
Journal of Mathematical Research with Applications

May, 2024, Vol. 44, No. 3, pp. 325–336

DOI:10.3770/j.issn:2095-2651.2024.03.005

Http://jmre.dlut.edu.cn

Entire Solutions of Some Type of Nonlinear
Delay-Differential Equations

Qian YANG, Huifang LIU∗

School of Mathematics and Statistics, Jiangxi Normal University, Jiangxi 330022, P. R. China

Abstract In this paper, the existence and growth of entire solutions of some type of nonlinear

delay-differential equations are studied. Using Cartan’s second main theorem and Nevanlinna

theory of meromorphic functions, we obtain the exact forms of its entire solutions with hyper-

order less than one.
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1. Introduction and main results

The solvability and growth of solutions are two important properties in the study of the

differential, or difference, or delay-differential equations in complex domain. One of powerful

research tools is Nevanlinna theory of meromorphic functions and its difference counterparts [1,2]

and references therein. In this paper, we assume that the readers are familiar with the basic

notations and results of the above theories such as m(r, f), N(r, f), T (r, f), the first and second

main theorems, lemma on the logarithmic derivative etc. [2,3]. In 2010, Yang and Laine [4] used

the above tools to obtain certain similarities in solvability between some types of differential

equation and difference equation, see Theorems 1.1 and 1.2.

Theorem 1.1 ( [4]) Let p be a nonzero polynomial, and b, c be nonzero constants. If p is

nonconstant, then the differential equation

f3(z) + p(z)f ′′(z) = c sin bz (1.1)

admits no entire solutions, while if p is constant, then Eq. (1.1) admits three distinct entire

solutions, provided (pb2/27)3 = 1
4c

2.

Theorem 1.2 ([4]) The difference equation

f3(z) + p(z)f(z + 1) = c sin bz, (1.2)
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where p is a nonconstant polynomial and b, c are nonzero constants, admits no entire solutions

of finite order, while if p is a nonzero constant, then Eq. (1.2) has three distinct entire solutions

of finite order, provided b = 3πk and p3 = (−1)k+1 27
4 c2 for a nonzero integer k.

Observing that the right side of Eq. (1.2) is a linear combination of two exponential functions

eibz and e−ibz , Zhang and Huang [5] studied the growth of solutions of the general difference

equation containing m exponential terms

fn(z) + p(z)f(z + η) = β1e
ω1z + · · ·+ βmeωmz (1.3)

and obtained the following result.

Theorem 1.3 ([5]) Let n ≥ m + 2 be an integer, p be a nonzero polynomial, β1, . . . , βm, η be

nonzero constants, and let ω1, . . . , ωm be distinct nonzero constants. Assume that ωi

ωj
6= n for

all i, j ∈ {1, . . . ,m}, and that nωk 6= lk1ω1 + · · · + lkmωm for 5 ≤ k ≤ m, where lk1, . . . , lkm ∈

{0, 1, . . . , n−1} and lk1+ · · ·+ lkm = n. Then any meromorphic solution f(z) of Eq. (1.3) satisfies

σ2(f) ≥ 1.

The above symbol σ2(f) denotes the hyper order of a meromorphic function f . In this paper,

we will also use the symbols σ(f) and λ(f) to denote the order and the exponent of convergence

of zeros of f . Please refer to reference [1] for their definitions. Theorem 1.3 has been extended

by Li-Hao-Yi [6] and Mao-Liu [7], respectively. The following is a partial result in [7, Theorem

1.1].

Theorem 1.4 ([7]) Let n, k,m, q be positive integers with n ≥ 2, η be a nonzero constant,

ω1, . . . , ωm be distinct nonzero constants, and let p,H1, . . . , Hm be nonzero entire functions of

orders less than q. If f is a meromorphic solution of the equation

fn(z) + p(z)f (k)(z + η) = H1(z)e
ω1z

q

+ · · ·+Hm(z)eωmzq

(1.4)

satisfying σ2(f) < 1 and N(r, f) = S(r, f), then we have two possibilities:

(i) f(z) = γj(z)e
ωjz

q

n and m = 2, where γn
j (z) = Hj(z), ωj = nωt ({j, t} = {1, 2}).

