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Abstract For a simple undirected graph G with fixed size m ≥ 2k (k ∈ Z
+) and maximum

degree ∆(G) ≤ m − k, we give an upper bound on the signless Laplacian spectral radius q(G)

of G. For two connected graphs G1 and G2 with size m ≥ 8, employing this upper bound, we

prove that q(G1) > q(G2) if ∆(G1) > ∆(G2) + 1 and ∆(G1) ≥
m

2
+ 2. For triangle-free graphs,

we prove two stronger results. As an application, we completely characterize the graph with

maximal signless Laplacian spectral radius among all graphs with size m and circumference c

for m ≥ max{2c, c+9}, which partially answers the question proposed by Chen et al. in [Linear

Algebra Appl., 2022, 645: 123–136].
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1. Introduction

For a simple undirected graph G, let A(G) denote its adjacency matrix and D(G) denote the

diagonal matrix of its degrees. The matrix Q(G) = D(G)+A(G) is called the signless Laplacian

matrix (or the Q-matrix) of G. The largest eigenvalues of A(G) and Q(G) are called the spectral

radius and the signless Laplacian spectral radius (denoted by q(G)) of G, respectively.

The investigation on the extremal problems of the spectral radius and the signless Laplacian

spectral radius of graphs is an important topic in the theory of graph spectra. Specially, the

problem of characterizing the extremal graph with maximal spectral radius for given size was

initiated by Brualdi and Hoffman [1], and completely solved by Rowlinson [2]. From then on, the

problem of characterizing the extremal graphs with maximal spectral radius under the constraint

of size has been studied extensively (see, e.g., [3–10] and the references therein).

Recently, the problem of characterizing the extremal graph with maximal signless Laplacian

spectral radius under the constraint of size has been investigated by researchers. Zhai et al. [11]

characterized the graph with maximal signless Laplacian spectral radius among all graphs with

given size and among all graphs with given size and clique number (resp., chromatic number). Lou

et al. [12] determined the maximal signless Laplacian spectral radius (Laplacian spectral radius)

of connected graphs with fixed size and diameter. For more results, one may refer to [13–20].
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Zhang and Guo [17] gave the following upper bound on q(G) for a connected graph G.

Theorem 1.1 ([17]) Let k ≥ 1 be an integer, G be a connected graph with fixed size m and

maximum degree ∆(G) ≤ m− k. If m ≥ 3k, then q(G) ≤ m− k + 1 + 2k
m−k

, and equality holds

if and only if G = K4 or K3.

Cvetković [21] proposed twelve directions for further research in the theory of graph spectra,

one of which is “classifying and ordering graphs”. From then on, ordering graph with various

properties by their spectra becomes an attractive topic (see, e.g., [16, 22, 23] and the references

therein). So far, a simple and general method to ordering graphs according to their spectra

has not yet been obtained. Employing Theorem 1.1, Zhang and Guo [17] proved the following

theorem on the spectral ordering of graphs.

Theorem 1.2 ( [17]) Let G1 and G2 be two connected graphs with fixed size m ≥ 4. If

∆(G1) > ∆(G2) and ∆(G1) ≥ 2m
3 + 1, then q(G1) > q(G2).

In this paper, we weaken the conditions in Theorem 1.1 by proving the following theorem.

Theorem 1.3 Let m ≥ 8 and k ≥ 1 be two integers, and G be a graph with size m and

maximum degree ∆(G) ≤ m− k. If m ≥ 2k, then q(G) ≤ m− k + 1 + 2k
m−k

, and equality holds

if and only if G = K5 possibly with some isolated vertices.

Employing Theorem 1.3, we prove the following theorem on the signless Laplacian spectral

ordering of graphs with given size.

Theorem 1.4 Let G1 and G2 be two graphs with size m ≥ 11. If ∆(G1) > ∆(G2) + 1 and

∆(G1) ≥ m
2 + 2, then q(G1) > q(G2).

For triangle-free graphs, we prove two stronger results as follows.

Theorem 1.5 Let k ≥ 1 be an integer, G be a triangle-free graph with size m ≥ 7 and

maximum degree ∆(G) ≤ m− k. If m ≥ 2k, then

q(G) ≤ m− k + 1 +
k

m− k
,

and equality holds if and only if m = 2k and G = K2,k.

Theorem 1.6 Let G1 and G2 be two triangle-free graphs with fixed size m ≥ 7. If G1 is

connected, ∆(G1) > ∆(G2) and ∆(G1) ≥ m
2 + 1, then q(G1) > q(G2).

