
Journal of Mathematical Research with Applications

May, 2024, Vol. 44, No. 3, pp. 359–386

DOI:10.3770/j.issn:2095-2651.2024.03.008

Http://jmre.dlut.edu.cn

A Modified Tikhonov Regularization Method for a Cauchy
Problem of the Biharmonic Equation

Fan YANG∗, Jianming XU, Xiaoxiao LI

School of Science, Lanzhou University of Technology, Gansu 730050, P. R. China

Abstract In this paper, the Cauchy problem of biharmonic equation is considered. This problem

is ill-posed, i.e., the solution (if exists) does not depend on the measurable data. Firstly, we give

the conditional stability result under the a priori bound assumption for the exact solution.

Secondly, a modified Tikhonov regularization method is used to solve this ill-posed problem.

Under the a priori and the a posteriori regularization parameter choice rule, the error estimates

between the regularization solutions and the exact solution are obtained. Finally, some numerical

examples are presented to verify that our method is effective.
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1. Introduction

Biharmonic equation is a kind of elliptic equation, it can describe some basic equations

in plane elasticity and reconstruct geometric curves with given boundary conditions [1]. The

boundary value problem of biharmonic equation can also be used to model broadband and low

frequency radar imaging in [2].

In this paper, we consider the Cauchy problem of biharmonic equation with nonhomogeneous

Dirichlet and Neumann boundary conditions:










































uxxxx(x, y) + 2uxxyy(x, y) + uyyyy(x, y) = 0, (x, y) ∈ (0, π)× (0, 1),

u(x, 0) = ϕ1(x), x ∈ [0, π],

uy(x, 0) = ϕ2(x), x ∈ [0, π],

∆u(x, 0) = 0, x ∈ [0, π],

∆uy(x, 0) = 0, x ∈ [0, π],

u(0, y) = u(π, y) = ∆u(0, y) = ∆uy(π, y) = 0, y ∈ [0, 1].

(1.1)

The Cauchy problem of biharmonic equation studied in this paper is to find u(x, y) for

y ∈ (0, 1] from the initial data

u(x, 0) = ϕ1(x), x ∈ [0, π], uy(x, 0) = ϕ2(x), x ∈ [0, π].
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Assume the exact data ϕ1(x), ϕ2(x) and the measurement data ϕδ
1(x), ϕ

δ
2(x) satisfy

‖ ϕδ
1(·)− ϕ1(·) ‖≤ δ, ‖ ϕδ

2(·)− ϕ2(·) ‖≤ δ,

where δ denotes the bound of measured error.

Due to the linear property, we can divide (1.1) into two Cauchy problems as follows:










































fxxxx(x, y) + 2fxxyy(x, y) + fyyyy(x, y) = 0, (x, y) ∈ (0, π)× (0, 1),

f(x, 0) = ϕ1(x), x ∈ [0, π],

fy(x, 0) = 0, x ∈ [0, π],

∆f(x, 0) = 0, x ∈ [0, π],

∆fy(x, 0) = 0, x ∈ [0, π],

f(0, y) = f(π, y) = ∆f(0, y) = ∆fy(π, y) = 0, y ∈ [0, 1],

(1.2)

and










































gxxxx(x, y) + 2gxxyy(x, y) + gyyyy(x, y) = 0, (x, y) ∈ (0, π)× (0, 1),

g(x, 0) = 0, x ∈ [0, π],

gy(x, 0) = ϕ2(x), x ∈ [0, π],

∆g(x, 0) = 0, x ∈ [0, π],

∆gy(x, 0) = 0, x ∈ [0, π],

g(0, y) = g(π, y) = ∆g(0, y) = ∆gy(π, y) = 0, y ∈ [0, 1],

(1.3)

we know that u = f + g is the solution of problem (1.1). Then we only need to consider (1.2)

and (1.3), respectively.

In the sense of Hadamard problems, (1.2) and (1.3) are ill-posed, a small measurement error

in the Cauchy data can induce an enormous error in the solution [3]. Thus some regulariza-

tion techniques are required to overcome the ill-posedness and stabilize numerical computations,

please see some regularized strategies in [4]. In the past years, the inverse problem of the bihar-

monic equation has little research. Kalmenov and Iskakova in [5, 6] studied a mixed boundary

value problem for the biharmonic equation where boundary conditions are given on the whole

boundary of the domain. However, a regularization method has not yet been mentioned in this

study. In [7], Luan et al. used a filter regularization method to transform the ill-posed problem

into a well-posed problem for the Cauchy problem of the biharmonic equation. In [8], the authors

identified the unknown sources of biharmonic equation by using the Landweber regularization

method.

In this paper, we study the inverse problem of biharmonic equations with nonhomogeneous

Dirichlet and Neumann boundary conditions. We not only give the a priori regularization pa-

rameter choice rule, but also give the a posteriori regularization parameter choice rule. Based

on the a priori and the a posteriori regularization parameter choice rules, we give both the error

estimates within 0 < y < 1 and the error estimates at y = 1. Moreover, we give the optimal error

bound analysis. According to the optimal error bound analysis, we find the error estimations are

all order optimal.

