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Abstract Let A be an abelian category, T a self-orthogonal subcategory of A and each object

in T admit finite projective and injective dimensions. If the left Gorenstein subcategory lG(T )

equals to the right orthogonal class of T and the right Gorenstein subcategory rG(T ) equals

to the left orthogonal class of T , we prove that the Gorenstein subcategory G(T ) equals to the

intersection of the left orthogonal class of T and the right orthogonal class of T , and prove

that their stable categories are triangle equivalent to the relative singularity category of A with

respect to T . As applications, let R be a left Noetherian ring with finite left self-injective

dimension and RCS a semidualizing bimodule, and let the supremum of the flat dimensions of

all injective left R-modules be finite. We prove that if RC has finite injective (or flat) dimension

and the right orthogonal class of C contains R, then there exists a triangle-equivalence between

the intersection of C-Gorenstein projective modules and Bass class with respect to C, and the

relative singularity category with respect to C-projective modules. Some classical results are

generalized.
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1. Introduction

Throughout this paper, A is an abelian category and a subcategory of A means a full and

additive subcategory closed under isomorphisms and direct summands.

Let T be a subcategory of A . Sather-Wagstaff, Sharif and White introduced in [1] the

Gorenstein subcategory G(T ), which unifies the following notions: modules of Gorenstein di-

mension zero [2], Gorenstein projective modules, Gorenstein injective modules [3], V -Gorenstein

projective modules, V -Gorenstein injective modules [4], W -Gorenstein modules [5], and so on.

Recently, Song et al. [6–8] introduced and studied the left Gorenstein subcategory lG(T ) and the

right Gorenstein subcategory rG(T ) when T is self-orthogonal, and get some applications with

Received June 7, 2023; Accepted January 6, 2024
Supported by the Project of Natural Science Foundation of Changzhou College of Information Technology (Grant

No. CXZK202204Y) and the Project of Youth Innovation Team of Universities of Shandong Province (Grant

No. 2022KJ314).
* Corresponding author

E-mail address: wangjunfu@ccit.js.cn (Junfu WANG); tiweizhao@qfnu.edu.cn (Tiwei ZHAO)



314 Junfu WANG and Tiwei ZHAO

respect to semidualizing bimodules. On the other hand, as a generalization of singularity cate-

gory of the ring R, Chen [9] introduced and studied the relative singularity category of A with

respect to T , which is the Verdier quotient category DT (A ) := Db(A )/Kb(T ). In this paper,

we consider when the equality G(T ) = ⊥T ∩T ⊥ holds true. Then we give the relative singular-

ity category DT (A ) under a weaker condition. As applications, we get the relative singularity

equivalence of C-version, where RCS is a semidualizing bimodule. The paper is organized as

follows.

In Section 2, we give some terminology and some preliminary results. In Section 3, we give

some conditions to get lG(T ) = T ⊥ and rG(T ) = ⊥T . In case that T has finite projective and

injective dimensions, then the triangulated subcategories ⊥T ∩ T ⊥ and DT (A ) are equivalent

(Theorem 3.6). In Section 4, we apply these results to the category of modules. Let R be a left

Noetherian ring with finite left self-injective dimension and the supremum of the flat dimensions

of all injective left R-modules finite. We prove that if RC has finite injective (or flat) dimension

and RC
⊥ contains R, then there exists a triangle-equivalence between the intersection of C-

Gorenstein projective modules and Bass class BC(R), and the relative singularity category with

respect to C-projective modules (Theorem 4.8). Finally, some results over a Gorenstein ring are

generalized.

2. Preliminaries

We first recall some definitions and then give some basic facts.

Definition 2.1 ([10,11]) (1) Let C ⊆ D be subcategories of A . The morphism f : C → D in A

with C ∈ C and D ∈ D is called a right C -approximation of D if for any morphism g : C′ → D

in A with C′ ∈ C , there exists a morphism h : C′ → C such that g = fh.

If each object in D has a right C -approximation, then C is called contravariantly finite in

D . Dually, the notions of left C -approximations and covariantly finite subcategories are defined.

