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Abstract For a simple undirected graph G with fixed size m > 2k (k € Z') and maximum
degree A(G) < m — k, we give an upper bound on the signless Laplacian spectral radius ¢(G)
of G. For two connected graphs GG1 and G2 with size m > 8, employing this upper bound, we
prove that q(G1) > q(G2) if A(G1) > A(Gz) +1 and A(G1) > 3 + 2. For triangle-free graphs,
we prove two stronger results. As an application, we completely characterize the graph with
maximal signless Laplacian spectral radius among all graphs with size m and circumference ¢
for m > max{2¢c, c+ 9}, which partially answers the question proposed by Chen et al. in [Linear
Algebra Appl., 2022, 645: 123-136].
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1. Introduction

For a simple undirected graph G, let A(G) denote its adjacency matrix and D(G) denote the
diagonal matrix of its degrees. The matrix Q(G) = D(G) + A(G) is called the signless Laplacian
matrix (or the @-matrix) of G. The largest eigenvalues of A(G) and Q(G) are called the spectral
radius and the signless Laplacian spectral radius (denoted by ¢(G)) of G, respectively.

The investigation on the extremal problems of the spectral radius and the signless Laplacian
spectral radius of graphs is an important topic in the theory of graph spectra. Specially, the
problem of characterizing the extremal graph with maximal spectral radius for given size was
initiated by Brualdi and Hoffman [1], and completely solved by Rowlinson [2]. From then on, the
problem of characterizing the extremal graphs with maximal spectral radius under the constraint
of size has been studied extensively (see, e.g., [3-10] and the references therein).

Recently, the problem of characterizing the extremal graph with maximal signless Laplacian
spectral radius under the constraint of size has been investigated by researchers. Zhai et al. [11]
characterized the graph with maximal signless Laplacian spectral radius among all graphs with
given size and among all graphs with given size and clique number (resp., chromatic number). Lou
et al. [12] determined the maximal signless Laplacian spectral radius (Laplacian spectral radius)

of connected graphs with fixed size and diameter. For more results, one may refer to [13-20].

Received July 5, 2023; Accepted December 15, 2023

Supported by the National Natural Science Foundation of China (Grant Nos.12071411; 12171222).
* Corresponding author

E-mail address: Inn13666848916@163.com (Nannan LIU); ychgsg@163.com (Shuguang GUO)



A note on the signless Laplacian spectral ordering of graphs with given size 305

Zhang and Guo [17] gave the following upper bound on ¢(G) for a connected graph G.

Theorem 1.1 ([17]) Let k > 1 be an integer, G be a connected graph with fixed size m and
maximum degree A(G) < m — k. If m > 3k, then ¢(G) <m —k+1+ mQ—Ek, and equality holds
if and only if G = K4 or K3.

Cvetkovié [21] proposed twelve directions for further research in the theory of graph spectra,
one of which is “classifying and ordering graphs”. From then on, ordering graph with various
properties by their spectra becomes an attractive topic (see, e.g., [16,22,23] and the references
therein). So far, a simple and general method to ordering graphs according to their spectra
has not yet been obtained. Employing Theorem 1.1, Zhang and Guo [17] proved the following

theorem on the spectral ordering of graphs.

Theorem 1.2 ([17]) Let Gy and G2 be two connected graphs with fixed size m > 4. If
A(Gl) > A(GQ) and A(Gl) > Q?m + 1, then q(Gl) > q(Gg).

In this paper, we weaken the conditions in Theorem 1.1 by proving the following theorem.

Theorem 1.3 Let m > 8 and k > 1 be two integers, and G be a graph with size m and
maximum degree A(G) < m — k. If m > 2k, then ¢(G) <m —k+ 1+ %, and equality holds
if and only if G = K5 possibly with some isolated vertices.

Employing Theorem 1.3, we prove the following theorem on the signless Laplacian spectral

ordering of graphs with given size.

