Claim 2.1. {x0, w, y
+
1 , y

+
2 , y

+
3 , w

′} is an independent set.

Proof If at least one of w = y1 and w′ = y4 is true, clearly, there exists a Hamilton path in G,

which leads to a contradiction. Otherwise, we state that yi+1 6= y+i (1 ≤ i ≤ 3) in wPw′ since if

not, there exists a Hamilton path w · · · yix0yi+1 · · ·w′ in G, also a contradiction. Hence, at least

one vertex exists between yi and yi+1 (1 ≤ i ≤ 3) in wPw′. Since w 6= y1 and w′ 6= y4, there are

at least six distinct vertices w, y1, y2, y3, y4, w
′ on wPw′. On the other hand, since |V (H1)| = 9

and at least one vertex exists between yi and yi+1 (1 ≤ i ≤ 3), there is just one vertex between yi

and yi+1 (1 ≤ i ≤ 3), i.e., y+i for 1 ≤ i ≤ 3. Thus, wPw′ can be written as wy1y
+
1 y2y

+
2 y3y

+
3 y4w

′.

Clearly, we have x0w, x0w
′, x0y

+
i /∈ E(G) because w 6= y1, w

′ 6= y4 and y+i 6= yi+1 for 1 ≤ i ≤ 3.

Here one can conclude that y+i y
+
j /∈ E(G) for 1 ≤ i, j ≤ 3 since if not, there exists a Hamilton

path w · · · y+i y+j · · · yi+1x0yj+1 · · ·w′ in G, it leads to a contradiction. Similarly, one can obtain

wy+i , w
′y+i , ww

′ /∈ E(G) for 1 ≤ i ≤ 3. Therefore, the claim holds. 2

Combining (2.6)–(2.8) and Claim 2.1, one can see that the graph G is obtained from H5
10 by

deleting any ℓ (ℓ ∈ {1, 2}) edges such that δ(G) ≥ 3, i.e., G ∈ H5
10(ℓ) where ℓ ∈ {1, 2}.

Case 2. n = 11 and k = 5.

Similarly, by Lemma 2.1 we have

d1 ≤ d2 ≤ d3 ≤ d4 ≤ d5 ≤ 4, d6 ≤ d7 ≤ 5.

Obviously,

d8 ≤ d9 ≤ d10 ≤ d11 ≤ 10.

Furthermore, we notice that f(5) = 0 when n = 11. Combining (2.4) and (2.5) one can obtain

m =
(

n−3
2

)

+ 7 = 35, and thus, all inequalities in (2.5) should be held. Thus, G is a graph

with d1 = d2 = d3 = d4 = d5 = 4, d6 = d7 = 5, d8 = d9 = d10 = d11 = 10, which implies

G ∼= H5
11. Next we prove the uniqueness of the graph G determined by degree sequence π =

(4, 4, 4, 4, 4, 5, 5, 10, 10, 10, 10). Clearly, the four vertices of degree 10 must be adjacent to every

vertex, so these induce a subgraph K4. Meanwhile, the five vertices of degree 4 are not adjacent

to other vertices, thus, they induce a 5K1. Furthermore, the remaining two vertices of degree 5

must be adjacent to each other to make sure the requirement of the degree 5, so they induce a
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subgraph K2. Hence G ∼= H5
11.

Case 3. n = 12 and k = 6.

As the same argument as above, we have d1 ≤ · · · ≤ d7 ≤ 5, d8 ≤ · · · ≤ d12 ≤ 11 and

43 ≤ m ≤ 45. From
∑12

i=1 di ≥ 86 it follows that G has at least one 5-degree vertex since if not,

we have 3 ≤ d1 ≤ · · · ≤ d7 ≤ 4, d8 ≤ · · · ≤ d12 ≤ 11, i.e.,
∑12

i=1 di ≤ 82 < 86, a contradiction.

If m = 45, then all inequalities in (2.5) should hold. Thus, G is a graph with d1 =

d2 = d3 = d4 = d5 = d6 = d7 = 5, d8 = d9 = d10 = d11 = d12 = 11, which im-

plies G ∼= H6
12. The proof of the uniqueness of the graph G determined by degree sequence

π = (5, 5, 5, 5, 5, 5, 5, 11, 11, 11, 11, 11) is similar to that of Case 1.

Suppose that dG(x0) = 5 and H2 = G[V (G) \ {x0}]. Clearly, |V (H2)| = 11 and δ(H2) ≥ 2

since δ(G) ≥ 3.

