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Abstract In this work, we study the error estimates of the fully discrete Fourier pseudo-

spectral numerical scheme for solving the nonlocal volume-conserved Allen-Cahn (AC) equation.

The time marching method of the numerical scheme is based on the well-known Invariant En-

ergy Quadratization (IEQ) method. We demonstrate that the proposed fully discrete numerical

method is uniquely solvable, unconditionally energy stable, and obtain the optimal error esti-

mate of the scheme for both space and time. Additionally, we conduct several numerical tests

to verify the theoretical results.
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1. Introduction

The phase field model finds wide application in interface problems, encompassing phase

separation, viscous fingering, fracture dynamics, vesicle dynamics, and more [1–7]. By employing

the variational method in either L2 (AC equation, [8,9]) or in H−1 (Cahn-Hilliard (CH) equation,

[10–12]) on the postulated total free energy, one can derive a single or a set of partial differential

equations that adhere to the principle of energy dissipation. Remarkably, the AC equation does

not conserve volume (or mass), prompting various efforts to modify it while upholding volume

conservation. The nonlocal Allen-Cahn equation, introduced by Rubinstein and Sternberg [1],

achieves this goal by incorporating an additional nonlocal term into the AC equation. This

modification enables the straightforward elimination of volume change and accurate conservation.

Given its ability to ensure energy dissipation properties alongside volume conservation, this

equation has received significant attention, see [6, 13–19].
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In addition to designing efficient numerical algorithms for local types of phase-field models,

the development of numerical algorithms for the nonlocal AC equation also emphasizes the

efficient discretization of nonlinear terms to achieve higher order, energy stability, and ease of

implementation. The introduction of the nonlocal term in the system poses new challenges

for algorithm design and corresponding error analysis. To the authors’ knowledge, the current

numerical algorithms for this nonlocal model mainly include the following approaches. In [20,21],

the second-order convex splitting method was developed. However, due to the unique nature

of the convex splitting approach, the resulting scheme is nonlinear and nonlocal, which may

result in high computational costs in practice. In [22], various numerical methods such as finite

difference and Fourier operator splitting methods are applied to the nonlocal model. However, a

corresponding stability analysis for the algorithm was not provided. The well-known Invariant

Energy Quadratization (IEQ) method is also used to solve this nonlocal model, as seen in [23].

Although the work provides detailed discussions on the algorithm and error estimates, the error

estimates primarily focus on the semi-discrete version in time, assuming continuous space.

In this work, we consider to develop the first error analysis work of the fully-discrete type IEQ

scheme [24–29], where space is discretized by the Fourier-Spectral method. The unique solvability

and unconditional energy stability of the numerical scheme are also derived. By constructing

an appropriate auxiliary interpolation function, the error estimate for the full-discrete method

is rigorously proved. At last, we also propose some examples to verify the reliability of the

numerical method.

The following is how the rest of this article is organized. In Section 2, we describe the

PDE system and show its energy law on a continuous scale. In Section 3, we present two

second-order numerical schemes, based on the Crank-Nicolson and backward difference formula,

and demonstrate that both schemes abide to the unconditional energy stability. In Section 4,

we derive the optimal error estimates for both schemes. Section 5 includes several numerical

experiments to verify the theoretical estimates established for the proposed algorithms. Section

6 concludes with some closing remarks.

2. Model and Fourier pseudospectral method

In this section, we mainly describe the nonlocal AC equation and introduce the Fourier

pseudospectral method.

2.1. Nonlocal AC equation

We define the free energy

E(φ) =

∫
Ω

ε2

2
|∇φ|2 + F (φ)dx. (2.1)

By employing the variational method of (2.1) in L2, we have

∂tφ = ε2∆φ− f(φ), (2.2)



346 Jun ZHANG, Xiaohu YANG, Fulin MEI and et al.

where f(φ) = φ3 − φ. Adding a nonlocal term, we get the following nonlocal AC model

∂tφ = ε2∆φ− f(φ) +
1

|Ω|

∫
Ω

f(φ)dx. (2.3)