Theorem 1.4 Let Gy and Ga be two graphs with size m > 11. If A(G1) > A(Gz) + 1 and
A(G1) > 3 +2, then q(G1) > q(G2).

For triangle-free graphs, we prove two stronger results as follows.

Theorem 1.5 Let k > 1 be an integer, G be a triangle-free graph with size m > 7 and
maximum degree A(G) < m — k. If m > 2k, then
k
G)<m-k+14+——
q9(G) <m +1+ —
and equality holds if and only if m = 2k and G = Ky .

Theorem 1.6 Let GG; and G2 be two triangle-free graphs with fixed size m > 7. If G1 is
connected, A(G1) > A(G3) and A(Gy) > & + 1, then q(G1) > q(G2).

Let H(m, c) denote the set of graphs on m edges with circumference ¢, and H,,, . denote the
graph obtained from the cycle C. by linking a vertex of C. to ¢ — 3 vertices of C, and m —2c+3
isolated vertices. For G € H(m,c) and m > 3¢ —4, Chen et al. [14] proved that ¢(G) < q(Hpm, )

with equality if and only if G = H,, ., and proposed the following question for further research.

Question 1.7 For ¢+ 1 < m < 3c— 5, what is the maximum signless Laplacian spectral radius
over all graphs in H(m,¢)?

Employing Theorem 1.4, we partially answer this question by proving the following theorem.

Theorem 1.8 Let G € H(m,c). If m > max{2c,c+ 9}, then ¢(G) < q(Hnm, ) with equality if
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and only if G = Hp, .
The rest of this paper is organized as follows. In Section 2, we recall some useful notions and

lemmas used further. In Section 3, we give proofs of Theorems 1.3-1.6 and 1.8, respectively.

2. Preliminaries

Denote by C),, and P, the cycle and the path of order n, respectively. For a graph G,
a pendant vertex of G is a vertex of degree 1, a pendant edge of G is an edge incident with a
pendant vertex, and the circumference of G is the maximum length of cycles in G. For v € V(G),
N¢(v) denotes the set of all neighbors of vertex v in G, and d(v) = |Ng(v)| denotes the degree
of vertex v in G. Denote by A = A(G) and § = §(G), respectively, the maximum degree and
the minimum degree of G. For a subset S of V(G), G[S] denotes the subgraph of G induced by
S and e(S) denotes the number of edges in G[S]. For two disjoint subsets S and T of V(G),
e(S, T) denotes the number of edges with one endpoint in S and the other in T. Let G — zy
denote the graph obtained from G by deleting the edge xy € E(G). Similarly, G + xy is the
graph obtained from G by adding an edge xy ¢ E(G), where z,y € V(G).

In order to complete the proofs of our main results, we need the following lemmas.
Lemma 2.1 ([24]) IfG is a connected graph, and H is a proper subgraph of G, then q(H) < q(G).

Lemma 2.2 ([25,26]) Let G be a graph on n vertices. Then
1
< R
q(@) < max {d(u) + ) ;E(G) d(v) lu e V(G)}7

and equality holds if and only if G is either a regular graph or a semi-regular bipartite graph.

Remark 2.3 In 1998, Merris [27] first obtained this type upper bound for the Laplacian spectral

radius of a graph.

Lemma 2.4 ([28]) Let G be a graph with n > 4 vertices. Then q(G) > A+1. If G is connected,
then the equality holds if and only if G is the star Ky n—1.

The following lemma is a corollary of [29, Theorem 3.2], and its proof can be found in [19].

Lemma 2.5 ([19]) Let G be a simple connected graph with n vertices and degree sequence
dy >dy >+ >dy,. Ifdy > s > da, then q(G) < A(dy, s), where

A(dy, s) = %(d1 4+ 25— 14 /(25 —dy +1)2+8(d; — 5)).

Let G be a connected graph and v be a vertex of GG. Denote by W7 U W5 a non-trivial
bipartition of Ng(v). Let G, denote the graph by splitting a vertex v. Namely, G, is obtained
from G — v by adding two new vertices v; and vs, and adding edges viw; (w; € Wh) and vows
(we € Wh).