If m = 44, then e(H2) = e(G) − 5 = 39 >
(

11−2
2

)

+ 2 = 38, and thus, H2 is traceable by

Lemma 2.2.

As the same argument as Case 1, one can obtain G ∼= H6
12(1).

If m = 43, then e(H2) = e(G) − 5 = 38 =
(

11−2
2

)

+ 2, and thus, H2 is traceable or H2 =

K1 ∨ (K8 + 2K1) by Lemma 2.2. If H2 is traceable, as the same argument as Case 1, one can

obtain G ∼= H6
12(2). Otherwise, H2 = K1 ∨ (K8 + 2K1). Since δ(H2) ≥ 2, we omit it.

Case 4. n = 14 and k = 7.

Similarly, we have d1 ≤ · · · ≤ d8 ≤ 6, d9 ≤ · · · ≤ d14 ≤ 13 and 62 ≤ m ≤ 63. From the

inequality
∑14

i=9 di = 2m − ∑8
i=1 di ≥ 124 − 48 = 76, we conclude that there are at least four

vertices of degree 13 since if not, without loss of generality, assume that d11 = 12, d12 = d13 =

d14 = 13, then
∑14

i=9 di ≤ 74 < 76, which leads to a contradiction. Hence d11 = d12 = d13 = d14 =

13. On the other hand, since
∑14

i=9 di ≥ 76, we have d9+d10 =
∑14

i=9 di−
∑14

i=11 di ≥ 76−52 = 24.

Also note that
∑

di is even and the total degree is between 124 and 126. Now we consider d9

and d10 again.

If d9 = d10 = 13, then the permissible graphic sequence is π = (6, 6, 6, 6, 6, 6, 6, 6, 13, 13, 13, 13,

13, 13), which implies G ∼= H7
14. The proof of the uniqueness of the graphG determined by degree

sequence π is similar to that of Case 1.

If d9 = 12 and d10 = 13, then the permissible graphic sequence is π = (5, 6, 6, 6, 6, 6, 6, 6, 12, 13,

13, 13, 13, 13), which implies G ∼= K5 ∨ (K1 +K1,7). Next we prove the uniqueness of the graph

G determined by degree sequence π. Clearly, the five vertices of degree 13 must be adjacent to

every vertex, so these induce a subgraph K5. Meanwhile, the vertex of degree 5 must be not

adjacent to other vertices, so it induces a K1. Furthermore, the vertex of degree 12 must be

adjacent to the remaining vertices, so they induce a subgraph K1,7. Hence G ∼= K5∨ (K1+K1,7).

If d9 = 11 and d10 = 13, then the permissible graphic sequence is π = (6, 6, 6, 6, 6, 6, 6, 6, 11, 13,

13, 13, 13, 13), which implies G = K5 ∨ (K2 +K1,6). Next we prove the uniqueness of the graph

G determined by degree sequence π. Clearly, the five vertices of degree 13 must be adjacent to

every vertex of G, so they induce a subgraph K5. Meanwhile, the vertex of degree 11 must be

adjacent to six of the remaining vertices, thus, they induce a subgraph K1,6. Furthermore, the

remaining two vertices need to be adjacent to each other to meet the requirement of the degree
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6, so they induce a subgraph K2. Hence G ∼= K5 ∨ (K2 +K1,6).

If d9 = d10 = 12, then the permissible graphic sequence is π = (6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 13, 13,

13, 13). Next we prove the graph G determined by degree sequence π. Clearly, the four vertices

of degree 13 induce a subgraph K4, and they are adjacent to every vertex of G. Next we consider

the two vertices of degree 12. When they are adjacent, they need to be adjacent to seven vertices

of degree 6, but their neighbours in these vertices of degree 6 are not same exactly, since if not,

there is one vertex whose degree is 4 at most, which can not meet the requirement of degree

6, hence it is impossible. At this time, in these eight vertices of degree 6 there must be six

vertices receiving degree 6 and two vertices receiving degree 5 from others, so the temporary two

vertices of degree 5 must be adjacent. Thus, G is obtained from K6 ∨ 8K1 by deleting x1y1, x2y2

and adding a new edge y1y2, where x1, x2 ∈ K6 and y1, y2 ∈ 8K1. Note that in this case, G is

traceable. When they are not adjacent, they must be adjacent to the remaining eight vertices,

so they induce a subgraph K2,8. Hence G ∼= K4 ∨K2,8.