The paper is organized as follows. In Section 2, we give some preliminary results. In Section

3, we derive the conditional stability of problems under a priori bound condition for the exact
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solution. In Section 4, the optimal error bounds for problems (1.2) and (1.3) are given. In

Section 5, we propose a modified Tikhonov regularization method. In Section 6, we give the error

estimates under the a priori and the a posteriori regularization choice rules. Finally, numerical

examples are given in Section 7.

2. Preparation knowledge

In this section, we present some important definitions and lemmas. Firstly, we introduce a

function

H(η) =

{

ηη(1 − η)1−η, η ∈ (0, 1),

1, η = 0, 1,
(2.1)

which was defined in [9] (see formula 2.2), we can see that H(η) ≤ 1 clearly.

Lemma 2.1 ([9, Lemma 2 in Section 3]) If 0 ≤ p ≤ q < ∞, q 6= 0 and v > 0, then

ve−p

v + e−q
≤ H(

p

q
)v

p

q . (2.2)

Lemma 2.2 For 0 < α < 1 and p > 0, we obtain

(a) es

2 ≤ cosh(s) ≤ es for s ≥ 0.

(b) As s > 0, for T2(s) :=
cosh(sy)

1+α cosh2(s) , there holds T2(s) ≤ 2α− y

2 .

(c) As s > 0, for T3(s) :=
α cosh(s) cos h(sy)

1+α cos h2(s) , there holds T3(s) ≤ 4α
1
2−

y

2 .

(d) When s ≥ 1, for T4(s) :=
α cosh(s)

1+α cos h2(s)e
−sp, there holds

T4(s) ≤
{

21−pα
1
2+

p

2 , 0 < p < 1,

α, p ≥ 1.

(e) When s ≥ 1, for T5(s) :=
α cosh2(s)

1+α cos h2(s)e
−sp, there holds

T5(s) ≤
{

22−pα
p

2 , 0 < p < 1,

α
1
2 , p ≥ 1.

Proof (a) is apparent.

(b) Using Lemma 2.1 and (a), we have T2(s) ≤ esy

1+α e2s

4

= e−2s+sy

e−2s+α
4
.

Let v = α
4 , p = 2s− sy, q = 2s and use the properties of H(η), we obtain

T2(s) ≤ (
α

4
)−1

α
4 e

−(2s−sy)

α
4 + e−2s

= v−1 ve−p

v + e−q
≤ v−1H(

p

q
)v

p

q ≤ v−1+ p

q ≤ (
α

4
)−

y

2 ≤ 2α− y

2 .

(c) Using Lemma 2.1 and (a), we have

T3(s) ≤ α
es+sy

1 + α e2s

4

= α
e−(s−sy)

α
4 + e−2s

≤ α(
α

4
)−1

α
4 e

−(s−sy)

α
4 + e−2s

≤ α(
α

4
)−

1
2−

y
2 ≤ 4α

1
2−

y
2 .

(d) When 0 < p < 1, applying Lemma 2.1, we obtain

T4(s) ≤ α
es−sp

1 + α
4 e

2s
≤ α(

α

4
)−

1
2+

p
2 ≤ 21−pα

1
2+

p
2 .
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When p ≥ 1, if s ≥ 1, we obtain T4(s) ≤ α cosh(s)e−sp ≤ αe(1−p)s < α.

(e) When 0 < p < 1, using Lemma 2.1, we obtain

T5(s) ≤
αe2s−sp

1 + α e2s

4

=
αe−sp

e−2s + α
4

≤ α(
α

4
)−1+ p

2 ≤ 22−pα
p

2 .

When p ≥ 1, if s ≥ 1, we obtain T5(s) ≤ α cosh2(s)

α
1
2 cos h(s)

e−sp ≤ α
1
2 e(1−p)s < α

1
2 . 2

Lemma 2.3 ([10]) For 0 < β < 1 and p > 0, the following inequalities hold:

(a) sinh(sy)
s

≤ esy, sin h(s)
s

≤ es for s > 0.

(b) sinh(sy)
sinh(s) ≤ e(y−1)s for s > 0.

(c) As s > 0, for T6(s) :=
sinh(sy)

s

1+β( sinh(s)
s

)2
, there holds T6(s) ≤ 2−yβ− y

2 .

(d) As s > 0, for T7(s) :=
β

sinh(s)
s

sinh(sy)
s

1+β( sinh(s)
s

)2
, there holds T7(s) ≤ 2y−1β

1
2−

y

2 .

(e) When s ≥ 1, for T8(s) :=
βk2(1)

1+βk2
2(1)

e−sp, and k2(1) =
sinh(s)

s
, there holds

T8(s) ≤
{

β
1
2+

p
2 , 0 < p < 1,

β, p ≥ 1.

(f) When s ≥ 1, for T9(s) :=
βk2

2(1)

1+βk2
2(1)

e−sp, there holds

T9(s) ≤
{

2−pβ
p

2 , 0 < p < 1,

β
1
2 , p ≥ 1.

Proof The proofs of (a)–(d) were detailed in [10, Lemma 2.2], so they are omitted. We now

demonstrate the items (e) and (f).

(e) When 0 < p < 1, if s ≥ ln( 1√
β
), according to (a) sinh(s)

s
≤ es, we obtain

T8(s) ≤
βk2(1)

β
1
2 k2(1)

e−sp ≤ β
1
2 e−sp ≤ β

1
2+

p

2 .