A subcategory C of A is called functorially finite if it is contravariantly finite and covariantly

finite in A .

(2) A contravariantly finite subcategory C of A is called admissible if each right C -

approximation is epic. Dually, the notion of coadmissible covariantly finite subcategories is

defined.

Let C be a subcategory of A . Recall that a sequence in A is called HomA (C ,−)-exact if it

is exact after applying the functor HomA (C,−) for any object C ∈ C . Dually, the notion of a

HomA (−,C )-exact sequence is defined.

Definition 2.2 ([1]) Let C be a subcategory of A . The Gorenstein subcategory G(C ) of A is

defined as G(C ) := {M ∈ A | there exists an exact sequence

· · · → C1 → C0 → C0 → C1 → · · ·

in A with all terms in C , which is both HomA (C ,−)-exact and HomA (−,C )-exact, such that
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M ∼= Im(C0 → C0)}.

The Gorenstein subcategory unifies the following notions: modules of Gorenstein dimension

zero [2], Gorenstein projective modules, Gorenstein injective modules [3], V -Gorenstein projective

modules, V -Gorenstein injective modules [4], W -Gorenstein modules [5] and so on; see [12] for

the details.

Recall from [9] that for every subcategory T of A , we put

T
⊥ := {X ∈ A | ExtiA (T,X) = 0 for all T ∈ T , i ≥ 1},

⊥
T := {X ∈ A | ExtiA (X,T ) = 0 for all T ∈ T , i ≥ 1},

T
⊥1 := {X ∈ A | Ext1A (T,X) = 0 for all T ∈ T },

⊥1T := {X ∈ A | Ext1A (X,T ) = 0 for all T ∈ T }.

T X := {X ∈ A |there exists an exact sequence

· · ·
d−2

−→ T−1 d−1

−→ T 0 d0

−→ X → 0, T i ∈ T ,Ker di ∈ T
⊥}.

XT := {X ∈ A |there exists an exact sequence

0 → X
d−1

−→ T 0 d0

−→ T 1 d1

−→ · · · , T i ∈ T ,Cokerdi ∈ ⊥
T }.

The subcategory T is said to be self-orthogonal if T ⊆ T ⊥ (equivelantly T ⊆ ⊥T ). If T

is self-orthogonal, we obtain that T X ⊆ T ⊥ and XT ⊆ ⊥T by the dimension shifting.

Following [1], we write

res T̃ :={X ∈ A | there exists a HomA (T ,−)-exact exact sequence

· · · → T−1 → T0 → X → 0, Ti ∈ T }.

Dually, cores T̃ is defined.

Let T be self-orthogonal. Recall from [6] that the right Gorenstein subcategory

rG(T ) := ⊥
T ∩ cores T̃

and left Gorenstein subcategory

lG(T ) := T
⊥ ∩ res T̃ .

Following [12], G(T ) = lG(T ) ∩ rG(T ).

Lemma 2.3 Let T ⊆ A be a self-orthogonal subcategory. Then T X = lG(T ),XT = rG(T )

and G(T ) = T X ∩ XT .

Proof Note that T X ⊆ T ⊥ and XT ⊆ ⊥T . T X ⊆ res T̃ is clearly true, hence T X ⊆ lG(T ).

Let X ∈ lG(T ) = T ⊥ ∩ res T̃ . Then there exists a HomA (T ,−)-exact exact sequence

· · ·
d−2

−→ T−1 d−1

−→ T 0 d0

−→ X → 0

with each T i ∈ T . Applying the functor HomA (T ,−) to the exact sequence

0 → K0 → T 0 → X → 0,
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where K0 = Ker d0. We deduce K0 ∈ T ⊥ by assumption. Similarly, we get Ker di ∈ T ⊥ for

any i. It follows that X ∈ T X . Thus T X = lG(T ).

Dual to the above argument, we have XT = rG(T ), so

G(T ) = lG(T ) ∩ rG(T ) = T X ∩ XT . 2

3. Main results

In this section, assume that A is an abelian category with enough projective objects and

enough injective objects. Denote by P (resp., I ) the subcategory of A consisting of projective

(resp., injective) objects. We always suppose that T is a self-orthogonal subcategory of A . We

will give the main results in this paper and some applications.