Let H(m, c) denote the set of graphs on m edges with circumference c, and Hm, c denote the

graph obtained from the cycle Cc by linking a vertex of Cc to c− 3 vertices of Cc and m− 2c+3

isolated vertices. For G ∈ H(m, c) and m ≥ 3c− 4, Chen et al. [14] proved that q(G) ≤ q(Hm, c)

with equality if and only if G = Hm, c, and proposed the following question for further research.

Question 1.7 For c+1 ≤ m ≤ 3c− 5, what is the maximum signless Laplacian spectral radius

over all graphs in H(m, c)?

Employing Theorem 1.4, we partially answer this question by proving the following theorem.

Theorem 1.8 Let G ∈ H(m, c). If m ≥ max{2c, c+ 9}, then q(G) ≤ q(Hm, c) with equality if
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and only if G = Hm, c.

The rest of this paper is organized as follows. In Section 2, we recall some useful notions and

lemmas used further. In Section 3, we give proofs of Theorems 1.3-1.6 and 1.8, respectively.

2. Preliminaries

Denote by Cn and Pn the cycle and the path of order n, respectively. For a graph G,

a pendant vertex of G is a vertex of degree 1, a pendant edge of G is an edge incident with a

pendant vertex, and the circumference of G is the maximum length of cycles in G. For v ∈ V (G),

NG(v) denotes the set of all neighbors of vertex v in G, and d(v) = |NG(v)| denotes the degree

of vertex v in G. Denote by ∆ = ∆(G) and δ = δ(G), respectively, the maximum degree and

the minimum degree of G. For a subset S of V (G), G[S] denotes the subgraph of G induced by

S and e(S) denotes the number of edges in G[S]. For two disjoint subsets S and T of V (G),

e(S, T ) denotes the number of edges with one endpoint in S and the other in T . Let G − xy

denote the graph obtained from G by deleting the edge xy ∈ E(G). Similarly, G + xy is the

graph obtained from G by adding an edge xy /∈ E(G), where x, y ∈ V (G).

In order to complete the proofs of our main results, we need the following lemmas.

Lemma 2.1 ([24]) IfG is a connected graph, andH is a proper subgraph of G, then q(H) < q(G).

Lemma 2.2 ([25, 26]) Let G be a graph on n vertices. Then

q(G) ≤ max
{

d(u) +
1

d(u)

∑

uv∈E(G)

d(v) |u ∈ V (G)
}

,

and equality holds if and only if G is either a regular graph or a semi-regular bipartite graph.

Remark 2.3 In 1998, Merris [27] first obtained this type upper bound for the Laplacian spectral

radius of a graph.

Lemma 2.4 ([28]) Let G be a graph with n ≥ 4 vertices. Then q(G) ≥ ∆+1. If G is connected,

then the equality holds if and only if G is the star K1, n−1.

The following lemma is a corollary of [29, Theorem 3.2], and its proof can be found in [19].

Lemma 2.5 ([19]) Let G be a simple connected graph with n vertices and degree sequence

d1 ≥ d2 ≥ · · · ≥ dn. If d1 ≥ s ≥ d2, then q(G) ≤ A(d1, s), where

A(d1, s) =
1

2
(d1 + 2s− 1 +

√

(2s− d1 + 1)2 + 8(d1 − s)).

Let G be a connected graph and v be a vertex of G. Denote by W1 ∪ W2 a non-trivial

bipartition of NG(v). Let Gv denote the graph by splitting a vertex v. Namely, Gv is obtained

from G− v by adding two new vertices v1 and v2, and adding edges v1w1 (w1 ∈ W1) and v2w2

(w2 ∈ W2).

Lemma 2.6 ([30]) If Gv is obtained from a connected graph G by splitting any vertex v, then

q(Gv) < q(G).
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3. Proofs of Theorems

In this section, we will give proofs of Theorems 1.3–1.6 and 1.8, respectively.

Proof of Theorem 1.3 We may assume that G is connected. Otherwise, suppose that G

has s ≥ 2 connected components G1, . . . , Gs. Then ∆(Gi) ≤ m − k for i = 1, . . . , s. If G has

at least two non-trivial connected components, without loss of generality, we may assume that

q(G) = q(G1). Clearly, m > |E(G1)|. We declare that δ(G1) < m− k. Otherwise, suppose that

δ(G1) = m−k. Then ∆(G1) = m−k. It follows that (m−k)(m−k+1) < 2m. This contradicts

the assumptions m ≥ 8 and m ≥ 2k. Therefore, δ(G1) < m − k. Let v be a vertex of G1 such

that d(v) = δ(G1), and G∗ denote the graph of size m obtained from G1 by adding a pendant

path of length m− |E(G1)| at v. Clearly, ∆(G∗) ≤ m− k. By Lemma 2.1, we have

q(G) < q(G∗).