If 0 < s ≤ ln( 1√
β
), we obtain T8(s) ≤ βk2(1)e

−sp ≤ β
1
2+

p
2 . So, when s > 0, we obtain

T8(s) ≤ β
1
2+

p

2 . When p ≥ 1, if s ≥ 1, we obtain T8(s) ≤ βk2(1)e
−sp ≤ βe(1−p)s ≤ β. To sum up,

when s ≥ 1, we obtain

T8(s) ≤
{

β
1
2+

p

2 , 0 < p < 1,

β, p ≥ 1.

(f) When 0 < p < 1, if s ≥ ln( 2√
β
), we obtain T9(s) ≤ e−sp ≤ 2−pβ

p

2 . If 0 < s ≤ ln( 2√
β
), we

obtain T9(s) ≤ βk2
2(1)

β
1
2 k2(1)

e−sp ≤ β
1
2

2 e(1−p)s ≤ 2−pβ
p

2 . So, when s > 0, we obtain T9(s) ≤ 2−pβ
p

2 .

When p ≥ 1, if s ≥ 1, we obtain

T9(s) ≤
βk22(1)

β
1
2 k2(1)

e−sp ≤ β
1
2 k2(1)e

−sp ≤ β
1
2 e(1−p)s ≤ β

1
2 .

To sum up, when s ≥ 1, we obtain

T9(s) ≤
{

2−pβ
p

2 , 0 < p < 1,

β
1
2 , p ≥ 1.

2
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3. The solution, ill-posed analysis, and the results of conditional stabil-

ity

Using the method of variables separation, the solutions of problems (1.2), (1.3) can be for-

mulated

f(x, y) =

∞
∑

n=1

cosh(ny)ϕ1nXn(x), ϕ1n = 〈ϕ1, Xn〉, (3.1)

g(x, y) =

∞
∑

n=1

sinh(ny)

n
ϕ2nXn(x), ϕ2n = 〈ϕ2, Xn〉, (3.2)

where Xn := Xn(x) =
√

π
2 sin(nx) is the eigenfunction in L2(0, π), and ϕ1n, ϕ2n stand for its

Fourier coefficient. Two notations k1(y), k2(y) are given to simplify the solution.

f(x, y) =

∞
∑

n=1

k1(y)ϕ1nXn(x), g(x, y) =

∞
∑

n=1

k2(y)ϕ2nXn(x).

From formula (3.1), as n → ∞, cosh(ny) → ∞, the small perturbation of ϕδ
1(x) will cause

a great change in the source term f(x, y). This means that problem (1.2) is ill-posed. For the

formula (3.2), as n → ∞, sinh(ny)
n

→ ∞, the small perturbation of ϕδ
2(x) will cause a great

change in the source term g(x, y). This means that problems (1.3) is also ill-posed. So the

regularization method is required to solve problem (1.2) and (1.3). Below, we give the a priori

bound as follows:

max{‖f(x, 1)‖L2(0,π), ‖g(x, 1)‖L2(0,π)} ≤ E1, (3.3)

here ‖f(x, 1)‖L2(0,π) = (
∑∞

n=1(cosh(n)ϕ1n)
2)

1
2 , ‖g(x, 1)‖L2(0,π) =

(
∑∞

n=1(
sinh(n)

n
ϕ2n)

2
)

1
2 .

Theorem 3.1 If f(x, y) and g(x, y) satisfy the priori bound condition (3.3), then we obtain

‖f(x, y)‖L2(0,π) ≤ 2yEy
1‖ϕ1‖1−y

L2(0,π), (3.4)

‖g(x, y)‖L2(0,π) ≤
2y

(1− e−2)y
Ey

1‖ϕ2‖1−y

L2(0,π). (3.5)

Proof According to the formula (3.1), (3.3) and using the Hölder inequality, we have

‖f(x, y)‖2L2(0,π) =
∥

∥

∥

∞
∑

n=1

cosh(ny)ϕ1nXn(x)
∥

∥

∥

2

L2(0,π)

=

∞
∑

n=1

cosh2(ny)ϕ2
1n =

∞
∑

n=1

cosh2(ny)ϕ2y
1nϕ

2−2y
1n

≤
(

∞
∑

n=1

cosh
2
y (ny)ϕ2

1n

)y(
∞
∑

n=1

ϕ2
1n

)1−y

≤ sup
n≥1

| cosh
2
y (ny)

cosh2(n)
|y

(

∞
∑

n=1

cosh2(n)ϕ2
1n

)y

‖ϕ1‖2−2y
L2(0,π)

≤ sup
n≥1

| e
2n

e2n

4

|y E2y
1 ‖ϕ1‖2−2y
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≤ 4yE2y
1 ‖ϕ1‖2−2y

L2(0,π).

Thus

‖f(x, y)‖L2(0,π) ≤ 2yEy
1‖ϕ1‖1−y

L2(0,π).

Proof The proof of g(x, y) is the same as that of f(x, y), so it is omitted. 2

Remark 3.2 When y = 1, the error estimate in Theorem 3.1 is only bounded instead of

convergence. In order to obtain the convergent error estimate at y = 1, a stronger a priori

hypothesis must be introduced as follows.