Lemma 3.1 (1) lG(T ) = T ⊥ if and only if X admits an epic right T -approximation for every

X ∈ T ⊥.

(2) rG(T ) = ⊥T if and only if Y admits a monic left T -approximation for every Y ∈ ⊥T .

Proof We only prove (1), and (2) is its dual. Assume that lG(T ) = T ⊥. LetX ∈ T ⊥ = lG(T ),

we have the following HomA (T ,−)-exact exact sequence

· · ·
d−2

−→ T−1 d−1

−→ T 0 d0

−→ X → 0

with T i ∈ T . Then T 0 d0

−→ X → 0 is an epic right T -approximation of X .

Conversely, note that lG(T ) ⊆ T ⊥. Assume that X ∈ T ⊥, we have an epic right T -

approximation T 0 d0

−→ X → 0 with T 0 ∈ T . Consider the exact sequence

0 → Ker d0 → T 0 d0

−→ X → 0.

By applying the functor HomA (T ,−), we deduce Ker d0 ∈ T ⊥ by assumption. Iterating this

process, we have X ∈ lG(T ), and then lG(T ) = T ⊥. This completes the proof. 2

For an objectM in A , the X -dimension ofM , denoted by X -dimM , is defined as inf{n ≥ 0|

there exists an exact sequence 0 → Xn → · · · → X1 → X0 → M → 0 in A with all Xi in X }.

We set X -dim M infinity if no such integer exists. The X -dimension X -dim C of C is defined

to be the supremum of the X -dimensions of all the objects in C . Dually, the notions of the

X -codimension X -codim M of M and the X -codimension X -codim C of C are defined. In

particular, if X = P (resp., I ), then X -dim M = pdM (resp., X -codim M = idM), X -dim

C = pdC (resp., X -codim C = idC ).

Proposition 3.2 (1) Let C be an admissible contravariantly finite subcategory and T -codimC <

∞. If T is contravariantly finite or T ⊆ C , then lG(T ) = T ⊥.

(2) Let D be a coadmissible covariantly finite subcategory and T -dimD < ∞. If T

covariantly finite or T ⊆ D , then rG(T ) = ⊥T .

Proof We only prove (1), and (2) is its dual.
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Let X ∈ T ⊥. Consider an epic right C -approximation p : C0 → X → 0. Since T -codim

C < ∞, there exists a long exact sequence

0 → C0

e
→ T0 → T1

f
−→ · · · → Tr → 0

with Ti ∈ T . Notice that Ti ∈ ⊥(T ⊥), then K0 = Ker f ∈ ⊥(T ⊥). Consider the following

pushout diagram:

0 // C0
//

��

T0
//

��

K0
// 0

0 // X //

��

F0
//

��
�

�

�
K0

// 0.

0 0

Dragram 1 Pushout of p and e

Since X ∈ T ⊥, the second row splits. So X is a direct summand of F0, and then we have an

epimorphism T0

h
−→ X .

Assume T is contravariantly finite, take a right T -approximation of X : T 0 d0

−→ X , there

exists θ : T0 → T 0, such that h = d0θ. Then d0 is epic since h is epic, and hence T 0 d0

−→ X is

an epic right T -approximation of X . Assume T ⊆ C . For any object T ∈ T ⊆ C and any

morphism T → X , we get the following commutative diagram:

T

~~}
}
}
}

��

C0
//

��

X // 0

T0
// X // 0.

Dragram 2 Approximation property of p

Then T0 → X is an epic right T -approximation of X . It follows from Lemma 3.1 (1), lG(T ) =

T ⊥. 2

Proposition 3.3 (1) Let C be an admissible contravariantly finite subcategory and idC < ∞.

If I is contravariantly finite or I ⊆ C , then G(I ) = I ⊥.

(2) Let D be a coadmissible covariantly finite subcategory and pdD < ∞. If P is covariantly

finite or P ⊆ D , then G(P) = ⊥P.