If G has only one non-trivial connected component, denoted by G1, then q(G) = q(G1). So, in

order to complete the proof of Theorem 1.3, we may assume that G is connected.

Let m ≥ 8, k ≥ 1, G be a connected graph of size m with ∆ = ∆(G) ≤ m − k, and w be a

vertex of G such that

max
u∈V (G)

{

d(u) +
1

d(u)

∑

uv∈E(G)

d(v)
}

= d(w) +
1

d(w)

∑

wv∈E(G)

d(v),

where
∑

wv∈E(G)

d(v) = 2e(N(w)) + e(N(w), V (G) \N(w)). (3.1)

Then 1 ≤ d(w) ≤ ∆. By Lemma 2.2, we have

q(G) ≤ d(w) +
1

d(w)

∑

wv∈E(G)

d(v). (3.2)

If d(w) = 1, by (3.2), we have

q(G) ≤ 1 + d(v) ≤ 1 + ∆ ≤ m− k + 1 < m− k + 1 +
2k

m− k
.

If d(w) = 2, noting that e(N(w)) ≤ 1, by (3.1) and (3.2), we have

q(G) ≤ 2 +
m+ 1

2
< m− k + 1 +

2k

m− k
.

If d(w) = 3, noting that m ≥ 8 and e(N(w)) ≤ 3, by (3.1) and (3.2), we have

q(G) < 3 +
m+ 3

3
≤ m− k + 1 +

2k

m− k
.

If 4 ≤ d(w) ≤ ∆ ≤ m− k, noting that

e(N(w), V (G) \N(w)) ≤ m− e(N(w)), e(N(w)) ≤ m− d(w),

by (3.1), we have
∑

wv∈E(G)

d(v) ≤ 2e(N(w)) +m− e(N(w)) = m+ e(N(w)) ≤ 2m− d(w), (3.3)
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and equality holds if and only if e(N(w)) = m− d(w). By (3.2) and (3.3), we have

q(G) ≤ d(w) +
2m

d(w)
− 1.

Let f(x) = x+ 2m
x
. By mathematical analysis, it is easy to see that the function f(x) is strictly

decreasing for 0 < x ≤
√
2m and strictly increasing for x ≥

√
2m. It follows that its maximum

in any closed interval is attained at one of the ends of this interval. Then we have

q(G) ≤ d(w) +
2m

d(w)
− 1 ≤ max{f(4), f(∆)} − 1. (3.4)

Case 1. ∆ ≥ m
2 . Then f(4) ≤ f(∆). Noting that

√
2m ≤ m

2
≤ ∆ ≤ m− k,

we have that ∆ and m− k are in the same monotonic interval of f(x). By (3.4), we have

q(G) ≤ f(∆)− 1 ≤ f(m− k)− 1 = m− k + 1 +
2k

m− k
.

If the equality in Theorem 1.3 holds, then ∆ = m−k and the equalities in (3.2)–(3.4) all hold.

It follows that G is a regular graph and d(w) = m−k. This implies that (m−k)(m−k+1) = 2m.

Namely,

m2 − (2k + 1)m+ k2 − k = 0.

This contradicts m ≥ 8 and m ≥ 2k. Therefore, the equality cannot hold in this case.

Case 2. 4 ≤ ∆ < m
2 . In this case, we have

f(4) ≥ f(∆), 4 ≤
√
2m ≤ m

2
≤ m− k.

It follows that m
2 and m− k are in the same monotonic interval of f(x). Noting that

f(4) = f(
m

2
) =

m

2
+ 4,

by (3.4), we have

q(G) ≤ f(4)− 1 = f(
m

2
)− 1 ≤ f(m− k)− 1 = m− k + 1 +

2k

m− k
.

If the equality in Theorem 1.3 holds, then m = 2k and the equalities in (3.2)–(3.4) all hold.

It follows that G is a regular graph and d(w) = 4. This implies that G = K5. Conversely, if

G = K5, the equality holds clearly.

Combining the above arguments, we complete the proof. 2

Proof of Theorem 1.4 Let ∆(G1) = m− k1 and ∆(G2) = m− k2. Since ∆(G1) > ∆(G2)+ 1,

it follows that k2 ≥ k1 + 2.