Lemma 2.6 ([30]) If G, is obtained from a connected graph G by splitting any vertex v, then
9(Gv) < 4(G).
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3. Proofs of Theorems

In this section, we will give proofs of Theorems 1.3-1.6 and 1.8, respectively.

Proof of Theorem 1.3 We may assume that GG is connected. Otherwise, suppose that G
has s > 2 connected components G1,...,Gs. Then A(G;) < m —k fori=1,...;s. If G has
at least two non-trivial connected components, without loss of generality, we may assume that
q(G) = q(Gy). Clearly, m > |E(G1)|. We declare that §(G1) < m — k. Otherwise, suppose that
5(G1) = m—k. Then A(G1) =m — k. Tt follows that (m—k)(m —k+1) < 2m. This contradicts
the assumptions m > 8 and m > 2k. Therefore, 6(G1) < m — k. Let v be a vertex of G such
that d(v) = §(G1), and G* denote the graph of size m obtained from G; by adding a pendant
path of length m — |E(G1)| at v. Clearly, A(G*) < m — k. By Lemma 2.1, we have

9(G) < q(G").

If G has only one non-trivial connected component, denoted by G, then ¢(G) = ¢(G1). So, in
order to complete the proof of Theorem 1.3, we may assume that G is connected.

Let m > 8, k > 1, G be a connected graph of size m with A = A(G) < m — k, and w be a
vertex of G such that

1 1
e { AW+ 505 3 d(v)} = dw) + o d(v),
weEE(G) wveEE(G)
where
> d(v) =2e(N(w)) + e(N(w), V(G) \ N(w)). (3.1)
wveE(G)
Then 1 < d(w) < A. By Lemma 2.2, we have
1
<d — d(v). 2
oG < dw)+ s Y ) (32)
wveEE(G)
If d(w) = 1, by (3.2), we have
2k
q(G) S1+d(v)§1+A§m—k+1<m—kz+1+m.
If d(w) = 2, noting that e(N(w)) <1, by (3.1) and (3.2), we have
1 2
g <2+ iy 2R
m—k
If d(w) = 3, noting that m > 8 and e(N(w)) < 3, by (3.1) and (3.2), we have
2
q(G) <3+m+3 Sm—kz—i—l—i——k.
m—k

If 4 < d(w) <A < m— k, noting that
e(N(w), V(G) \ N(w)) < m —e(N(w)), e(N(w)) <m —d(w),

by (3.1), we have

Z d(v) < 2e(N(w)) +m—e(N(w)) =m + e(N(w)) < 2m — d(w), (3.3)
wveE(G)
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and equality holds if and only if e(N(w)) = m — d(w). By (3.2) and (3.3), we have

2m
G)<d — — 1.

¢(G) < d(w) + a(w)
Let f(z) =z + QTm By mathematical analysis, it is easy to see that the function f(x) is strictly
decreasing for 0 < x < v/2m and strictly increasing for x > v/2m. It follows that its maximum
in any closed interval is attained at one of the ends of this interval. Then we have
2m
d(w)
Case 1. A> 2. Then f(4) < f(A). Noting that

4(G) < d(w) + 1< max{/(4), /(A)} - 1. (3.4)

\/2m§%§A§m—k,

we have that A and m — k are in the same monotonic interval of f(z). By (3.4), we have

2k
q(G) gf(A)—1Sf(m—k)—1=m—k+1+m.
If the equality in Theorem 1.3 holds, then A = m —k and the equalities in (3.2)—(3.4) all hold.
It follows that G is a regular graph and d(w) = m—k. This implies that (m—k)(m—k+1) = 2m.

Namely,
m? — 2k +1)m+k* -k =0.

This contradicts m > 8 and m > 2k. Therefore, the equality cannot hold in this case.
Case 2. 4 <A< % In this case, we have

f@) 2 f(8), 4<Vem< T <m—k.