Proof We only prove (1), and (2) is its dual. Putting T = I . Note that lG(I ) = G(I ). The

assertion follows from Proposition 3.2 (1). 2

Recall that a subcategory is said to be a Frobebnius category if it is an exact category in

which there are enough (relative) projective objects and (relative) injective objects, such that

the projective objects coincide with the injective objects. In this case, the stable category of
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Frobebnius category becomes a triangulated category.

Lemma 3.4 ([9]) G(T ) is a Frobenius category.

Proof Since T is self-orthogonal, the subcategories T X and XT are closed under extensions

by [10], and therefore so is G(T ) = T X ∩ XT (by Lemma 2.3). Hence G(T ) is en exact

category whose conflations are just short exact sequences with all terms in G(T ). Note that

G(T ) ⊆ ⊥T ∩ T ⊥. Then

Ext1A (T,X) = 0 = Ext1A (X,T )

for every T ∈ T and X ∈ G(T ). We infer that objects in T are (relatively) projective and

injective in G(T ), that is, the objects of the additive closure addT of T are (relatively) projective

and injective in G(T ).

On the other hand, let X ∈ G(T ) ⊆ XT , we get an exact sequence

(⋆) : 0 → X → T → X ′ → 0

with T ∈ T , X ′ ∈ XT . Note that X,T ∈ T X , then X ′ ∈ T X , and thus X ′ ∈ G(T ). So the

exact sequence (⋆) is in G(T ), and G(T ) has enough injective objects. Dually, we get that G(T )

has enough projective objects.

So G(T ) is a Frobenius category, whose projective-injective subcategory are precisely addT . 2

In the following, we consider the stable category G(T ) of G(T ) modulo T . Then it is not

hard to see that the stable category G(T ) is a triangulated category by [13]. As a generalization

of singularity category of the ring R, Chen [9] introduced and studied the relative singularity cat-

egory of A with respect to T , which is the Verdier quotient categoryDT (A ) := Db(A )/Kb(T ).

The following lemma comes from [9, Theorem 2.1].

Lemma 3.5 If XT -dimA < ∞ and T X -codimA < ∞, then G(T )
≃
−→ DT (A ) is a triangle-

equivalence.

We have the following main result in this section.

Theorem 3.6 Let pdT < ∞ and idT < ∞. If lG(T ) = T ⊥ and rG(T ) = ⊥T , then

G(T ) = ⊥T ∩ T ⊥ ≃
−→ DT (A ) is a triangle-equivalence.

Proof Observe that G(T ) = ⊥T ∩ T ⊥.

For any M ∈ A , there exists an exact sequence

· · · → Pn → Pn−1 dn−1

−→ · · · → P 1 d1

−→ P 0 d0

−→ M → 0

with each P i ∈ P. It follows that P i ∈ ⊥T . Denote by Ki+1 = Ker di for any i ≥ 0. Then

Extn+i
A

(M,T ) ∼= ExtiA (Kn,T )

for any n, i ≥ 1 by dimension shifting. Since idT < ∞, if idT ≤ n0 for some n0, then

Extn0+i
A

(M,T ) = 0 for any i ≥ 1, and hence Kn0 ∈ ⊥T . Note that ⊥T = rG(T ) = XT by

Lemma 2.3. Therefore, XT -dimA < ∞.
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Dual to the above argument, we get T X -codimA < ∞. Thus the assertion follows from

Lemma 3.5. 2

Corollary 3.7 Let pdT < ∞ and idT < ∞. If T satisfies conditions (1) and (2) of Proposition

3.2, then G(T ) = ⊥T ∩ T ⊥ ≃
−→ DT (A ) is a triangle-equivalence.

Proof The assertion follows from Proposition 3.2 and Theorem 3.6. 2

A subcategory T of A is said to be tilting if pdT < ∞ and T -codimP < ∞. Dually, T

is said to be cotilting if idT < ∞ and T -dimI < ∞.