The a priori bound in Hp space of functions f(x, 1) g(x, 1) is defined as follows:

max{‖f(x, 1)‖Hp(0,π), ‖g(x, 1)‖Hp(0,π)} ≤ E2, (3.6)

here

‖f(x, 1)‖Hp(0,π) =
(

∞
∑

n=1

(enp cosh(n)ϕ1n)
2
)

1
2

,

‖g(x, 1)‖Hp(0,π) =
(

∞
∑

n=1

(enp
sinh(n)

n
ϕ2n)

2
)

1
2

,

E1, E2 are positive constants.

Theorem 3.3 Let p > 0, f(x, 1) and g(x, 1) satisfy the priori bound condition (3.6). Then we

obtain

‖f(x, 1)‖L2(0,π) ≤ E
1

p+1

2 ‖ϕ1‖
p

p+1

L2(0,π), (3.7)

‖g(x, 1)‖L2(0,π) ≤ E
1

p+1

2 ‖ϕ2‖
p

p+1

L2(0,π). (3.8)

Proof According to the formula (3.1), (3.6) and using the Hölder inequality, we have

‖f(x, 1)‖2L2(0,π) = ‖
∞
∑

n=1

cosh(n)ϕ1nXn(x)‖2L2(0,π)

=

∞
∑

n=1

cosh2(n)ϕ2
1n =

∞
∑

n=1

cosh2(n)ϕ
2

p+1

1n ϕ
2p

p+1

1n

≤
(

∞
∑

n=1

cosh2p+2(n)ϕ2
1n

)
1

p+1
(

∞
∑

n=1

ϕ2
1n

)

p

p+1

≤
(

∞
∑

n=1

e2np cosh2(n)ϕ2
1n

)
1

p+1 ‖ϕ1‖
2p

p+1

L2(0,π)

≤ E
2

p+1

2 ‖ϕ1‖
2p

p+1

L2(0,π).

Thus

‖f(x, 1)‖L2(0,π) ≤ E
1

p+1

2 ‖ϕ1‖
p

p+1

L2(0,π).

The proof of g(x, 1) is the same as that of f(x, 1), so it is omitted. 2
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4. Optimal error bounds

In this section, we will give the optimal error bounds of problems (1.2) and (1.3). Now we

first give some preliminary conclusions.

4.1. Preliminary

Consider an ill-posed operator equation [11–15]:

Kx = y, (4.1)

where K : X → Y is a linear bounded operator between infinite dimensional Hilbert spaces X

and Y with non-closed range in Y . We assume that yδ ∈ Y (δ > 0) is data with measurement

error and satisfies

‖yδ − y‖ ≤ δ, (4.2)

any operator R : Y → X can be considered as a useful method for solving (4.1), and the

approximate solution of problem (4.1) is given by Ryδ.

Let M ⊂ X be a bounded set. Define the worst case error ∆(δ, R) for identifying x with yδ

(see [12–14,16])

∆(δ, R) := sup{‖Ryδ − x‖ | x ∈ M, yδ ∈ Y, ‖Kx− yδ‖ 6 δ}. (4.3)

The best possible error bound (or optimal error bound) is defined as the infimum over all map-

pings R : Y → X,

ω(δ) := inf
R

∆(δ, R). (4.4)

According to [15], the set M = Mϕ,E is a set of elements which satisfy some source condition:

Mϕ,E = {x ∈ X | x = [ϕ(K∗K)]
1
2 v, ‖v‖ 6 E}, (4.5)

where the operator function ϕ(K∗K) is well defined spectral representation

ϕ(K∗K) =

∫ a

0

ϕ(λ)dEλ, (4.6)

where {Eλ} is the spectral family of the operator K∗K. There exists a constant a so that

‖K∗K‖ 6 a. When K : L2(R) → L2(R) is a multiplication operator, Kx(s) = r(s)x(s), the

operator function ϕ(K∗K) has the following form:

ϕ(K∗K)x(s) = ϕ(|r(s)|2)x(s). (4.7)

There exists a method R0 which is called [11, 17]

(i) Optimal on the set Mϕ,E if ∆(δ, R) = ω(δ, E).

(ii) Order optimal on the set Mϕ,E if ∆(δ, R) 6 Cω(δ, E) with C > 1.

Through the assumption in [11, 17], we can derive an explicit (best possible) optimal error

bound for the worst case error ∆(δ, R) defined in (4.3).

Assumption 4.1 ([11,14,18]) In the formula (4.7), function ϕ(λ) : (0, a] → (0,∞) is a continuous

function, then it has the following properties:
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• limλ→0 ϕ(λ) = 0.

• ϕ(λ) is strictly monotonically increasing on (0, a].

• ρ(λ) = λϕ−1(λ) : (0, ϕ(a)] → (0, aϕ(a)] is convex.

Based on the above assumptions, the next theorem provides us a general formula for the

optimal error bound.

Theorem 4.2 ([11, 14, 16, 18]) Let Mϕ,E be given by formula (4.5). Assumption 4.1 holds and
δ2

E2 ∈ σ(K∗Kϕ(K∗K)), where σ(K∗K) represents the spectrum of operator K∗K, then there is

ω(δ,Mϕ,E) = E

√

ρ−1(
δ2

E2
). (4.8)

We can obtain the optimal error bound from Theorem 4.2. That is a good conclusion, but

there also exist two difficulties. One difficulty is that it is hard to check the convexity of ρ, and

sometimes it is violated. Another difficulty is that even for very small δ, δ2

E2 may not belong to

σ(K∗Kϕ(K∗K)); for example, K is a compact operator. In the next, we present two lemmas to

solve the first and the second problems.