It follows that % and m — k are in the same monotonic interval of f(x). Noting that
m m
F) = F5) =5 44,
by (3.4), we have
m 2k
0G) < fA) -1=f(5)-1<flm—k)—1=m—k+1+ —.
If the equality in Theorem 1.3 holds, then m = 2k and the equalities in (3.2)—(3.4) all hold.
It follows that G is a regular graph and d(w) = 4. This implies that G = K5. Conversely, if
G = K3, the equality holds clearly.

Combining the above arguments, we complete the proof. O

Proof of Theorem 1.4 Let A(G1) = m —ky and A(G2) = m — ka. Since A(G1) > A(G2) + 1,
it follows that ko > ki + 2.

If k1 =0, then Gy = K, and ky > 2. From [30], we know that ¢(G1) = m+ 1. Noting that
m > 11 and A(G2) < m — 2, by Theorem 1.3, we have

4
5 <m+1=gq(Gy).

q(G2) <m—1+
m_
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If k&1 > 1 and m > 2ky, by Lemma 2.4, we have ¢(G1) > m — k1 + 1. Recalling that m > 11
and ko > k1 4+ 2, by Theorem 1.3, we have

2ko
m — R

q(G2) <m —ke+ 1+ <m-—k —24+14+2=m—k +1<q(Gy).

In the case when k1 > 1 and m < 2ks, let [ = L%J Then m > 2] and ko > [. Recalling that
m > 11 and A(G1) = m — k1 > & +2, we have k; +2 < 2. It follows that k; +2 < [. By

Theorem 1.3 and Lemma 2.4, we have
21
q(G2)<mfl+1+m <m-k —24142=m—k +1<q(G1). O

Proof of Theorem 1.5 Similar to the proof of Theorem 1.3, we may assume that G is a
connected graph with size m > 7 and A = A(G) < m — k. Let w be a vertex of G such that

{d(u)+i > d(v)}:d(wnﬁ > d().

max
ueV(@) d(u) weE(G) woe B(Q)
Then 1 < d(w) < A. By Lemma 2.2, we have
1
<d — d(v). .
0G) < dw)+ s Y ) (35)
wveEE(G)

If d(w) = 1, by (3.5), we have
q(G)§1+d(v)§1+A§mfk+1<mfk+1+ﬁ.
If 2 < d(w) < A <m — k, noting that G is triangle-free, we have e(N(w)) = 0 and
Y. dw) =2e(N(w)) + e(N(w), V(G) \ N(w)) = e(N(w), V(G) \ N(w)) <m.  (3.6)
woeE(Q)

By (3.5) and (3.6), we have

Let f(z) = x + 2. By mathematical analysis, it is easy to see that the function f(z) is strictly
decreasing for 0 < z < y/m and strictly increasing for z > \/m. It follows that its maximum in
any closed interval is attained at one of the ends of this interval. Then we have
m
q(G) < d(w) + 2wy = max{f(2), f(A)}. (3.7)
Case 1. A > . In this case, we have f(2) < f(A) and /m < & < A <m — k. Clearly, A
and m — k are in the same monotonic interval of f(x). By (3.7), we have

k
a(G) < F(A) < flm—F)=m—k+1+——
m—k
If the equality in Theorem 1.5 holds, then A = m — k and the equalities in (3.5)—(3.7) all
hold. By Lemma 2.2 and Equality (3.7), G is a regular graph or a semi-regular bipartite graph,

and d(w) =m — k. If G is a regular graph, then (m — k)(m — k + 1) < 2m. Namely,

m? — 2k +1)m+k* -k < 0.
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This contradicts m > 7 and m > 2k. If G is a semi-regular bipartite graph, recalling that
d(w) = m — k and m > 2k, by Equality (3.6), we have m = 2k and G = Ky j. Conversely, if
G = K i, then the equality holds clearly.