Proposition 3.8 Let T ⊆ A be a tilting-cotilting and functorially finite subcategory. Then

G(T ) = ⊥T ∩ T ⊥ ≃
−→ DT (A ) is a triangle-equivalence.

Proof Set D = I and C = P. Thus the assertion follows from Corollary 3.7. 2

Proposition 3.9 (1) Let C be an admissible contravariantly finite subcategory and idC <

∞, pdI < ∞. If I is contravariantly finite or I ⊆ C , then G(I ) = I ⊥ ≃
−→ DI (A ) is a

triangle-equivalence.

(2) Let D be a coadmissible covariantly finite subcategory and pdD < ∞, idP < ∞. If P

is covariantly finite or P ⊆ D , then G(P) = ⊥P
≃
−→ DP(A ) is a triangle-equivalence.

Proof The assertions follow from Proposition 3.3 and Theorem 3.6. 2

4. Applications to module categories

In this section, all rings are associative rings with identity. For a ring R, denote by ModR

the category of left R-modules. By an R-module we mean a left R-module; right R-modules are

considered as modules over the opposite ring Rop. For an R-module M , we denote the projective,

injective and flat dimensions of M by pdRM , idRM and fdRM , respectively. Denote by P(R)

and I(R) the subcategories of ModR consisting of projective and injective modules, respectively.

Denote by P<∞(R) and I<∞(R) the subcategories of ModR consisting of modules with finite

projective and injective dimensions, respectively. Denote by sfli(R) the supremum of the flat

dimensions of all injective R-modules.

The following result is a generalization of [14, Theorem 9.1.10] and it is used frequently below.

Lemma 4.1 Let R be a left Noetherian ring with idRR = n(< ∞) and sfli(R) < ∞. Then the

following are equivalent for an R-module M .

(1) idRM < ∞. (2) pdRM < ∞. (3) fdRM < ∞. (4) idRM ≤ n. (5) pdRM ≤ n. (6)

fdRM ≤ n.

Proof The implications (5) ⇒ (2) ⇒ (3) and (5) ⇒ (6) ⇒ (3) are trivial. It follows from [14,

Proposition 9.1.2] that (3) ⇒ (5). Thus (2) ⇔ (3) ⇔ (5) ⇔ (6).

The implication (3) ⇒ (4) follows from [15, Theorem 3.8] and (4) ⇒ (1) is trivial.
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(1) ⇒ (3). Let idRM < ∞. There exists an exact sequence

0 → M → I0 → I1 → · · · → Ir → 0

with each Ii ∈ I(R). Since sfli(R) < ∞, it is not hard to get fdRM < ∞ by [12, Corollary

3.3]. 2

Proposition 4.2 Let R be a left Noetherian ring with idRR < ∞ and sfli(R) < ∞. Then

I<∞(R) is coadmissible covariantly finite.

Proof It follows from Lemma 4.1 that I<∞(R) = P<∞(R). The assertion follows from a similar

proof of [14, Lemma 10.2.13]. 2

Definition 4.3 ([16]) Let R and S be rings. An (R,S)-bimodule RCS is called semidualizing if

the following conditions are satisfied.

(a1) RC admits a degreewise finite R-projective resolution.

(a2) CS admits a degreewise finite S-projective resolution.

(b1) The homothety map RRR
Rγ
→ HomSop(C,C) is an isomorphism.

(b2) The homothety map SSS
γS
→ HomR(C,C) is an isomorphism.

(c1) Ext≥1

R (C,C) = 0.

(c2) Ext≥1

Sop(C,C) = 0.

Wakamatsu [17] introduced and studied the so-called generalized tilting modules, which are

usually calledWakamatsu tilting modules [18,19]. Note that an (R,S)-bimodule RCS is semidual-

izing if and only if RC (resp., CS) is Wakamatsu tilting with S = End(RC) (resp., R = End(CS)),

and if and only if both RC and CS are Wakamatsu tilting with S = End(RC) and R = End(CS)

(see [20, Corollary 3.2]). Examples of semidualizing bimodules are referred to [16,21]. In partic-

ular, RRR is a semidualizing (R,R)-bimodule.