(ii) λ(f) = σ(f) = q and n ≤ m+ 1.

Theorems 1.1 and 1.2 show when replacing p(z)f ′′(z) in Eq. (1.1) by p(z)f(z+1), the existence

of entire solutions to Eqs. (1.1) and (1.2) are similar except for order restriction of solutions. It

is natural to ask whether there exist some similarities if replacing fn in the above equations by

fnf ′. In this paper, we study the delay-differential equation

fn(z)f ′(z) + p(z)f (k)(z + η) = H1(z)e
ω1z

q

+ · · ·+Hm(z)eωmzq

(1.5)

and obtain some results similar to Theorem 1.4 for entire solutions.

Theorem 1.5 Let n, k,m, q be positive integers, η be a nonzero constant, ω1, . . . , ωm be distinct

nonzero constants, and let p,H1, . . . , Hm be nonzero entire functions of orders less than q. If

n ≥ m+ 2 and Eq. (1.5) admits an entire solution f(z) of σ2(f) < 1, then we have

m = 2, f(z) = ϕ(z)eαz
q

,
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where {α, (n+ 1)α} = {ω1, ω2}, ϕ(z) is an entire function satisfying λ(ϕ) = σ(ϕ) < q.

Remark 1.6 Theorem 1.5 provides us a method for judging the existence of finite order entire

solutions of Eq. (1.5) and finding its exact forms if such solutions exist, see Examples 1.7 and

1.8.

Example 1.7 The equation fn(z)f ′(z) + p(z)f (k)(z + η) = H1(z)e
z + ze(n+1)z has no entire

solutions of hyper-order less than 1, where n ≥ 4 is an integer, p,H1 are nonzero entire solutions of

orders less than 1. In fact, if the above equation admits an entire solution f of σ2(f) < 1, then by

Theorem 1.5 we have f(z) = ϕ(z)ez, where ϕ(z) is an entire function satisfying λ(ϕ) = σ(ϕ) < 1.

Substituting this expression into the above equation, we get

{ϕn(z)ϕ′(z) + ϕn+1(z)− z}e(n+1)z +
{

p(z)eη
k

∑

j=0

Cj
kϕ

(j)(z + η)−H1(z)
}

ez = 0.

Since max{σ(p), σ(H1), σ(ϕ)} < 1 and σ(enz) = 1, we have

ϕn(z)ϕ′(z) + ϕn+1(z) = z. (1.6)

If ϕ(z) is transcendental, then by λ(ϕ) = σ(ϕ) < 1, we know that ϕ has infinitely many zeros.

This is impossible by (1.6). If ϕ(z) is a polynomial, then by comparing the degrees of polynomials

at both sides of (1.6), we get a contradiction.

Example 1.8 Considering the equation fn(z)f ′(z)−zf (k)(z+πi) = zez+e(n+1)z, where n ≥ 4

is an integer, by Theorem 1.5, we know that it has only one entire solution f(z) = ez satisfying

σ2(f) < 1.

From Theorem 1.5, we know that finite order entire solution f of Eq. (1.5) satisfies λ(f) <

σ(f) provided n ≥ m + 2. But this is not the case for n ≤ m + 1. For example, the equation

f2(z)f ′(z) + f ′′(z + πi) = e3z + 2e2z has a solution f(z) = ez + 1 satisfying λ(f) = σ(f) = 1. In

fact, for n ≤ m+ 1 we have the following result.

Theorem 1.9 Let n, k,m, q be positive integers, η be a nonzero constant, ω1, . . . , ωm be distinct

nonzero constants, and let p,H1, . . . , Hm be nonzero entire functions of orders less than q. If

n ≤ m+ 1 and Eq. (1.5) admits an entire solution f(z) of σ2(f) < 1, then σ(f) = q. Moreover,

if f(z) satisfies λ(f) < σ(f), then

(n,m) ∈ {(1, 2), (2, 2), (3, 2)}

and f(z) has the form in Theorem 1.5.