Lemma 4.3 ([19]) If ρ is not necessarily convex, we obtain

• E
√

ρ−1( δ2

E2 ) 6 ω(δ,Mϕ,E) 6
√
2E

√

ρ−1( δ2

E2 ) for
δ2

E2 ∈ σ(K∗Kϕ(K∗K)).

• ω(δ,Mϕ,E) 6
√
2E

√

ρ−1( δ2

E2 ) for
δ2

E2 /∈ σ(K∗Kϕ(K∗K)).

Lemma 4.4 ([19]) Let K∗K be compact and let λ1 > λ2 > · · · be the ordered eigenvalued of

K∗K. If there exists a constant k > 0 such that ϕ(λi+1) > kϕ(λi) for all i ∈ N , then

ω(δ,Mϕ,E) >
√
kE

√

ρ−1
( δ2

E2

)

for δ ∈ (0, δ1], where δ1 = E
√

λ1ϕ(λ1).

4.2. Optimal error bound for problems (1.2) and (1.3)

In this part, we will present the optimal error bound for problems (1.2) and (1.3). Now, we

analyse the optimal error bound for problem (1.2) first. The noise datum ϕδ
1(x) ∈ L2(0, π) is

processed to identify the best possible worst-case error given by formula (4.4) of f(x, y), where

f(x, y) ∈ Mp,E, Mp,E is defined as follows:

f(x, y) ∈ Mp,E = {f(x, y) ∈ L2(0, π) |‖ f(x, 1) ‖Hp≤ Ei, p ≥ 0, i = 1, 2}, (4.9)

when p = 0, ‖f(x, 1)‖Hp is L2-norm, and ‖f(x, 1)‖ ≤ E1. When p 6= 0, ‖f(x, 1)‖Hp is Hilbert-

norm, thus ‖f(x, 1)‖Hp ≤ E2.

Rewrite Eq. (2.1) as an operator equation:

K1f(x, y) = ϕ1(x), (4.10)

where K1 is a multiplication operator with parametric variable y and its singular value is as

follows:

K1n =
1

cosh(ny)
, K∗

1nK1n =
1

cosh2(ny)
. (4.11)
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Now let us reformulate condition (4.9) into an equivalent one of form (4.5) with a special

function ϕ = ϕ(λ).

Propositon 4.5 Consider the operator Eq. (4.10). Then the set Mp,E given in (4.9) is equiv-

alent to the general source set Mϕ,E given in (4.5) provided ϕ = ϕ(λ) is given (in parameter

representation) by
{

λ(n) = 1
cosh2(ny) ,

ϕ(n) = e−2np cosh2(ny)
cosh2(n) .

(4.12)

Proof Due to K1f(x, y) = ϕ1(x) for 0 < y ≤ 1, we have

ϕ1(x) =
(f(x, y), Xn)

cosh(ny)
=

(f(x, 1), Xn)

cosh(n)

which gives

f(x, 1) =
cosh(n)

cosh(ny)
f(x, y).

Thus, the inequality ‖ f(x, 1) ‖Hp≤ Ei is equivalent to the inequality

‖ enp
cosh(n)

cosh(ny)
f(x, y) ‖≤ Ei,

which shows us that the operator function ϕ(K∗K) has the representation

ϕ(K∗K) = e−2np cosh
2(ny)

cosh2(n)
. (4.13)

Together with (4.11), the proposition is proved. 2

Proposition 4.6 The function ϕ(λ) defined by (4.12) is continuous and has the following

properties:

Case 1. p = 0, 0 < y < 1.

(I) limλ→0 ϕ(λ) = 0.

(II) ϕ(λ) is strictly monotonically increasing.

(III) ρ(λ) = λϕ−1(λ) is strictly monotonic and has the following parameter form:
{

λ(n) = cosh2(ny)
cosh2(n) ,

ρ(n) = 1
cos h2(n) ,

1 6 n < ∞. (4.14)

(IV) ρ−1(λ) is strictly monotonically increasing and is represented by the following parameter

forms:
{

λ(n) = 1
cosh2(n) ,

ρ−1(n) = cosh2(ny)
cosh2(n) ,

1 6 n < ∞. (4.15)

(V) For the inverse function ρ−1(λ), there is

ρ−1(λ) = (
λ

4
)1−y

(

1 +O(1)
)

for λ → ∞. (4.16)

Case 2. p > 0, y = 1.

(I) limλ→0 ϕ(λ) = 0.
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(II) ϕ(λ) is strictly monotonically increasing.

(III) ρ(λ) = λϕ−1(λ) is strictly monotonic and has the following parameter form:
{

λ(n) = e−2np cos h2(ny)
cos h2(n) ,

ρ(n) = e−2np 1
cosh2(n) ,

1 6 n < ∞. (4.17)

(IV) ρ−1(λ) is strictly monotonically increasing and is represented by the following parameter

forms:
{

λ(n) = e−2np 1
cosh2(n) ,

ρ−1(n) = e−2np cosh2(ny)
cosh2(n) ,

1 6 n < ∞. (4.18)

(V) For the inverse function ρ−1(λ), there is

ρ−1(λ) = (
λ

4
)

p

p+1 (ln
1√
λ
)−2p(1 +O(1)) for λ → ∞. (4.19)

Proof For the case 1, we will prove (I) first.