Taking the inner product of the above equation with 1, we have

d

dt

∫
Ω

φdx = 0. (2.4)

Taking the inner product of (2.3) with φt, we obtain the energy dissipation of the nonlocal AC

model.

d

dt
E(φ) = −‖φt‖2 ≤ 0. (2.5)

2.2. An introduction of Fourier pseudospectral method

In this paper, we will introduce the spatial discrete method. Given ϕ(x, y) ∈ L2(Ω), Ω =

(0, 1)2, the Fourier series of ϕ is denoted by

ϕ(x, y) =

∞∑
j,k=−∞

ϕ̂j,ke
2πi(jx+ky), (2.6)

where

ϕ̂j,k =

∫
Ω

ϕ(x, y)e−2πi(jx+ky)dxdy. (2.7)

We define SN as a polynomial space. The projection and interpolation of the Fourier functions

are given by

PNϕ(x, y) =

N/2−1∑
j,k=−N/2

ϕ̂j,ke
2πi(jx+ky), (INϕ)(x, y) =

N/2−1∑
j,k=−N/2

(ϕ̂N )j,ke
2πi(jx+ky), (2.8)

where (ϕ̂N )j,k are pseudospectral coefficients. We can find the following error estimates.

‖∂lϕ(x, y)− ∂lPNϕ(x, y)‖ ≤Chm−l‖ϕ‖Hm , for 0 ≤ l ≤ m, (2.9)

‖∂lϕ(x, y)− ∂lINϕ(x, y)‖ ≤Chm−l‖ϕ‖Hm , for 0 ≤ l ≤ m,m >
d

2
. (2.10)

Please see Caunto and Quarteroni [30,31] for more details.

Given periodic functions ϕ, ψ, we denote the inner product and norm, respectively

‖ϕ‖22 = 〈ϕ,ϕ〉, 〈ϕ,ψ〉 =
1

N2

N/2−1∑
j,k=−N/2

ϕj,kψj,k. (2.11)

We find that

−〈ϕ,∆Nψ〉 = 〈∇Nϕ,∇Nψ〉 (2.12)

with

∆Nϕ = (D2
Nx +D2

Nx)ϕ, ∇Nϕ = (DNxϕ,DNyϕ)T, (2.13)

where DN denotes the discrete differentiation matrix.
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3. IEQ method for nonlocal AC model

Next, the IEQ method will be studied. Define

q =
√
F (φ)− γφ2 +B, g =

∂q

∂φ
=

f(φ)− 2γφ

2
√
F (φ)− γφ2 +B

, (3.1)

where γ ≥ 0, A,B are appropriate constants, such that F (φ) − γφ2 + B ≥ A > 0. Thus, the

nonlocal AC model will be rewritten as

∂tφ =ε2∆φ− 2qg − 2γφ+
2

|Ω|

∫
Ω

qg + γφdx, (3.2)

∂tq =g∂tφ, (3.3)

with φ|t=0 = φ0, q|t=0 =
√
F (φ)− γφ2 +B|t=0.

Using Crank-Nicolson (CN) scheme for time discretization and pseduspectral for spacial dis-

cretization, then we can get the full-discrete scheme as follows{
φn+1−φn

δt − ε2∆Nφ
n+ 1

2 + 2g(φ?)qn+ 1
2 + 2γφn+ 1

2 − 2
|Ω|
(
〈g(φ?), qn+ 1

2 〉+ γ〈φn+ 1
2 , 1〉

)
= 0,

qn+1−qn
δt = g(φ?)φ

n+1−φn
δt ,

(3.4)

where φ? = 3
2φ

n − 1
2φ

n−1, n ≥ 1, with φ? = φ0 for n = 0.

Theorem 3.1 The full-discrete numerical scheme (3.4) satisfies unconditionally energy stable,

that is

E(φn+1, qn+1) +
1

δt
‖φn+1 − φn‖22 = E(φn, qn) (3.5)

with

E(φn, qn) =
ε2

2
‖∇Nφn‖22 + γ‖φn‖22 + ‖qn‖22.