In fact, only K5∨(K2+K1,6) in above contains a Hamilton path and others are not traceable.

Thus, the proof is completed. 2

Corollary 2.7 Let G be a connected graph on n ≥ 14 vertices of m edges. If m ≥
(

n−2
2

)

− 3,

then G is traceable unless G = K6 ∨ 8K1.

Theorem 2.8 Let G be a connected graph on n ≥ 7 vertices. Let a = maxuv∈E(G){d(u)+d(v)}.
If ρ(G) ≤ a−2

a + a−2
n2−5n+10−a . Then G is traceable.

Proof By Lemma 2.4 (1) and hypothesis, we have

2m(a− 2)

a(2m− a)
≤ ρ(G) ≤ a− 2

a
+

a− 2

n2 − 5n+ 10− a
,

where m is the size of G.

This implies that m ≥
(

n−2
2

)

+ 2. By Lemma 2.2, G is traceable unless G ∈ {K1 ∨ (Kn−3 +

2K1),K2∨ (3K1+K2),K1∨K2,5,K3∨5K1,K2∨ (K1,4+K1),K4∨6K1}. By a direct calculation

(see Table 1), all graphs except for G = K1 ∨ (Kn−3 + 2K1) satisfy

ρ(G) >
a− 2

a
+

a− 2

n2 − 5n+ 10− a
,

and thus, these are not cases.

For G = K1 ∨ (Kn−3 + 2K1), let X = (x1, x2, . . . , xn)
T be the eigenvector corresponding to

ρ(G). For convenience, the vertex of degree n − 1 given by X , say X1; all vertices of degree

n − 3 have the same values given by X , say X2; Denote by X3 the values of degree 1 given by

X . Assume X̃ = (X1, X2, X3)
T. Then by Eq. (2.3) we have

(1− ρ(G))
√
n− 1X1 =

n− 3√
n− 3

X2 + 2X3, (2.9)

(1 − ρ(G))
√
n− 3X2 =

1√
n− 1

X1 +
n− 4√
n− 3

X2, (2.10)

(1− ρ(G))X3 =
1√
n− 1

X1. (2.11)
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Transforming Eqs. (2.9)–(2.11) into a matrix equation (A− ρ(G)I)X̃ = 0, we get

A =











1 − n−3√
(n−1)(n−3)

− 2√
n−1

− 1√
(n−1)(n−3)

1
n−3 0

− 1√
n−1

0 1











Thus, ρ(G) is the largest root of the following equation:

ρ3 − 2n− 5

n− 3
ρ2 +

n2 − 5n+ 10

(n− 1)(n− 3)
ρ = 0.

Let f(x) = x3 − 2n−5
n−3 x2+ n2−5n+10

(n−1)(n−3)x. Setting f(x) = 0, we have three roots 0, x1 and x2 (say),

where

x1 =
2n− 5−

√

8n2−55n+95
n−1

2(n− 3)
, x2 =

2n− 5 +
√

8n2−55n+95
n−1

2(n− 3)
.

Clearly, ρ(G) = x2. And

f(
a− 2

a
+

a− 2

n2 − 5n+ 10− a
) = f(

2n− 6

2n− 4
+

2n− 6

n2 − 7n+ 14
)

= (
2n− 6

2n− 4
+

2n− 6

n2 − 7n+ 14
)× g(n),

where g(n) = (2n−6
2n−4 + 2n−6

n2−7n+14 )
2 − 2n−5

n−3 × (2n−6
2n−4 + 2n−6

n2−7n+14 ) +
n2−5n+10
(n−1)(n−3) .

Let

h(n) = (
2n− 6

2n− 4
+

2n− 6

n2 − 7n+ 14
)2 − 2n− 5

n− 3
× (

2n− 6

2n− 4
+

2n− 6

n2 − 7n+ 14
)

=
−n6 + 17n5 − 122n4 + 471n3 − 1025n2 + 1160n− 500

n6 − 18n5 + 137n4 − 560n3 + 1288n2 − 1568n+ 784

= −n6 − 17n5 + 122n4 − 471n3 + 1025n2 − 1160n+ 500

n6 − 18n5 + 137n4 − 560n3 + 1288n2 − 1568n+ 784
.

We first prove h(n) < −1. Clearly, n6−17n5+122n4−471n3+1025n2−1160n+500−(n6−18n5+

137n4− 560n3+1288n2− 1568n+784) = n5− 15n4+89n3− 263n2+408n− 284 = n4(n− 15)+

n2(89n−263)+408n−284> 0 for n ≥ 15, together with n5−15n4+89n3−263n2+408n−284> 0

for 7 ≤ n ≤ 14 we have h(n) < −1.