We give the following examples to illustrate the existence of entire solutions in Theorem 1.9.

Example 1.10 The entire function f(z) = ez + e−z solves the equation

f2(z)f ′(z) + f (2k)(z + πi) = e3z − 2e−z − e−3z,

where k is a positive integer. Here m = 3 and λ(f) = σ(f) = 1. This also shows that the

condition m = 2 is necessary to guarantee that any finite order entire solutions of Eq. (1.5)
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satisfies λ(f) < σ(f).

Example 1.11 The entire function f(z) = ez + 1 solves the equations

f(z)f ′(z)− zf (k)(z + πi) = e2z + (1 + z)ez,

where k is a positive integer. Here m = 2, but λ(f) = σ(f) = 1. This also shows that the

condition m = 2 is not sufficient to guarantee that any finite order entire solution of Eq. (1.5)

satisfies λ(f) < σ(f).

Example 1.12 The entire function f(z) = zeπz solves the equation

f3(z)f ′(z) + f ′′(z + 2i) = (πz4 + z3)e4πz + (π2z + 2π + 2π2i)eπz.

Here m = 2 and λ(f) < σ(f) = 1.

2. Lemmas

In this section, we give some preliminary results for the proof of our results. We will use

the symbol E (or E1) to denote a set of finite logarithmic measure (or finite line measure), not

necessary the same at each occurrence. Firstly, we give a double inequality for the growth of

entire solutions of Eq. (1.5).

Lemma 2.1 Under the conditions of Theorem 1.5, if n ≥ 2 and f(z) is an entire solution of

Eq. (1.5) satisfying σ2(f) < 1, then there exist positive numbers A1 < A2 and a set E of finite

logarithmic measure, such that

A1r
q ≤ T (r, f) ≤ A2r

q

hold for sufficiently large r 6∈ E.

The proof of Lemma 2.1 needs the following Lemmas.

Lemma 2.2 ( [8]) Let f be a nonconstant meromorphic function of σ2(f) < 1, and η be a

nonzero constant. Then for each ε > 0,

m(r,
f(z + η)

f(z)
) = o(

T (r, f)

r1−σ2(f)−ε
), r → ∞, r 6∈ E.

Remark 2.3 Lemma 2.2 is a version of the difference logarithmic derivative lemma. By this

lemma, [8, Lemma 8.3] and the logarithmic derivative lemma, we have the following conclusions.

Let f, η satisfy the conditions of Lemma 2.2. Then

T (r, f(z + η)) = T (r, f(z)) + o(T (r, f)), r → ∞, r 6∈ E,

N(r,
1

f(z + η)
) = N(r,

1

f(z)
) + o(T (r, f)), r → ∞, r 6∈ E,

m(r,
f (k)(z + η)

f (j)(z)
) = o(T (r, f)), r → ∞, r 6∈ E,

where f (j) 6≡ 0 and k ≥ j ≥ 0.
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Lemma 2.4 ([7]) Let m, q be positive integers, ϕj (0 ≤ j ≤ m) be meromorphic functions of

σ(ϕj) < q, such that ϕj 6≡ 0 (1 ≤ j ≤ m), and let ω1, . . . , ωm be distinct nonzero constants.

Set ϕ(z) = ϕ0(z) +
∑m

j=1 ϕj(z)e
ωjz

q

, then there exist positive numbers D1, D2, such that for

sufficiently large r, we have D1r
q ≤ T (r, ϕ) ≤ D2r

q, and m(r, 1
ϕ
) = o(rq) for ϕ0 6≡ 0.