Proof By computing the inner product of the first equation in (3.4) with (φn+1 − φn) and, we

arrive at

1

δt
‖φn+1 − φn‖22 +

ε2

2
(‖∇Nφn+1‖22 − ‖∇Nφn‖22) + γ(‖φn+1‖22 − ‖φn‖22)+

〈g(φ?)(qn+1 + qn), φn+1 − φn〉 − 1

|Ω|
〈g(φ?), qn+1 + qn〉〈φn+1 − φn, 1〉−

γ

|Ω|
〈φn+1 + φn, 1〉〈φn+1 − φn, 1〉 = 0 (3.6)

and

〈φn+1 − φn, 1〉 = 0. (3.7)

By taking the inner product of the second equation in (3.4) with δt(qn+1 + qn), we find

‖qn+1‖22 − ‖qn‖22 = 〈g(φ?)(φn+1 − φn), qn+1 + qn〉. (3.8)
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Thus, we have

1

δt
‖φn+1 − φn‖22 +

ε2

2
(‖∇Nφn+1‖22 − ‖∇Nφn‖22) + γ(‖φn+1‖22 − ‖φn‖22) + ‖qn+1‖22 − ‖qn‖22 = 0.

(3.9)

This yields (3.5). 2

Theorem 3.2 The numerical scheme (3.4) is unique solvable.

Proof From (3.4), we find

qn+1 = qn + g(φ?)(φn+1 − φn). (3.10)

Thus, we can rewrite the first equation of (3.4) as

1

δt
φn+1 − ε2

2
∆Nφ

n+1 + γφn+1 + g2(φ?)φn+1 − 1

|Ω|
〈g(φ?), g(φ?)φn+1〉 − γ

|Ω|
〈φn+1, 1〉 = b1,

(3.11)

where

b1 =
1

δt
φn +

ε2

2
∆Nφ

n − γφn − 2g(φ?)qn + g2(φ?)φn +
1

|Ω|
〈g(φ?), 2qn − g(φ?)φn〉+

γ

|Ω|
〈φn, 1〉.

We introduce ψ = φn+1 − α, where

α = 〈φn+1, 1〉 = · · · = 〈φ0, 1〉.

Thus, one can reformulate (3.11) as

[
1

δt
− ε2

2
∆N + γ + g2(φ?)− 1

|Ω|
〈g(φ?), g(φ?)•〉 − γ

|Ω|
〈•, 1〉]ψ = b2, (3.12)

where b2 is defined as some known terms. Thus, the existence for ψ is obvious. Note that

〈Lψ,ψ〉 = (
1

δt
+ γ)‖ψ‖22 +

ε2

2
‖∇Nψ‖22 + ‖g(φ?)ψ‖22. (3.13)

When Lψ = 0, we will obtain ψ = 0, then the uniqueness is proved. Thus we get the conclusion

of (3.11). 2

4. Error estimate

In this part, the fully discrete error estimate of (3.4) will be analyzed. For the sake of

simplicity, we now define the following projection function into SN .

ΦN (·, t) = PNφ(·, t), QN (·, t) = PNq(·, t). (4.1)

We have

∂

∂t
ΦN =

∂

∂t
PNφ = PN

∂

∂t
φ,

∂

∂t
QN =

∂

∂t
PNq = PN

∂

∂t
q. (4.2)

Then, we can rewrite equations (3.4) as follows{
∂tΦN = ε2∆ΦN − 2g(ΦN )QN − 2γΦN + 2

|Ω| (〈g(ΦN ), QN 〉+ γ〈ΦN , 1〉) + r1,

∂tQN = (ΦN )∂tΦN + r2,
(4.3)
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where

r1 =(∂tΦN − ∂tφ)− ε2(∆ΦN −∆φ) + 2(g(ΦN )QN − g(φ)q) + 2γ(ΦN − φ)+

2

|Ω|

(∫
Ω

gqdx− 〈g(ΦN ), QN 〉+ γ

∫
Ω

φdx− γ〈ΦN , 1〉
)
,

r2 =(∂tQN − ∂tq)− (g(ΦN )∂tΦN − g(φ)∂tφ).