Moreover, n2−5n+10
(n−1)(n−3) ≤ 1 since n2 − 5n + 10 ≤ (n − 1)(n − 3) for n ≥ 7. Thus, from the

above we have

g(n) = h(n) +
n2 − 5n+ 10

(n− 1)(n− 3)
< 0.

It follows that

f(
a− 2

a
+

a− 2

n2 − 5n+ 10− a
) = (

2n− 6

2n− 4
+

2n− 6

n2 − 7n+ 14
)× g(n) < 0,

and so a−2
a + a−2

n2−5n+10−a < x2, i.e.,
a−2
a + a−2

n2−5n+10−a < ρ(G). Hence this is not a case. So, the

proof is completed. 2
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G a−2
a + a−2

n2−5n+10−a ρ(G)

K2 ∨ (K2 + 3K1) 1.6667 1.7284

K2,5 ∨K1 1.2879 1.8021

K3 ∨ 5K1 1.4571 1.7143

K2 ∨ (K1 +K1,4) 1.4571 1.7024

K4 ∨ 6K1 1.2698 1.6667

Table 1 The normalized Laplacian spectral radius of some graphs

Theorem 2.9 Let G be a connected graph with minimum degree δ ≥ 2 on n ≥ 7 vertices. Let

a = maxuv∈E(G){d(u) + d(v)} and b = maxuv/∈E(G){d(u) + d(v)}.
(1) If ρ(G) < a−2

a + a−2
n2−4n+1−a , then G is traceable unless G = K2 ∨ (K2 + 3K1).

(2) If ρ(G) < n2−4n+1
n2−4n+1−b , then G is traceable.

Proof (1) Suppose that G is not a traceable graph with m edges. By Lemma 2.4 (1) and

hypothesis, we have
2m(a− 2)

a(2m− a)
≤ ρ(G) <

a− 2

a
+

a− 2

n2 − 4n+ 1− a
.

This implies that m > n2−4n+1
2 . By Corollary 2.3, G ∈ {K3 ∨ 5K1,K2 ∨ (K1 + K1,4),K1,2 ∨

5K1,K2 ∨ (K2 + 3K1)}. By a direct calculation (see Table 2) we see that all graphs satisfy

ρ(G) > a−2
a + a−2

n2−4n+1−a except for G = K2 ∨ (K2 + 3K1) due to ρ(G) = 1.7287 < 12−2
12 +

12−2
72−4×7+1−12 ≈ 1.8333.

(2) By Lemma 2.4 (2) and hypothesis, we have

2m

2m− b
≤ ρ(G) <

n2 − 4n+ 1

n2 − 4n+ 1− b
.

This implies that m > n2−4n+1
2 . From Corollary 2.3, G is traceable unless G ∈ {K3 ∨ 5K1,K2 ∨

(K1 +K1,4),K1,2 ∨ 5K1,K2 ∨ (K2 + 3K1)}. By a direct calculation, it is easy to check that all

graphs satisfy ρ(G) > n2−4n+1
n2−4n+1−b , see Table 2 below. Hence these are not cases. 2

G a−2
a + a−2

n2−4n+1−a
n2−4n+1

n2−4n+1−b ρ(G)

K3 ∨ 5K1 1.4887 1.2222 1.7143

K2 ∨ (K1 +K1,4) 1.4887 1.3200 1.7024

K1,2 ∨ 5K1 1.3962 1.5714 1.8021

K2 ∨ (K2 + 3K1) 1.8333 1.2941 1.7287

Table 2 The normalized Laplacian spectral radius of some graphs

Theorem 2.10 Let G be a connected graph with minimum degree δ ≥ 3 on n ≥ 10 vertices.

Let a = maxuv∈E(G){d(u) + d(v)}. If ρ(G) ≤ a−2
a + a−2

n2−7n+26−a . Then G is traceable.

Proof By Lemma 2.4 (1) and hypothesis, we have

2m(a− 2)

a(2m− a)
≤ ρ(G) ≤ a− 2

a
+

a− 2

n2 − 7n+ 26− a
,
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where m is the size of G.