From now on, R and S are arbitrary rings and we fix a semidualizing bimodule RCS . By

AddR C we denote the subcategory of ModR consisting of direct summands of direct sums of

copies of C, and write

PC(R) := {C ⊗S P | P is projective inModS},

IC(S) := {HomR(C, I) | I is injective inModR}.

Then AddR C = PC(R) (see [22, Proposition 2.4(1)]). The modules in PC(R) and IC(S)

are called C-projective and C-injective, respectively. When RCS = RRR, C-projective and C-

injective modules are exactly projective and injective modules, respectively.

Definition 4.4 ( [22]) An R-module M ∈ ModR is called C-Gorenstein projective if M ∈
⊥PC(R) and there exists a HomR(−,PC(R))-exact exact sequence

0 → M → G0 → G1 → · · · → Gi → · · ·

in ModR with all Gi in PC(R). Dually, the notion of C-Gorenstein injective modules in ModS

is defined.
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We use GPC(R) (resp., GIC(S)) to denote the subcategory of ModR (resp., ModS) con-

sisting of C-Gorenstein projective (resp., injective) modules. When RCS = RRR, C-Gorenstein

projective and C-Gorenstein injective modules are exactly Gorenstein projective and Gorenstein

injective modules, respectively.

Definition 4.5 ([16]) The Bass class BC(R) with respect to C consists of all modules M in

ModR satisfying the following conditions.

(B1) ExtiR(C,M) = 0 for any i ≥ 1;

(B2) TorSi (C,HomR(C,M)) = 0 for any i ≥ 1; and

(B3) The natural evaluation homomorphism νM : C⊗SHomR(C,M) → M is an isomorphism

(of R-modules).

The following lemma is crucial for the proof of the main result in this section.

Lemma 4.6 Let R be a left Noetherian ring with idRR < ∞ and sfli(R) < ∞, R ∈ RC
⊥.

(1) PC(R) is admissible contravariantly finite.

(2) If idR C < ∞ or fdR C < ∞, then Y admits a monic left PC(R)-approximation for every

Y ∈ ⊥PC(R).

Proof (1) Note that PC(R) is contravariantly finite by [16, Proposition 5.3(b)]. It follows

from [8, Proposition 4.6(1)] that PC(R) contains all projective R-modules. Thus PC(R) is

admissible.

(2) Let Y ∈ ⊥PC(R). By Proposition 4.2, there exists a monic left I<∞(R)-approximation

of Y : Y
g

−→ L with L ∈ I<∞(R). By (1), we have

0 → K → C0 θ
−→ L → 0

with C0 ∈ PC(R), where K = Ker θ. Consider the following pullback diagram:

0

��

0

��

K

��

K

��

0 // G //___

��
�

�

� C0 //

θ

��

H // 0

0 // Y
g

//

��

L //

��

H // 0

0 0

Dragram 3 Pullback of g and θ

where H = Coker g. By Lemma 4.1, one always has idR C < ∞, it follows that idR PC(R) <

∞. Then K ∈ I<∞(R), and hence K ∈ P<∞(R) by Lemma 4.1. It is not hard to see that
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Ext1R(Y,K) = 0 as Y ∈ ⊥PC(R) ⊆ ⊥P(R). It yields that the leftmost column

0 → K → G → Y → 0

in the above diagram splits, then there exists a monomorphism h : Y → C0 such that g = θh.

We claim that Y
h

−→ C0 is a monic left PC(R)-approximation of Y . Indeed, for any P ∈ PC(R)

and morphism j : Y → P . Notice that P ∈ I<∞(R), then there exists a morphism i : L → P

such that j = ig since g is a left I<∞(R)-approximation, and thus j = ig = iθh, that is, j factors

through h, the claim is proved. 2

Proposition 4.7 Let R be a left Noetherian ring with idRR < ∞ and sfli(R) < ∞, R ∈ RC
⊥.

(1) BC(R) = PC(R)⊥ = RC
⊥.

(2) If idR C < ∞ or fdR C < ∞, then GPC(R) = ⊥PC(R).