Note that

‖∂t(ΦN − φ)‖2 ≤ ‖∂t(ΦN − φ)‖L2 + ‖∂t(INφ− φ)‖L2 . (4.4)

Therefore, we arrive at

‖∂t(ΦN − φ)‖2 ≤ Chm, ‖∂t(QN − q)‖2 ≤ Chm, ‖∆(ΦN − φ)‖2 ≤ Chm. (4.5)

The following estimates are obvious

‖QN − q‖L2 =‖
√
F (ΦN )− γΦ2

N +B −
√
F (φ)− γφ2 +B‖L2

≤‖ F (ΦN )− F (φ) + γ(φ2 − Φ2
N )√

F (ΦN )− γΦ2
N +B

√
F (φ)− γφ2

N +B
‖L2

≤C(‖f(ζ1)‖L∞ + ‖φ‖L∞)‖φ− ΦN‖L2 , (4.6)

‖g(ΦN )− g(φ)‖2L2 =‖ f(ΦN )− 2γΦN√
F (ΦN )− γΦ2

N +B
− f(φ)− 2γφ√

F (φ)− γφ2 +B
‖L2

≤C(‖f(ζ1)‖L∞ + ‖f ′(ζ2)‖L∞ + ‖φ‖L∞)‖ΦN − φ‖L2 , (4.7)

‖g(φ)∂tq − g(ΦN )∂tQN‖L2 ≤‖∂tq‖L∞‖g(φ)− g(ΦN )‖L2 + ‖g(ΦN )‖L∞‖∂tq − ∂tQN‖L2 . (4.8)

Then

‖g(φ)q − g(ΦN )QN‖2 =‖IN (g(φ)q − g(ΦN )QN )‖L2 ≤ Chm, (4.9)

‖g(φ)∂tφ− g(ΦN )∂tΦN‖2 =‖IN (g(φ)∂tφ− g(ΦN )∂tΦN )‖L2

≤‖g(φ)∂tφ− g(ΦN )∂tΦN‖L2 + ‖g(φ)∂tφ− IN (g(φ)∂tφ)‖L2+

‖g(ΦN )∂tΦN − IN (g(ΦN )∂tΦN )‖L2

≤Chm. (4.10)

For the last nonlinear term∫
Ω

gqdx− 〈g(ΦN ), QN 〉 =

∫
Ω

gqdx− 〈g, q〉+ 〈g, q〉 − 〈g(ΦN ), QN 〉

=

∫
Ω

gqdx− 〈g, q〉+ 〈g, q −QN 〉+ 〈g − g(ΦN ), QN 〉. (4.11)

The above inner product error can be deduced from the interpolation approximation result.

Combining with (4.5)–(4.11) gives

‖ri‖2 ≤ Chm, i = 1, 2. (4.12)

Based on Eq. (4.3), we have the following consistency result. For simplicity of presentation, let

(ΦN , QN ) be the approximation solution of (4.3). We also define (Φ, Q) = IN (ΦN , QN ) as the
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discrete interpolation.

Theorem 4.1 Assume (φ, q) be the exact periodic solution for problem (3.2) and (3.3). If (φ, q)

is smooth enough, then there hold
Φn+1−Φn

δt = ε2∆NΦn+ 1
2 − 2g(Φ?)Qn+ 1

2 − 2γΦn+ 1
2 +

2
|Ω| (〈g(Φ?), Qn+ 1

2 〉+ γ〈Φn+ 1
2 , 1〉) +R

n+ 1
2

1 ,

Qn+1−Qn
δt = g(Φ?)Φn+1−Φn

δt +R
n+ 1

2
2 ,

(4.13)

where

Φn = Φ(tn), Qn = Q(tn),

and R
n+ 1

2
i (i = 1, 2) satisfies

‖Ri‖l2(0,T ;l2) :=
(
δt

K∑
k=0

‖Rk+ 1
2

i ‖22
) 1

2 ≤ C(δt2 + hm). (4.14)

Proof Applying Taylor expansion and (4.12), we can prove the desired result. 2

Lemma 4.2 Given (i) F (φ)− γφ2 ∈ C3; (ii) There is a constant Ĉ that makes

max
n≤k

g{‖Φn‖L∞ , ‖φn‖L∞} ≤ Ĉ.