Proof of Lemma 2.1 By Lemma 2.4, Remark 2.3 and Eq. (1.5), there exists a positive number

D1, such that

D1r
q ≤ m(r,

fn(z)f ′(z) + P (z)f (k)(z + η)

f(z)
) +m(r, f(z))

≤ (n+ 1)m(r, f) + o(T (r, f)) + o(rq)

holds for sufficiently large r 6∈ E. This means that T (r, f) ≥ A1r
q holds for a constant A1 > 0

and sufficiently large r 6∈ E.

Let G(z) =
∑m

j=1 Hj(z)e
ωjz

q

. For a fixed r > 0, let

Λ1 = {θ ∈ [0, 2π) : |f(reiθ)| > 1}, Λ2 = [0, 2π)− Λ1,

then by the definition of m(r, f), Lemma 2.4, Remark 2.3 and Eq. (1.5), we obtain

m(r, f2(z)) =
1

2π

∫

Λ1

log+ |f2(reiθ)|dθ

≤
1

2π

∫

Λ1

{log+ |
G(reiθ)f(reiθ)

f ′(reiθ)
|+ log+ |

P (reiθ)f (k)(reiθ + η)

f ′(reiθ)
|+O(1)}dθ

≤ m(r,G(z)) +m(r,
f(z)

f ′(z)
) +m(r,

f (k)(z + η)

f ′(z)
) + o(rq)

≤ T (r,
f ′(z)

f(z)
) +D2r

q + o(T (r, f))

≤ N(r,
f ′(z)

f(z)
) +D2r

q + o(T (r, f))

≤ T (r, f(z)) +D2r
q + o(T (r, f))

holds for a constant D2 > 0 and sufficiently large r 6∈ E. This means that T (r, f) ≤ A2r
q holds

for a constant A2 > 0 and sufficiently large r 6∈ E. Lemma 2.1 is proved. 2

The following three lemmas will be used to estimate the zero distribution of entire solutions of

Eq. (1.5), in which Lemma 2.5 is a simple version of Cartan’s second main theorem. The symbol

Nk(r,
1
f
) below denotes the integrated counting function corresponding to nk(r,

1
f
), where each

zero of f(z) of multiplicity l is counted min{l, k} times.

Lemma 2.5 ([9, 10]) Let f1, f2, . . . , fk be linearly independent entire functions. Assume that

for each complex number z, max{|f1(z)|, . . . , |fk(z)|} > 0. For r > 0, set

T (r) =
1

2π

∫ 2π

0

u(reiθ)dθ − u(0), u(z) = sup
1≤j≤k

log |fj(z)|.
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Set fk+1 = f1 + · · ·+ fk. Then

T (r) ≤

k+1
∑

j=1

Nk−1(r,
1

fj
) + S(r) ≤ (k − 1)

k+1
∑

j=1

N(r,
1

fj
) + S(r),

where S(r) is a quantity satisfying S(r) = O(log T (r)) + O(log r) (r → ∞, r 6∈ E1). If at least

one of the quotients fj/fm is transcendental, then S(r) = o(T (r)) (r → ∞, r 6∈ E1), while if all

the quotients fj/fm are rational functions, then S(r) ≤ − 1
2k(k−1) log r+O(1) (r → ∞, r 6∈ E1).

Lemma 2.6 ([9, 10]) Assume that the hypotheses of Lemma 2.5 hold. Then for any j and m,

we have

T (r, fj/fm) = T (r) +O(1), r → ∞,

and for any j, we have

N(r, 1/fj) = T (r) +O(1), r → ∞.

Lemma 2.7 ([11, p. 39]) Let f be a nonconstant meromorphic function, and k be a positive

integer. Then

N(r,
1

f (k)
) ≤ N(r,

1

f
) + kN(r, f) + o(T (r, f)), r → ∞, r 6∈ E1.

The next lemma will be used to prove Theorem 1.5, which play an important role in judging

the linear dependence of entire functions over complex domain.