(I) From (4.12), we can see λ(n) = 1
cosh2(ny) . When λ → 0, that means n → ∞. Therefore,

lim
λ→0

ϕ(λ) = lim
n→∞

cosh2(ny)

cosh2(n)
= 0, as 0 < y < 1.

The proof of (II), (III) and (IV) is simple, so we omit the proof.

(V) We only need to prove that limλ→0 F1(λ) = 1, where

F1(λ) := ρ−1(λ)/(
λ

4
)1−y .

According to [17], using (4.15) and noting λ(n) is strictly monotonically decreasing with

limn→∞ λ(n) = 0, we have

lim
λ→0

F1(λ) = lim
n→∞

cosh2(ny)

cosh2(n)
[4 cosh2(n)]1−y = 1.

The proof of Case 2 is similar to Case 1, so it is omitted. 2

Theorem 4.7 Assume condition (4.9) holds. Then the optimal error bound of the inverse

problem (1.2) is as follows:

(i) For p = 0 and 0 < y < 1, we have

ω(δ, E) = Ey(
δ

2
)1−y(1 +O(1)). (4.20)

(ii) For p > 0 and y = 1, we have

ω(δ, E) = E
1

p+1 (
δ

2
)

p

p+1 ln(
E

δ
)−2p. (4.21)

Proof Combining formula (4.8), (4.16) with (4.19), for (i), we obtain

ω(δ, E) = E

√

ρ−1(
δ2

E2
) = E

√

(
δ2

4E2
)1−y = Ey(

δ

2
)1−y. (4.22)

For (ii), we have

ω(δ, E) = E

√

ρ−1(
δ2

E2
) = E

√

(
δ2

4E2
)

p

p+1 ln(
E

δ
)−2p = E

1
p+1 (

δ

2
)

p

p+1 ln(
E

δ
)−2p. 2 (4.23)
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Now, we analyse the optimal error bound for problem (1.3). The noise data ϕδ
2(x) ∈ L2(0, π)

is also processed to identify the best possible worst-case error given by formula (4.4) of g(x, y),

where g(x, y) ∈ Mp,E, Mp,E is defined as follows:

g(x, y) ∈ Mp,E = {g(x, y) ∈ L2(0, π) |‖ g(x, 1) ‖Hp≤ Ei, p ≥ 0, i = 3, 4}, (4.24)

when p = 0, ‖g(x, 1)‖Hp is L2-norm, and ‖g(x, 1)‖ ≤ E3. When p 6= 0, ‖g(x, 1)‖Hp is Hilbert-

norm, thus ‖g(x, 1)‖Hp ≤ E4. Rewrite Eq. (2.2) as an operator equation:

K2g(x, y) = ϕ2(x), (4.25)

where K2 is a multiplication operator with parametric variable y and its singular value is as

follows:

K2n =
n

sinh(ny)
, K∗

2nK2n =
n2

sinh2(ny)
. (4.26)

Next up, let us reformulate condition (4.24) into an equivalent one of form (4.5) with a special

function ϕ = ϕ(λ).

Proposition 4.8 Consider the operator Eq. (4.25). Then the set Mp,E given in (4.24) is equiv-

alent to the general source set Mϕ,E given in (4.5) provided ϕ = ϕ(λ) is given (in parameter

representation) by
{

λ(n) = 1
sinh2(ny) ,

ϕ(n) = e−2np sinh2(ny)
sinh2(n) .

(4.27)

Proof This proof is the same as Proposition 4.5 and the proof is omitted. 2

Proposition 4.9 The function ϕ(λ) defined by (4.27) is continuous and has the following

properties:

Case 1. p = 0, 0 < y < 1.

(I) limλ→0 ϕ(λ) = 0.

(II) ϕ(λ) is strictly monotonically increasing.

(III) ρ(λ) = λϕ−1(λ) is strictly monotonic and has the following parameter form:
{

λ(n) = sin h2(ny)
sinh2(n) ,

ρ(n) = n2

sinh2(n) ,
1 6 n < ∞. (4.28)

(IV) ρ−1(λ) is strictly monotonically increasing and is represented by the following parameter

forms:
{

λ(n) = n2

sinh2(n) ,

ρ−1(n) = sinh2(ny)
sinh2(n) ,

1 6 n < ∞. (4.29)

(V) For the inverse function ρ−1(λ), there is

ρ−1(λ) = λ1−y(ln
1√
λ
)2(y−1)(1 +O(1)) for λ → ∞. (4.30)

Case 2. p > 0, y = 1.

(I) limλ→0 ϕ(λ) = 0.
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(II) ϕ(λ) is strictly monotonically increasing.

(III) ρ(λ) = λϕ−1(λ) is strictly monotonic and has the following parameter form:
{

λ(n) = e−2np sinh2(ny)
sinh2(n) ,

ρ(n) = e−2np n2

sin h2(n) ,
1 6 n < ∞. (4.31)

(IV) ρ−1(λ) is strictly monotonically increasing and is represented by the following parameter

forms:
{

λ(n) = e−2np n2

sinh2(n) ,

ρ−1(n) = e−2np sinh2(ny)
sinh2(n) ,

1 6 n < ∞. (4.32)

(V) For the inverse function ρ−1(λ), there is

ρ−1(λ) = λ
p

p+1 (ln
1√
λ
)

2
p+1 (1 +O(1)) for λ → ∞. (4.33)

Proof The proofs of (I)–(IV) are obvious, we only give the proof of (V). We only need to prove

that limλ→0 F3(λ) = 1, where

F3(λ) := ρ−1(λ)
/

λ1−y(ln
1√
λ
)2(y−1).