The following inequalities hold

‖g(Φn)− g(φn)‖2 ≤C(‖(Φn − φn)‖2, (4.15)

‖∇Ng(Φn)−∇Ng(φn)‖2 ≤C(‖∇N (Φn − φn)‖2 + ‖Φn − φn‖2). (4.16)

Proof Using the similar arguments in (4.7), we can conclude the above proof. 2

Lemma 4.3 Let {un}k+1
n=0 be the function of the grid point. We obtain

‖uk+1‖ ≤
k∑

n=0

‖un+1 + un‖+ ‖u0‖.

In order to study uniform boundedness, we define µ as

µ = max
0≤t≤T

‖Φ(t)‖L∞ + 1.

Lemma 4.4 Assume F (φ)− γφ2 ∈ C3 and the exact solution is smooth enough. Given τ0 and

h0, when τ0 < δt, h0 < h, the following uniform boundedness result yields

‖φk‖L∞ ≤ µ, k = 0, 1, . . . ,K = T/δt. (4.17)

Proof We can easily find that ‖φ0‖L∞ ≤ ν is clearly true. Suppose

‖φn‖L∞ ≤ ν for n ≤ k.

Next, we will prove ‖φk+1‖L∞ ≤ ν. Denote

ẽnφ = Φn − φn, ẽnq = Qn − qn. (4.18)
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Subtracting (3.4) from (4.13) yields
ẽn+1
φ −ẽnφ
δt = ε2∆N ẽ

n+ 1
2

φ − 2γẽ
n+ 1

2

φ +NLN 1 −NLN 2 +R
n+ 1

2
1 ,

ẽn+1
q −ẽnq
δt = NLN 3 +R

n+ 1
2

2 ,
(4.19)

where

NLN 1 =2(g(φ?)qn+ 1
2 − g(Φ?)Qn+ 1

2 ),

NLN 2 =
2

|Ω|
(〈g(φ?), qn+ 1

2 〉 − 〈g(Φ?), Qn+ 1
2 〉+ γ〈φn+ 1

2 − Φn+ 1
2 , 1〉),

NLN 3 =g(Φn+ 1
2 )

Φn+1 − Φn

δt
− g(φ?)

φn+1 − φn

δt
.

According to the hypothesis, we find

‖ΦN‖L∞(0,T ;W 2,∞) ≤ C, i.e., ‖Φn‖L∞ ≤ C, ‖∇Φn‖L∞ ≤ C. (4.20)

To simplify the notations, we let ε = 1. Computing the inner product of (4.19) with (ẽn+1
φ − ẽnφ)

and δt(ẽn+1
q + ẽnq ) gives

1

δt
‖ẽn+1
φ − ẽnφ‖22 +

1

2
(‖∇N ẽn+1

φ ‖22 − ‖∇N ẽnφ‖22) + γ(‖ẽn+1
φ ‖22 − ‖ẽnφ‖22)

= 〈NLN 1, ẽ
n+1
φ − ẽnφ〉 − 〈NLN 2, ẽ

n+1
φ − ẽnφ〉+ 〈Rn+ 1

2
1 , ẽn+1

φ − ẽnφ〉. (4.21)

And

‖ẽn+1
q ‖22 − ‖ẽnq ‖22 = δt〈NLN 3, ẽ

n+1
q + ẽnq 〉+ δt〈Rn+ 1

2
2 , ẽn+1

q + ẽnq 〉. (4.22)

Thus, we have

1

δt
‖ẽn+1
φ − ẽnφ‖22 +

1

2
(‖∇N ẽn+1

φ ‖22 − ‖∇N ẽnφ‖22) + γ(‖ẽn+1
φ ‖22 − ‖ẽnφ‖22) + ‖ẽn+1

q ‖22 − ‖ẽnq ‖22

= 〈NLN 1, ẽ
n+1
φ − ẽnφ〉 − 〈NLN 2, ẽ

n+1
φ − ẽnφ〉+ 〈Rn+ 1

2
1 , ẽn+1

φ − ẽnφ〉+

δt〈NLN 3, ẽ
n+1
q + ẽnq 〉+ δt〈Rn+ 1

2
2 , ẽn+1

q + ẽnq 〉. (4.23)