Lemma 2.8 ( [11, p. 70]) Let f1, f2, . . . , fn be linearly independent meromorphic functions

satisfying
∑n

j=1 fj ≡ 1. Then for 1 ≤ j ≤ n, we have

T (r, fj) ≤
n
∑

k=1

N(r,
1

fk
) +N(r, fj) +N(r,D)−

n
∑

k=1

N(r, fk)−N(r,
1

D
) + o

(

max
1≤k≤n

{T (r, fk)}
)

≤

n
∑

k=1

N(r,
1

fk
) + (n− 1)

n
∑

k=1

N(r, fk)−N(r,
1

D
) + o

(

max
1≤k≤n

{T (r, fk)}
)

as r → ∞, r 6∈ E1, where D is the Wronskian determinant W (f1, f2, . . . , fn).

The following is Borel’s theorem on the combinations of entire functions, which will be used

to judge the existence of entire solutions satisfying λ(f) < σ(f) in the proof of Theorem 1.9.

Lemma 2.9 ([11, p. 77]) Let fj, gj (j = 1, . . . , n) (n ≥ 2) be entire functions satisfying the

following conditions.

(1)
n
∑

j=1

fj(z)e
gj(z) ≡ 0;

(2) The orders of fj are less than that of egt(z)−gk(z) for 1 ≤ j ≤ n, 1 ≤ t < k ≤ n.

Then fj(z) ≡ 0 (j = 1, . . . , n).

3. Proofs of results

This section is devoted to proving Theorems 1.5 and 1.9.
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Proof of Theorem 1.5 Let f(z) be an entire solution of σ2(f) < 1 of Eq. (1.5), by Lemma 2.1

we have

σ(f) = q. (3.1)

On the other hand, by Lemma 2.1 and Remark 2.3, there exists a constant D1 > 0 such that for

sufficiently large r 6∈ E,

T (r,
p(z)f (k)(z + η)

fn(z)f ′(z)
) ≥T (r,

fn(z)f ′(z)

f (k)(z + η)
)− o(rq)

≥T (r, fn(z))− T (r,
f (k)(z + η)

f ′(z)
)− o(rq)

≥T (r, fn(z))−N(r,
f (k)(z + η)

f ′(z)
)− o(T (r, f))− o(rq)

≥T (r, fn(z))−N(r,
1

f ′(z)
)− o(rq)

≥T (r, fn(z))− T (r, f ′(z))− o(rq)

≥(n− 1− o(1))D1r
q . (3.2)

Now we discuss the following two cases.

Case 1. Suppose that −p(z)f (k)(z+η), H1(z)e
ω1z

q

, . . . , Hm(z)eωmzq

are linearly independent.

Let φ1(z) denote the canonical product (or polynomial) generated by the common zeros of

−p(z)f (k)(z+η), H1(z), . . . , Hm(z), each common zero is counted the minimum of its multiplicity.

Then − p(z)f(k)(z+η)
φ1(z)

, H1(z)e
ω1zq

φ1(z)
, . . . , Hm(z)eωmzq

φ1(z)
are entire functions without common zeros, and

N(r,
1

φ1(z)
) = o(rq), r → ∞. (3.3)

Rewrite Eq. (1.5) in the form

fn(z)f ′(z)

φ1(z)
=

m
∑

j=1

Hj(z)e
wjz

q

φ1(z)
−

p(z)f (k)(z + η)

φ1(z)
. (3.4)

It follows from (3.2) that p(z)f(k)(z+η)
φ1(z)

/ fn(z)f ′(z)
φ1(z)

is transcendental. So by (3.3), (3.4), Lemmas

2.5–2.7, Remark 2.3 and Lemma 2.1, we obtain

N(r,
1

fn(z)f ′(z)
) ≤N(r,

φ1(z)

fn(z)f ′(z)
) + o(rq)

≤T1(r) + o(rq)

≤

m
∑

j=1

Nm(r,
φ1(z)

Hj(z)ewjzq ) +Nm(r,
φ1(z)

p(z)f (k)(z + η)
)+

Nm(r,
φ1(z)

fn(z)f ′(z)
) + o(T1(r)) + o(rq)

≤N(r,
1

f (k)(z + η)
) +Nm(r,

1

fn(z)f ′(z)
) + o(T1(r)) + o(rq)

≤N(r,
1

f(z)
) +Nm(r,

1

fn(z)f ′(z)
) + o(T1(r)) + o(rq) (3.5)
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as r → ∞ and r 6∈ E, where

T1(r) =
1

2π

∫ 2π

0

u1(re
iθ)dθ − u1(0),

u1(z) = sup{log |
p(z)f (k)(z + η)

φ1(z)
|, log |

Hj(z)e
ωjz

q

φ1(z)
| : 1 ≤ j ≤ m}.