Using (4.29) and noting λ(n) is strictly monotonically decreasing with limn→∞ λ(n) = 0, we have

lim
λ→0

F3(λ) = lim
n→∞

sinh2(ny)

sinh2(n)

/

(
n2

sinh2(n)
)1−y(ln

1
√

n2

sin2(n)

)2(y−1)

= lim
n→∞

sinh2(ny) sinh2−2y(n)

sinh2(n)

/

n2−2y(ln
sinh(n)

n
)2(y−1)

= 1.

The proof of Case 2 is similar to Case 1, so it is omitted. 2

Theorem 4.10 Assume condition (4.9) holds. Then the optimal error bound of the inverse

problem (1.3) is as follows:

(i) For p = 0 and 0 < y < 1, we have

ω(δ, E) = Eyδ1−y(ln
δ

E
)y−1(1 +O(1)). (4.34)

(ii) For p > 0 and y = 1, we have

ω(δ, E) = E
1

p+1 δ
p

p+1 (ln
E

δ
)

1
p+1 (1 +O(1)). (4.35)

Proof Combining formula (4.8), (4.30) with (4.33), for (i), we obtain

ω(δ, E) = E

√

ρ−1(
δ2

E2
) = E

√

√

√

√
(
δ2

E2
)1−y(ln

1
√

δ2

E2

)2(y−1) = Eyδ1−y(ln
E

δ
)y−1.

For (ii), we have

ω(δ, E) = E

√

ρ−1(
δ2

E2
) = E

√

√

√

√
(
δ2

E2
)

p

p+1 (ln
1

√

δ2

E2

)
2

p+1 = E
1

p+1 δ
p

p+1 (ln
E

δ
)

1
p+1 . 2
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5. The regularization method

From the formula of the solutions, we can see that cosh(ny), sinh(ny)
n

are unbounded as

n → ∞, so problems (1.2) and (1.3) are ill-posed. If we want to restore the stability of solu-

tions, we need to use the regularization method. In this section, we use the modified Tikhonov

regularization method to obtain regularization solutions for (1.2) and (1.3).

Define an operator K1(·) : L2(0, π) → L2(0, π) for 0 < y ≤ 1, so problem (1.2) can be

formulated as the following operator equation:

K1(y)f(x, y) = ϕ1(x), 0 < y < 1, (5.1)

K1(1)f(x, 1) = ϕ1(x), y = 1. (5.2)

Define f δ(x, 0) = ϕδ
1, and we seek Tikhonov regularization solutions f δ

α1
(x, y) and f δ

α2
(x, 1)

by solving the minimization problems,

min
f∈L2(0,π)

Jα1(f), Jα1(f) :=‖ K1(y)f(x, y)− ϕδ
1 ‖2 +α1 ‖ f(x, y) ‖2, (5.3)

min
f∈L2(0,π)

Jα2(f), Jα2(f) :=‖ K1(1)f(x, 1)− ϕδ
1 ‖2 +α2 ‖ f(x, 1) ‖2 . (5.4)

Hence, f δ
α1
(x, y), f δ

α2
(x, 1) are the solutions of Euler equations respectively

(
1

k21(y)
+ α1)f

δ
α1
(x, y) =

1

k1(y)
ϕδ
1(x), (5.5)

(
1

k21(1)
+ α2)f

δ
α2
(x, 1) =

1

k1(1)
ϕδ
1(x). (5.6)

From (5.5) and (5.6), we can derive that

f δ
α1
(x, y) =

∞
∑

n=1

k1(y)ϕ
δ
1nXn(x)

1 + α1k21(y)
, (5.7)

f δ
α2
(x, 1) =

∞
∑

n=1

k1(1)ϕ
δ
1nXn(x)

1 + α2k21(1)
, (5.8)

where ϕδ
1n = 〈ϕδ

1, Xn〉, the error data ϕδ
1(x) satisfies

‖ ϕδ
1(·)− ϕ1(·) ‖≤ δ, (5.9)

δ denotes the bound of measured error, α is the regularization parameter.

In this paper, we replace the kernel k1(y)
1+α1k

2
1(y)

by the modified kernel k1(y)
1+α1k

2
1(1)

and obtain a

modified regularization solution

f δ
1,α1

(x, y) =

∞
∑

n=1

k1(y)ϕ
δ
1nXn(x)

1 + α1k21(1)
. (5.10)

For the endpoint, let f δ
α2
(x, 1) = f δ

2,α2
(x, 1), we can obtain

f δ
2,α2

(x, 1) =

∞
∑

n=1

k1(1)ϕ
δ
1nXn(x)

1 + α2k21(1)
. (5.11)
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Similarly, we define an operator K2(·) : L2(0, π) → L2(0, π) for 0 < y ≤ 1, so problem (1.3)

can be formulated as the following operator equation:

K2(y)g(x, y) = ϕ2(x), 0 < y < 1,

K2(1)g(x, 1) = ϕ2(x), y = 1.