Proof It follows from [23, Lemma 2.5(1)] that PC(R) is self-orthogonal. Putting T = PC(R) (=

AddR C). Then PC(R)
⊥
= RC

⊥.

(1) It follows from Lemmas 4.6 (1) and 3.1 (1) that lG(PC(R)) = PC(R)⊥. Thus the assertion

follows from [7, Lemma 4.14].

(2) It follows from Lemmas 4.6 (2) and 3.1 (2) that rG(PC(R)) = ⊥PC(R). Thus the assertion

follows from [7, Lemma 4.7]. 2

Finally, we get the following singularity equivalence with respect to a semidualizing bimodule

RCS , which is the main result in this section.

Theorem 4.8 Let R be a left Noetherian ring with idRR < ∞ and sfli(R) < ∞, R ∈ RC
⊥. If

idR C < ∞ or fdR C < ∞, then

G(PC(R)) = GPC(R) ∩ BC(R) = ⊥PC(R) ∩ RC
⊥ ≃
−→ Db(ModR)/Kb(PC(R))

is a triangle-equivalence.

Proof Putting T = PC(R) (= AddR C). Since idR C < ∞, it follows from Lemma 4.1 that

pdR C < ∞. Then idR PC(R) < ∞ and pdR PC(R) < ∞. It follows from Lemmas 4.6 and

3.1 that lG(PC(R)) = PC(R)⊥ and rG(PC(R)) = ⊥PC(R). Thus the assertion follows from

Proposition 4.7 and Theorem 3.6. 2

The following result is a generalization of [9, Theorem 3.3], which says that for a Gorenstein

ring, the big singularity category is triangle-equivalent to the stable category of Gorenstein-

projective modules.

Proposition 4.9 Let R be a left Noetherian ring with idRR < ∞ and sfli(R) < ∞. We have

(1) GI(R) = I(R)⊥
≃
−→ Db(ModR)/Kb(I(R)) is a triangle-equivalence;

(2) GP(R) = ⊥P(R)
≃
−→ Db(ModR)/Kb(P(R)) is a triangle-equivalence;

(3) Db(ModR)/Kb(I(R)) = Db(ModR)/Kb(P(R)).

Proof It follows from Lemma 4.1 that idP(R) < ∞, pd I(R) < ∞.

(1) Putting C = P(R). Note that I(R) is contravariantly finite. So the assertion follows
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from Proposition 3.9 (1).

(2) Putting RCS = RRR. The assertion follows from Theorem 4.8.

(3) The assertion follows from [24, Theorem 4.13]. 2

Recall from [14] that a ring R is said to be Gorenstein if R is two-sided noetherian, and the

regular module R has finite injective dimension both as a left and right module.

Proposition 4.10 Let R be a Gorenstein ring and R ∈ RC
⊥. If idR C < ∞ or fdR C < ∞,

then

G(PC(R)) = GPC(R) ∩ BC(R) = ⊥PC(R) ∩ RC
⊥ ≃
−→ Db(ModR)/Kb(PC(R))

is a triangle-equivalence.

Let A be a finite-dimensional associative algebra over a field k. We denote by modA the

category of finitely generated left A-modules, and by projA and injA the subcategories of finitely

generated projective and injective left A-modules respectively. For modA, a self-orthogonal

module T is called generalized tilting if pdT < ∞ and addT -codim projA < ∞. A self-

orthogonal module T is called generalized cotilting if idT < ∞ and addT -dim injA < ∞.

Proposition 4.11 ([25, Theorem 2.5]) Let A be a finite-dimensional Gorenstein algebra and T

a generalized tilting A-module. Then the natural functor induces a triangle-equivalence

G(addT ) = ⊥T ∩ T⊥ ≃
−→ Db(modA)/Kb(addT ).

Proof Putting T = addT . Notice that generalized tilting modules coincide with generalized

cotilting modules by [26, Lemma 1.3], then T is self-orthogonal functorially finite in modA, and

hence G(addT ) = ⊥T ∩ T⊥. Thus the assertion follows from Proposition 3.8. 2
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