Note that

NLN 1 =(Qn+1 +Qn)(g(φ?)− g(Φn+ 1
2 ))− g(φ?)(ẽn+1

q + ẽnq ),

NLN 2 =
2

|Ω|
(〈g(φ?)− g(Φ?), Qn+ 1

2 〉 − 〈g(φ?), ẽ
n+ 1

2
q 〉 − γ〈ẽn+ 1

2

φ , 1〉),

NLN 3 =
Φn+1 − Φn

δt
(g(Φn+ 1

2 )− g(φ?)) + g(φ?)
ẽn+1
φ − ẽnφ
δt

.

We have the following error estimates

〈NLN 2, ẽ
n+1
φ − ẽnφ〉 ≤ 6δt‖NLN 2‖22 +

1

6δt
‖ẽn+1
φ − ẽnφ‖22

≤ Cδt(‖ẽn+1
φ ‖22 + ‖ẽnφ‖22 + ‖ẽn−1

φ ‖22 + ‖ẽn+1
q + ẽnq ‖22) +

1

6δt
‖ẽn+1
φ − ẽnφ‖22, (4.24)

〈Rn+ 1
2

1 , ẽn+1
φ − ẽnφ〉 ≤ Cδt‖R

n+ 1
2

1 ‖22 +
1

6δt
‖ẽn+1
φ − ẽnφ‖22, (4.25)

〈Rn+ 1
2

2 , ẽn+1
q + ẽnq 〉 ≤ C(‖Rn+ 1

2
2 ‖22 + ‖ẽn+1

q + ẽnq ‖22). (4.26)
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And

〈NLN 1, ẽ
n+1
φ − ẽnφ〉+ δt〈NLN 3, ẽ

n+1
q + ẽnq 〉

= 〈(Qn+1 +Qn)(g(φ?)− g(Φn+ 1
2 ))− g(φ?)(en+1

q + enq ), ẽn+1
φ − ẽnφ〉+

〈(Φn+1 − Φn)(g(Φn+ 1
2 )− g(φ?)) + g(φ?)(en+1

φ − enφ), ẽn+1
q + ẽnq 〉

= 〈(Qn+1 +Qn)(g(φ?)− g(Φn+ 1
2 )), ẽn+1

φ − ẽnφ〉+ 〈(Φn+1 − Φn)(g(Φn+ 1
2 )− g(φ?)), ẽn+1

q + ẽnq 〉

≤ ‖Qn+1 +Qn‖4‖g(φ?)− g(Φn+ 1
2 )‖4‖ẽn+1

φ − ẽnφ‖2+

‖Φn+1 − Φn‖4‖g(Φn+ 1
2 )− g(φ?)‖4‖ẽn+1

q + ẽnq ‖2
≤ Cδt(‖ẽnφ‖22 + ‖ẽn−1

φ ‖22 + ‖∇N ẽnφ‖22 + ‖∇N ẽn−1
φ ‖22 + δt4 + ‖ẽn+1

q + ẽnq ‖22)+

1

6δt
‖ẽn+1
φ − ẽnφ‖22. (4.27)

Combining with (4.23)–(4.27), we have

1

2
(‖∇N ẽn+1

φ ‖22 − ‖∇N ẽnφ‖22) + γ(‖ẽn+1
φ ‖22 − ‖ẽnφ‖22) + ‖ẽn+1

q ‖22 − ‖ẽnq ‖22 +
1

2δt
‖ẽn+1
φ − ẽnφ‖22

≤ Cδt(δt4 + h2m) + Cδt
(
‖ẽn+1
φ ‖22 + ‖ẽnφ‖22 + ‖ẽn−1

φ ‖22 + ‖∇N ẽnφ‖22 + ‖∇N ẽn−1
φ ‖22+

‖ẽn+1
q ‖22 + ‖ẽnq ‖22

)
. (4.28)

Summing (4.28) for n = 1, . . . , k, we deduce that

Ẽk+1 +
1

2δt
‖ẽn+1
φ − ẽnφ‖22 ≤ C(Ẽ1 + (δt2 + hm)2) + Cδt

k∑
n=1

Ẽn+1, (4.29)

where

Ẽk+1 =
1

2
‖∇N ẽk+1

φ ‖22 + γ‖ẽk+1
φ ‖22 + ‖ẽk+1

q ‖22.