Let z0 be a zero of f(z) with multiplicity l. Then z0 is a zero of fn(z)f ′(z) with multiplicity

(n + 1)l − 1. Since n ≥ m + 2, the contribution of z0 to n(r, 1
fn(z)f ′(z)) − nm(r, 1

fn(z)f ′(z) ) is

(n+ 1)l− 1−m (≥ 2l) when |z0| ≤ r. This means that

N(r,
1

fn(z)f ′(z)
)−Nm(r,

1

fn(z)f ′(z)
) ≥ 2N(r,

1

f(z)
). (3.6)

So by (3.5) and (3.6), we obtain

N(r,
1

f(z)
) ≤ o(T1(r)) + o(rq), r → ∞, r 6∈ E. (3.7)

On the other hand, by (3.5) and Lemma 2.1, there exists a constant D2 > 0 such that

(1− o(1))T1(r) ≤ N(r,
1

f(z)
) +Nm(r,

1

fn(z)f ′(z)
) + o(rq)

≤ T (r, f(z)) + T (r, fn(z)f ′(z)) + o(rq)

≤ (n+ 2)T (r, f) + o(rq)

≤ D2r
q , r → ∞, r 6∈ E,

which means that

o(T1(r)) ⊂ o(rq), r → ∞, r 6∈ E. (3.8)

So combining (3.7) and (3.8), we obtain

N(r,
1

f(z)
) = o(rq), r → ∞, r 6∈ E. (3.9)

Then by (3.9), Lemma 2.7 and Remark 2.3, we obtain

m
∑

j=1

N(r,
fn(z)f ′(z)

Hj(z)ewjzq ) +N(r,
fn(z)f ′(z)

p(z)f (k)(z + η)
) = o(rq), r → ∞, r 6∈ E (3.10)

and
m
∑

j=1

N(r,
Hj(z)e

wjz
q

fn(z)f ′(z)
) +N(r,

p(z)f (k)(z + η)

fn(z)f ′(z)
) = o(rq), r → ∞, r 6∈ E. (3.11)

Let

Tf (r) = max{T (r,
p(z)f (k)(z + η)

fn(z)f ′(z)
), T (r,

Hj(z)e
wjz

q

fn(z)f ′(z)
) : 1 ≤ j ≤ m}.

Note that (1.5) implies
m
∑

j=1

Hj(z)e
wjz

q

fn(z)f ′(z)
−

p(z)f (k)(z + η)

fn(z)f ′(z)
= 1,
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then by Lemma 2.8, (3.10) and (3.11), we obtain

Tf(r) = o(rq), r → ∞, r 6∈ E,

which implies that

T (r,
p(z)f (k)(z + η)

fn(z)f ′(z)
) = o(rq), r → ∞, r 6∈ E.

This contradicts (3.2).

Case 2. Suppose that −p(z)f (k)(z + η), H1(z)e
ω1z

q

, . . . , Hm(z)eωmzq

are linearly dependent.

Since H1(z)e
ω1z

q

, . . . , Hm(z)eωmzq

are linearly independent, there exist constants c1, . . . , cm that

are not all zero, such that

p(z)f (k)(z + η) =

m
∑

j=1

cjHj(z)e
ωjz

q

. (3.12)

Substituting (3.12) into (1.5), we obtain

fn(z)f ′(z) =

m
∑

j=1

(1− cj)Hj(z)e
ωjz

q

. (3.13)

Now we discuss the following two subcases.