This implies that m ≥
(

n−3
2

)

+ 7. By Theorem 2.6, G is traceable unless G ∈ {H5
10(ℓ), H

5
11,

H6
12(ℓ), H

7
14,K5 ∨ (K1 +K1,7),K4 ∨K2,8|ℓ = 0, 1, 2}. By a direct calculation, it is easy to check

that all graphs in Table 3 satisfy ρ(G) > a−2
a + a−2

n2−7n+26−a . Hence these are not cases.

G a−2
a + a−2

n2−7n+26−a ρ(G)

H5
10 1.3099 1.6667

H5
11 1.2600 1.6531

H6
12 1.2216 1.6364

H7
14 1.1680 1.6154

K5 ∨ (K1 +K1,7) 1.1680 1.6111

K4 ∨K2,8 1.1680 1.6345

Table 3 The normalized Laplacian spectral radius of some graphs

For G ∈ H5
10(1), that is, G is obtained from the graph H5

10 by deleting an edge, which can

have only one of the following degree sequences.

(a) If G1 has degree sequence π = (3, 4, 4, 4, 4, 4, 8, 9, 9, 9), i.e., G1 = K3 ∨ (K1 +K1,5), then

ρ(G1) = 1.6587 > a−2
a + a−2

n2−7n+26−a = 1.3099.

(b) If G2 has degree sequence π = (4, 4, 4, 4, 4, 4, 8, 8, 9, 9), i.e., G2 = K2 ∨ K2,6, then

ρ(G2) = 1.7138 > a−2
a + a−2

n2−7n+26−a = 1.3099.

For G ∈ H5
10(2), that is, G is obtained from the graph H5

10 by removing two edges, which can

have degree sequences π = (3, 3, 4, 4, 4, 4, 7, 9, 9, 9), (3, 3, 4, 4, 4, 4, 8, 8, 9, 9), (3, 4, 4, 4, 4, 4, 7, 8, 9, 9),

(3, 4, 4, 4, 4, 4, 8, 8, 8, 9), (4, 4, 4, 4, 4, 4, 7, 8, 8, 9) and (4, 4, 4, 4, 4, 4, 8, 8, 8, 8). By a direct calcula-

tion, we can obtain that the spectral radius of the graph determined by above degree sequences are

1.6554, 1.6492, 1.7027, 1.7108, 1.7665 and 1.7500, respectively, which are all greater than 1.3099.

For G ∈ H6
12(1), that is, G is obtained from the graph H6

12 by removing an edge, which can

have only one of the following degree sequences.

(i) If G1 has degree sequence π = (5, 5, 5, 5, 5, 5, 5, 10, 10, 11, 11, 11), i.e., G1 = K3 ∨ K2,7,

then ρ(G1) = 1.6651 > a−2
a + a−2

n2−7n+26−a = 1.2216.

(ii) If G2 has degree sequence π = (4, 5, 5, 5, 5, 5, 5, 10, 11, 11, 11, 11), i.e., G2 = K4 ∨ (K1 +

K1,6), then ρ(G2) = 1.6307 > a−2
a + a−2

n2−7n+26−a = 1.2216.

For G ∈ H6
12(2), that is, G is obtained from the graph H6

12 by deleting two edges, which can

have degree sequences π = (3, 5, 5, 5, 5, 5, 5, 10, 10, 11, 11, 11), (4, 4, 5, 5, 5, 5, 5, 10, 10, 11, 11, 11), (4,

4, 5, 5, 5, 5, 5, 9, 11, 11, 11, 11), (5, 5, 5, 5, 5, 5, 5, 9, 10, 10, 11, 11), (5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 11),

(4, 5, 5, 5, 5, 5, 5, 9, 10, 11, 11, 11) and (4, 5, 5, 5, 5, 5, 5, 10, 10, 10, 11, 11). By a direct calculation,

we can obtain that the spectral radius of the graph determined by above degree sequences are

1.6244, 1.6242, 1.6277, 1.6979, 1.6892, 1.6570 and 1.6615, respectively, which are all greater than

1.2216.

Thus, graphs G ∈ {H5
10(ℓ), H

6
12(ℓ)|ℓ = 1, 2} do not satisfy the assumption. So, the proof is

completed. 2



On the normalized Laplacian spectral radius of traceable graphs 303

Acknowledgements We sincerely thank the referees for their time and comments.

References

[1] F. CHUNG. Spectral Graph Theory. American Mathematical Society, Providence, 1997.

[2] O. ORE. Hamiltonian connected graphs. Journal De Mathématiques Pures Et Appliqués., 1963, 42(9): 21–
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