Case 2. 2 < A < . In this case, we have f(2) > f(A) and 2 < /m < & <m —k. It
follows that % and m — k are in the same monotonic interval of f(x). Noting that

f@=f5)=5+2
by (3.7), we have
WG) < 1@ = F(2) < fm—k)=m— k414

If the equality in Theorem 1.5 holds, then m = 2k and the equalities in (3.5)—(3.7) all hold.
By Lemma 2.2 and Equality (3.7), G is a regular graph or a semi-regular bipartite graph, and
d(w) = 2. If G is a regular graph, by Equality (3.6), we have G = C4. This contradicts m > 7.
If G is a semi-regular bipartite graph, recalling that d(w) = 2 and m = 2k, by Equality (3.6),
we have G = Ky . Conversely, if G = K3 1, then the equality holds clearly.

Combining the above arguments, we complete the proof. O

Proof of Theorem 1.6 Let A(G1) = m —ky and A(G2) = m — ko. Since A(G1) > A(G3) and
A(Gy) > % + 1, it follows that k; < kg and ky +1 < %m.

If k1 =0, then Gy = K, and ky > 1. From [30], we know that ¢(G1) = m+ 1. Noting that
A(G2) < m —1, by Theorem 1.5, we have

q(G2) <m+ <m+1=q(G).

m—1
If &y > 1 and m > 2ko, noting that G; is connected and by Lemma 2.4, we have ¢(G1) >
m — k1 + 1. Recalling that ks > k1, by Theorem 1.5, we have

ki
m2 <m—ki—14+1+1=m—k +1<q(Gy).
— 2

In the case when k1 > 1 and m < 2kg, let [ = [%]. Then m > 2] and ky > [. Recalling that
k1 +1< %, we have ky +1 < [F| = 1. By Theorem 1.5 and Lemma 2.4, we have

¢(G2) <m—Fke+1+

l
q(Gg)Sm—l—i—l—i-mSm—kl—l—i—l—i—l:m—kl—i—l<q(G1). O

Proof of Theorem 1.8 Let m > max{2¢,c+9},0<k<¢—-3,3<i3 < - < i <c—1
be k integers, and H},llc“ﬂ denote the graph obtained from a cycle C. = vivs - - - v.v; by linking
the vertex vy to the vertices v;,,...,v;, and m — ¢ — k isolated vertices. In particular, when
k=c—3, HS{;'C(»&I) = H,, . Clearly,

A(Hp) =m—c+22 042,

m,
Let
A={H}*|3<ip< < iy<c—1,0<k<c—3}

Let G* denote an extremal graph with maximal signless Laplacian spectral radius among all
graphs in H(m,c), and v; € V(G) such that d(v1) = A(G). We declare A(G*) = m — ¢ + 2.
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Otherwise, suppose that A(G*) < m —c+ 1. If A(G*) < m — ¢, then A(Hp,, o) > A(G*) + 1.
Recalling that A(H,,, ) > % + 2, by Theorem 1.4, we have

Q(G*) < q(Hm, C)a

a contradiction. If A(G*) = m—c+1, then vy is contained in a cycle of length ¢ in G*. Tt follows
that
G* = H» " UK,

m—1,c

where

V(E2) NV(H, ")l 2 1, 01 ¢ V(K2).
This implies that the second largest degree do = do(G*) < 4. By Lemma 2.5, we have
qG)<Am—c+1,4)<m—-c+3<q(Hpn,.)

for m > ¢+ 9, a contradiction. Therefore, A(G*) =m —c+ 2.

We declare that G* = H,, .. Otherwise, suppose that G* # H,, .. Recalling that A(G*) =
m — ¢+ 2, we know that G* € A and there exists 3 < j < ¢ — 1 such that d(v;) = 2. Since
m > 2c, there exists a pendent edge at v1, denoted by v1v,s. Let G/ = G* — v1vs +viv;. Clearly,
G’ € H(m,c). By Lemma 2.6, we have ¢(G*) < ¢(G’), a contradiction. Therefore, G* = Hy, .. O
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