Subcase 2.1. If at least two among 1− c1, . . . , 1− cm are not zero, without loss of generality,

we assume that 1− c1, . . . , 1− ct (2 ≤ t ≤ m) are not zero, then by (3.13) and Lemma 2.4 there

exists a constant D3 > 0 such that

N(r,
1

fn(z)f ′(z)
) = N

(

r,
1

∑t

j=1(1− cj)Hj(z)e(ωj−ω1)zq

)

= T
(

r,
t

∑

j=1

(1− cj)Hj(z)e
(ωj−ω1)z

q
)

− o(rq)

≥ D3r
q , r → ∞. (3.14)

On the other hand, using the argument similar to that of Case 1, there exists an entire function

φ2(z) such that (1−c1)H1(z)e
ω1zq

φ2(z)
, . . . , (1−ct)Ht(z)e

ωtz
q

φ2(z)
are entire functions without common zeros,

and

N(r,
1

φ2(z)
) = o(rq), r → ∞. (3.15)

Rewrite (3.13) in the form

fn(z)f ′(z)

φ2(z)
=

t
∑

j=1

(1− cj)Hj(z)e
ωjz

q

φ2(z)
. (3.16)

Since (1−c1)H1(z)e
ω1zq

φ2(z)
/ (1−c2)H2(z)e

ω2zq

φ2(z)
is transcendental, by Lemmas 2.5 and 2.6, (3.16) and

(3.15), we obtain

N(r,
1

fn(z)f ′(z)
) ≤N(r,

φ2(z)

fn(z)f ′(z)
) + o(rq)

≤T2(r) + o(rq)
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≤

t
∑

j=1

Nt−1(r,
φ2(z)

(1− cj)Hj(z)eωjzq ) +Nt−1(r,
φ2(z)

fn(z)f ′(z)
)+

o(T2(r)) + o(rq)

≤Nt−1(r,
1

fn(z)f ′(z)
) + o(T2(r)) + o(rq)

≤T (r, fn(z)f ′(z)) + o(T2(r)) + o(rq)

≤(n+ 1)T (r, f(z)) + o(T2(r)) + o(rq), r → ∞, r 6∈ E, (3.17)

where

T2(r) =
1

2π

∫ 2π

0

u2(re
iθ)dθ − u2(0),

u2(z) = sup{log |
(1 − cj)Hj(z)e

ωjz
q

φ2(z)
| : 1 ≤ j ≤ t}.

Combining (3.17) and Lemma 2.1, we have

o(T2(r)) ⊂ o(rq), r → ∞, r 6∈ E. (3.18)

Then by (3.17), (3.18), (3.6) and Nt−1(r,
1

fn(z)f ′(z) ) ≤ Nm(r, 1
fn(z)f ′(z) ), we obtain

N(r,
1

f(z)
) = o(rq), r → ∞, r 6∈ E.

From this, Lemmas 2.7 and 2.1, we obtain

N(r,
1

fn(z)f ′(z)
) ≤ (n+ 1)N(r,

1

f(z)
) + o(T (r, f)) = o(rq), r → ∞, r 6∈ E,

which contradicts (3.14).

Subcase 2.2. If only one among 1 − c1, . . . , 1 − cm is not zero, without loss of generality, we

assume that 1− c1 6= 0, then (3.13) reduces to the form

fn(z)f ′(z) = (1− c1)H1(z)e
ω1z

q

. (3.19)

We claim that only one among c1, . . . , cm is not zero. If not, then by (3.12) and Lemma 2.4,

there exists a constant D4 > 0, such that for sufficiently large r,

N(r,
1

f (k)(z + η)
) ≥ N(r,

1
m
∑

j=1

cjHj(z)eωjzq

)−N(r,
1

p(z)
)

= N(r,
1

m
∑

j=1

cjHj(z)e
(ωj−ωj0)z

q

)− o(rq)

= T (r,

m
∑

j=1

cjHj(z)e
(ωj−ωj0 )z

q

)− o(rq)

≥ D4r
q, (3.20)

where j0 ∈ {1, . . . ,m} such that cj0 6= 0. By (3.20), (3.19), Lemma 2.7, Remark 2.3 and Lemma
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2.1, we obtain for sufficiently large r 6∈ E,

D4r
q ≤ N(r,

1

f (k)(z + η)
) ≤ N(r,

1

f(z)
) + o(T (r, f)) ≤ N(r,

1

H1(z)
) + o(rq) = o(rq).