If k1 = 0, then G1 = K1,m and k2 ≥ 2. From [30], we know that q(G1) = m+1. Noting that

m ≥ 11 and ∆(G2) ≤ m− 2, by Theorem 1.3, we have

q(G2) < m− 1 +
4

m− 2
< m+ 1 = q(G1).
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If k1 ≥ 1 and m ≥ 2k2, by Lemma 2.4, we have q(G1) ≥ m− k1 + 1. Recalling that m ≥ 11

and k2 ≥ k1 + 2, by Theorem 1.3, we have

q(G2) < m− k2 + 1 +
2k2

m− k2
≤ m− k1 − 2 + 1 + 2 = m− k1 + 1 ≤ q(G1).

In the case when k1 ≥ 1 and m < 2k2, let l = ⌊m
2 ⌋. Then m ≥ 2l and k2 > l. Recalling that

m ≥ 11 and ∆(G1) = m − k1 ≥ m
2 + 2, we have k1 + 2 ≤ m

2 . It follows that k1 + 2 ≤ l. By

Theorem 1.3 and Lemma 2.4, we have

q(G2) < m− l + 1 +
2l

m− l
≤ m− k1 − 2 + 1 + 2 = m− k1 + 1 ≤ q(G1). 2

Proof of Theorem 1.5 Similar to the proof of Theorem 1.3, we may assume that G is a

connected graph with size m ≥ 7 and ∆ = ∆(G) ≤ m− k. Let w be a vertex of G such that

max
u∈V (G)

{d(u) + 1

d(u)

∑

uv∈E(G)

d(v)} = d(w) +
1

d(w)

∑

wv∈E(G)

d(v).

Then 1 ≤ d(w) ≤ ∆. By Lemma 2.2, we have

q(G) ≤ d(w) +
1

d(w)

∑

wv∈E(G)

d(v). (3.5)

If d(w) = 1, by (3.5), we have

q(G) ≤ 1 + d(v) ≤ 1 + ∆ ≤ m− k + 1 < m− k + 1 +
k

m− k
.

If 2 ≤ d(w) ≤ ∆ ≤ m− k, noting that G is triangle-free, we have e(N(w)) = 0 and
∑

wv∈E(G)

d(v) = 2e(N(w)) + e(N(w), V (G) \N(w)) = e(N(w), V (G) \N(w)) ≤ m. (3.6)

By (3.5) and (3.6), we have

q(G) ≤ d(w) +
m

d(w)
.

Let f(x) = x + m
x
. By mathematical analysis, it is easy to see that the function f(x) is strictly

decreasing for 0 < x ≤ √
m and strictly increasing for x ≥ √

m. It follows that its maximum in

any closed interval is attained at one of the ends of this interval. Then we have

q(G) ≤ d(w) +
m

d(w)
≤ max{f(2), f(∆)}. (3.7)

Case 1. ∆ ≥ m
2 . In this case, we have f(2) ≤ f(∆) and

√
m < m

2 ≤ ∆ ≤ m− k. Clearly, ∆

and m− k are in the same monotonic interval of f(x). By (3.7), we have

q(G) ≤ f(∆) ≤ f(m− k) = m− k + 1 +
k

m− k
.

If the equality in Theorem 1.5 holds, then ∆ = m − k and the equalities in (3.5)–(3.7) all

hold. By Lemma 2.2 and Equality (3.7), G is a regular graph or a semi-regular bipartite graph,

and d(w) = m− k. If G is a regular graph, then (m− k)(m− k + 1) < 2m. Namely,

m2 − (2k + 1)m+ k2 − k < 0.
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This contradicts m ≥ 7 and m ≥ 2k. If G is a semi-regular bipartite graph, recalling that

d(w) = m − k and m ≥ 2k, by Equality (3.6), we have m = 2k and G = K2, k. Conversely, if

G = K2, k, then the equality holds clearly.

Case 2. 2 ≤ ∆ < m
2 . In this case, we have f(2) ≥ f(∆) and 2 <

√
m < m

2 ≤ m − k. It

follows that m
2 and m− k are in the same monotonic interval of f(x). Noting that

f(2) = f(
m

2
) =

m

2
+ 2,

by (3.7), we have

q(G) ≤ f(2) = f(
m

2
) ≤ f(m− k) = m− k + 1 +

k

m− k
.