We find

Ẽ1 ≤ C(δt2 + hm)2. (4.30)

By using Grownwall inequality, we get

Ẽk+1 +
1

2δt

k∑
n=1

‖ẽn+1
φ − ẽnφ‖22 ≤ C(δt2 + hm)2. (4.31)

As can be seen from first equation of (4.19)

‖∆N (ẽn+1
φ + ẽnφ)‖22 ≤Cg(‖NLN 1‖22 + ‖NLN 2‖22 + ‖ẽn+1

φ + ẽnφ‖22+

‖
ẽn+1
φ − ẽnφ
δt

‖22 + ‖Rn+ 1
2

1 ‖22). (4.32)

From Lemma 4.3, (4.31) and (4.32), we arrive at

‖∆N ẽ
k+1
φ ‖2 ≤

k∑
n=0

‖∆N (ẽn+1
φ + ẽnφ)‖2 ≤ C(δt+ δt−1hm). (4.33)

Thus

‖φk+1‖L∞ ≤ ‖ẽk+1
φ ‖L∞ + ‖Φk+1‖L∞ ≤ C‖ek+1

φ ‖
1
2

H1‖ek+1
φ ‖

1
2

H2 + ‖Φk+1‖L∞
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≤ C̃(δt3 + δthm + δt−1h2m)
1
2 + ‖Φk+1‖L∞ . (4.34)

When

C̃(δt3 + δthm + δt−1h2m)
1
2 ≤ 1,

we find

‖φk+1‖L∞ ≤ 1 + ‖Φk+1‖L∞ ≤ µ. (4.35)

This completes the proof. 2

Theorem 4.5 Under the assumption of Lemma 4.4, the following estimation results hold.

‖φ(tk+1)− φk+1‖H1 + ‖q(φ(tk+1))− q(φk+1)‖2 ≤ C(δt2 + hm). (4.36)

Proof By using the technique of Lemma 4.4, we can obtain the following estimation

Ẽk+1 ≤ C(δt2 + hm)2. (4.37)

Using trigonometric inequalities and the conclusion of (2.9) and (2.10), we can get the above

results. 2

5. Numerical experiments

In this part, some numerical experiments will be proposed to verify our analysis results. In

the following tests, all the numerical experiments are fixed in a bounded domain Ω = (0, 2π)2,

and we also choose periodic boundary conditions.

5.1. Convergence test for time and space

First, let us test the convergence with respect to δt. We set B = 4, γ = 1, ε = 0.1, then we

can reformulate q and g as

q =

√
1

4
(φ2 − 3)2 + 2, g =

φ3 − 3φ√
1
4 (φ2 − 3)2 + 2

. (5.1)

We set

φ0 = sin2 x sin2 y, q|t=0 =
√
F (φ0)− φ0 + 4. (5.2)

Then fix T = 1, we choose Nx = 128, Ny = 128, so that the spatial errors can be ignored. Because

the exact solution is unknown, we use the numerical solution of (3.4) in the case dt = 10−5 as

the reference solution. The L2, H1 errors and the corresponding convergence orders of φ and q

are showed in Table 1. From this table, we can find the second-order accuracy of time direction

for φ and q. The errors in spatial direction and convergence orders for φ and q are presented in

Table 2. It can be seen from the table that the convergence order in the spatial direction does

not increase linearly, but it may increase exponentially.
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δt L2-error for φ Order H1-error for φ Order L2-error for q Order
1
10 6.1328E-04 7.7563E-04 3.4379E-03
1
20 1.5562E-04 1.9784 2.0493E-04 1.9202 1.2628E-03 1.4449
1