This is a contradiction. So we have only cj0 6= 0, and (3.12) gives

p(z)f (k)(z + η) = cj0Hj0(z)e
ωj0z

q

. (3.21)

By (3.19) and (3.1), we have λ(f) < σ(f) = q. So by Hadamard’s factorization theorem, we

obtain

f(z) = ϕ(z)eαz
q

, (3.22)

where ϕ(z) is an entire function satisfying σ(ϕ) = λ(ϕ) = λ(f) < q, α is a nonzero constant.

From (3.22), we obtain

f (j)(z) = ϕj(z)e
αzq

, j = 1, . . . , k, (3.23)

where ϕj(z) = ϕ′
j−1(z) + qαzq−1ϕj−1(z)(6≡ 0) (j = 1, . . . , k), ϕ0 = ϕ. Substituting (3.22) and

(3.23) into (3.19) and (3.21), respectively, we have α = ω1

n+1 = ωj0 . So j0 6= 1. From this, (3.19),

(3.21) and (1.5), we get m = 2. Theorem 1.5 is thus proved. 2

Proof of Theorem 1.9 Let f be an entire solution of Eq. (1.5) satisfying σ2(f) < 1. If n ≥ 2,

then by Lemma 2.1 we have σ(f) = q. Now we discuss the case n = 1. Let G(z),Λ1,Λ2 be

defined as the proof of Lemma 2.1. By (1.5) we know that

|f ′(reiθ)| ≤ |G(reiθ)|+ |
p(reiθ)f (k)(reiθ + η)

f(reiθ)
|

holds for θ ∈ Λ1. From this, Lemma 2.1 and Remark 2.3, there exists a constant D5 > 0, such

that for sufficiently large r 6∈ E,

m(r, f ′(z)) ≤
1

2π

∫

Λ1

log+ |f ′(reiθ)|dθ +
1

2π

∫

Λ2

log+ |
f ′(reiθ)

f(reiθ)
|dθ

≤ m(r,G(z)) +m(r,
f (k)(z + η)

f(z)
) +m(r, p(z)) + o(T (r, f))

≤ D5r
q . (3.24)

Since σ(f) = σ(f ′), by (3.24) we have σ(f) ≤ q. If σ(f) < q, then by (1.5), we obtain that

q = σ
(

m
∑

j=1

Hj(z)e
ωjz

q
)

< q.

This is a contradiction. So we have σ(f) = q. The first result of Theorem 1.9 is thus proved.

Next we consider the case λ(f) < σ(f). By σ(f) = q and Hadamard’s factorization theorem,

we know that f(z) and f (k)(z) have the form of (3.22) and (3.23), respectively. Substituting

(3.22) and (3.23) into (1.5), we obtain

ϕn(z)ϕ1(z)e
(n+1)αzq

+ p(z)ϕk(z + η)eα((z+η)q−zq)eαz
q

=

m
∑

j=1

Hj(z)e
ωjz

q

. (3.25)
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Since the orders of ϕn(z)ϕ1(z), p(z)ϕk(z + η)eα((z+η)q−zq), Hj(z) (j = 1, . . . ,m) are less than q,

by (3.25) and Lemma 2.9, we obtain that m = 2, {α, (n+ 1)α} = {ω1, ω2}. Then by n ≤ m+ 1,

we have (n,m) ∈ {(1, 2), (2, 2), (3, 2)}. Theorem 1.9 is thus proved. 2
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