If the equality in Theorem 1.5 holds, then m = 2k and the equalities in (3.5)–(3.7) all hold.

By Lemma 2.2 and Equality (3.7), G is a regular graph or a semi-regular bipartite graph, and

d(w) = 2. If G is a regular graph, by Equality (3.6), we have G = C4. This contradicts m ≥ 7.

If G is a semi-regular bipartite graph, recalling that d(w) = 2 and m = 2k, by Equality (3.6),

we have G = K2, k. Conversely, if G = K2, k, then the equality holds clearly.

Combining the above arguments, we complete the proof. 2

Proof of Theorem 1.6 Let ∆(G1) = m− k1 and ∆(G2) = m− k2. Since ∆(G1) > ∆(G2) and

∆(G1) ≥ m
2 + 1, it follows that k1 < k2 and k1 + 1 ≤ 1

2m.

If k1 = 0, then G1 = K1,m and k2 ≥ 1. From [30], we know that q(G1) = m+1. Noting that

∆(G2) ≤ m− 1, by Theorem 1.5, we have

q(G2) ≤ m+
1

m− 1
< m+ 1 = q(G1).

If k1 ≥ 1 and m ≥ 2k2, noting that G1 is connected and by Lemma 2.4, we have q(G1) >

m− k1 + 1. Recalling that k2 > k1, by Theorem 1.5, we have

q(G2) ≤ m− k2 + 1 +
k2

m− k2
≤ m− k1 − 1 + 1 + 1 = m− k1 + 1 < q(G1).

In the case when k1 ≥ 1 and m < 2k2, let l = ⌊m
2 ⌋. Then m ≥ 2l and k2 > l. Recalling that

k1 + 1 ≤ m
2 , we have k1 + 1 ≤ ⌊m

2 ⌋ = l. By Theorem 1.5 and Lemma 2.4, we have

q(G2) ≤ m− l + 1 +
l

m− l
≤ m− k1 − 1 + 1 + 1 = m− k1 + 1 < q(G1). 2

Proof of Theorem 1.8 Let m ≥ max{2c, c + 9}, 0 ≤ k ≤ c − 3, 3 ≤ i1 < · · · < ik ≤ c − 1

be k integers, and Hi1···ik
m, c denote the graph obtained from a cycle Cc = v1v2 · · · vcv1 by linking

the vertex v1 to the vertices vi1 , . . . , vik and m − c − k isolated vertices. In particular, when

k = c− 3, H
3···(c−1)
m, c = Hm, c. Clearly,

∆(Hi1···ik
m, c ) = m− c+ 2 ≥ m

2
+ 2.

Let

A = {Hi1···ik
m, c | 3 ≤ i1 < · · · < ik ≤ c− 1, 0 ≤ k ≤ c− 3 }.

Let G∗ denote an extremal graph with maximal signless Laplacian spectral radius among all

graphs in H(m, c), and v1 ∈ V (G) such that d(v1) = ∆(G). We declare ∆(G∗) = m − c + 2.
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Otherwise, suppose that ∆(G∗) ≤ m − c + 1. If ∆(G∗) ≤ m − c, then ∆(Hm, c) > ∆(G∗) + 1.

Recalling that ∆(Hm, c) ≥ m
2 + 2, by Theorem 1.4, we have

q(G∗) < q(Hm, c),

a contradiction. If ∆(G∗) = m−c+1, then v1 is contained in a cycle of length c in G∗. It follows

that

G∗ = Hi1···ik
m−1, c ∪K2,

where

|V (K2) ∩ V (Hi1···ik
m−1, c)| ≥ 1, v1 /∈ V (K2).

This implies that the second largest degree d2 = d2(G
∗) ≤ 4. By Lemma 2.5, we have

q(G∗) ≤ A(m− c+ 1, 4) ≤ m− c+ 3 < q(Hm, c)

for m ≥ c+ 9, a contradiction. Therefore, ∆(G∗) = m− c+ 2.

We declare that G∗ = Hm, c. Otherwise, suppose that G∗ 6= Hm, c. Recalling that ∆(G∗) =

m − c + 2, we know that G∗ ∈ A and there exists 3 ≤ j ≤ c − 1 such that d(vj) = 2. Since

m ≥ 2c, there exists a pendent edge at v1, denoted by v1vs. Let G
′ = G∗ − v1vs + v1vj . Clearly,

G′ ∈ H(m, c). By Lemma 2.6, we have q(G∗) < q(G′), a contradiction. Therefore, G∗ = Hm, c. 2
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