100 6.3314E-06 1.9894 8.6801E-06 1.9644 6.7348E-05 1.8212
1

200 1.5868E-06 1.9963 2.1878E-06 1.9882 1.7440E-05 1.9491
1

1000 6.3606E-08 1.9987 8.8104E-08 1.9958 7.1761E-07 1.9824
1

2000 1.5904E-08 1.9997 2.2040E-08 1.9990 1.7998E-07 1.9952
1

10000 6.3406E-10 2.0020 8.7657E-10 2.0035 7.1507E-09 2.0042

Table 1 The L2 and H1 errors and convergence orders for φ and q with various time steps

h L2-error for φ Order H1-error for φ Order L2-error for q Order
1
4 2.5248E-01 7.0066E-01 6.4374E-02
1
8 7.1668E-02 1.8167 3.3464E-01 1.0660 2.2671E-02 1.5055
1
16 9.9324E-03 2.8511 8.3228E-02 2.0074 4.4243E-03 2.3573
1
24 1.5900E-03 4.5183 1.9533E-02 3.5748 9.6891E-04 3.7455
1
32 2.7500E-04 6.0995 4.4659E-03 5.1294 2.1416E-04 5.2468
1
48 9.2603E-06 8.3633 2.2403E-04 7.3802 1.0264E-05 7.4926
1
96 5.1312E-10 14.1394 2.4701E-08 13.1468 9.8363E-10 13.3492

Table 2 The L2 and H1 errors and convergence orders for φ and q with various spatial steps

5.2. Dynamic evolution of solutions

In the next experiments, we will scheme (3.4) to study the dynamic evolution of the solutions.

Example 5.1 Set γ = 1, B = 5, ε = 0.1, δt = 0.001, N = 256, and we choose the initial condition

as

φ0 = 0.05 sinx sin y, q|t=0 =
√
F (φ0)− φ0 + 5. (5.3)

Example 5.2 In order to test the properties for the nonlocal Allen-Cahn model, we choose the

same initial value as in [32]. We set γ = 1, B = 5, ε = 0.01, δt = 0.001, N = 256, and we choose

the initial as

φ0 =
1

2

(
1− tanh

√
(x− 0.65)2 + (y − 0.5)2 − 0.1

ε
tanh

√
(x− 0.35)2 + (y − 0.5)2 − 0.1

ε
×

tanh

√
(x− 0.5)2 + (y − 0.65)2 − 0.1

ε
tanh

√
(x− 0.5)2 + (y − 0.35)2 − 0.1

ε

)
. (5.4)
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Figure 1 The energy evolution with Example 5.1 Figure 2 The mass of numerical solution

Figure 3 Coarsening dynamics of φ by using scheme (3.4) with t = 0, 6, 80, 100, 200, 300, respectively

The evolution of energy are plotted in Figure 1 for Example 5.1, and Figure 5 for Example

5.2, we can clearly see that it decreases with time. This also shows that the scheme (3.4) is

unconditional energy stable. To verify that φ can keep the total mass. We plot the graph to

show the error of the total mass. The results are summarized in Figures 2 and 6. We conclude

that the full-discrete almost preserves mass conservation for φ. In Figures 3 and 4, we propose

the snapshots of phase separation of the field φ. It can be seen from the figure that our numerical

scheme can maintain long-term stability.
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Figure 4 Coarsening dynamics of φ by using scheme (3.4) with

t = 0, 6, 10, 20, 50, 100, respectively
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Figure 5 The energy evolution with Example 5.2 Figure 6 The mass of numerical solution

6. Conclusion

In this work, we develop a full-discrete, second-order accurate in time, and unconditionally en-

ergy stable numerical method to solve nonlocal AC equation. We use the Fourier pseudo-spectral

method to discretize the spatial direction and the IEQ for the nonlinear and nonlocal terms. The

uniqueness, unconditional energy stability and error estimate of the numerical method are ob-

tained. Several numerical examples are proposed to confirm the stability and convergence for
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the full-discrete method, numerically.
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