Using the same method as above, we can derive the regular solution of g(x, y) at interval

0 < y < 1 and endpoint y = 1:

gδ1,β1
(x, y) =

∞
∑

n=1

k2(y)ϕ
δ
2nXn(x)

1 + β1k22(1)
, gδ2,β2

(x, 1) =

∞
∑

n=1

k2(1)ϕ
δ
2nXn(x)

1 + β1k22(1)
, (5.12)

and the error data ϕδ
2(x) satisfies

‖ϕδ
2(·)− ϕ2(·)‖ ≤ δ. (5.13)

6. The error estimation

In this section, under the a priori and a posteriori rules, we are going to present the con-

vergence error estimations for problems (1.2) and (1.3). Since the derivation of the convergence

error estimate of problem (1.3) is more difficult than that of problem (1.2), in the following parts,

we focus on the derivation process of problem (1.3).

6.1. The priori convergence error estimation in interval 0 < y < 1

In this section, under the priori regularization parameter choice rule, we first give the priori

error estimation between the regularization solution and the exact solution.

Theorem 6.1 g(x, y) is the exact solution of problem (1.3). The regularization solution

gδ1,β1
(x, y) is given by (5.12) and the measured data ϕδ

2(x) satisfies (5.13). When 0 < y < 1, if

the priori bound condition (3.3) holds, and the regularization parameter β1 is selected as

β1 = (
δ

E1
)2, (6.1)

we have the error estimate

‖ gδ1,β1
(x, y)− g(x, y) ‖≤ C1E

y
1 δ

1−y, (6.2)

where C1 := 2−y + 2y−1.

Proof Using the triangle inequality, we have

‖ gδ1,β1
(x, y)− g(x, y) ‖≤‖ gδ1,β1

(x, y) − g1,β1(x, y) ‖ + ‖ g1,β1(x, y)− g(x, y) ‖, (6.3)

where g1,β1(x, y) is the regularization solution with no error. From Lemma 2.3 (c), (5.12), and

(5.13), we have

‖ gδ1,β1
(x, y)− g1,β1(x, y) ‖=

∥

∥

∥

∞
∑

n=1

k2(y)

1 + β1k22(1)
(ϕδ

2n − ϕ2n)Xn(x)
∥

∥

∥
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=
(

∞
∑

n=1

(
k2(y)

1 + β1k22(1)
)2(ϕδ

2n − ϕ2n)
2
)

1
2

≤ sup
n≥1

| k2(y)

1 + β1k22(1)
|
(

∞
∑

n=1

(ϕδ
2n − ϕ2n)

2
)

1
2 ≤ 2−yβ

− y

2
1 δ.

So

‖ gδ1,β1
(x, y)− g1,β1(x, y) ‖≤ 2−yβ

− y

2
1 δ. (6.4)

By (3.2), (3.3), (5.12), and Lemma 2.3 (d), we have

‖ g1,β1(x, y)− g(x, y) ‖=
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)k2(y)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

=
(

∞
∑

n=1

(
β1k

2
2(1)k2(y)

1 + β1k22(1)

)2

ϕ2
2n)

1
2

≤ sup
n≥1

| β1k2(1)k2(y)

1 + β1k22(1)
|
(

∞
∑

n=1

k22(1)ϕ
2
2n

)
1
2

≤ sup
n≥1

| β1k2(1)k2(y)

1 + β1k22(1)
| ·E1 ≤ 2y−1β

1
2−

y

2
1 E1.

Thus

‖ g1,β1(x, y)− g(x, y) ‖≤ 2y−1β
1
2−

y

2
1 E1. (6.5)

Combining (6.3), (6.4) with (6.5), if the regularization parameter β1 = ( δ
E1

)2 is selected, then

‖ gδ1,β1
(x, y)− g(x, y) ‖≤ C1δ

1−yEy
1 , (6.6)

where C1 := 2−y + 2y−1. 2

Theorem 6.2 f(x, y) is the exact solution of problem (1.2). The regularization solution

f δ
1,α1

(x, y) is given by (5.10), the measured data ϕδ
1(x) satisfies (5.9). When 0 < y < 1, if

the priori bound condition (3.3) holds, and the regularization parameter α1 is selected as

α1 = (
δ

E1
)2, (6.7)

we have the error estimate

‖ f δ
1,α1

(x, y)− f(x, y) ‖≤ 6δ1−yEy
1 . (6.8)

Proof The proof of Theorem 6.2 is similar to Theorem 6.1, so it is omitted. 2

Remark 6.3 From Theorems 6.1, 6.2, 4.7 and 4.10, we can deduce that the error estimate

obtained by the priori regularization parameter choice rule is order optimal for 0 < y < 1.

6.2. The posteriori convergence error estimation in interval 0 < y < 1

The priori parameter choice is based on the priori bound E1 of the exact solution. However,

in practice the priori bound E1 generally can not be known easily. In this condition, we choose
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the regularization parameter by adopting the posteriori rule. We consider an a posteriori regu-

larization choice rule which is called Morozov’s discrepancy principle. When 0 < y < 1, we select

the regularization parameter β1 by the following equation

‖K2(y)g
δ
1,β1

(x, y)− ϕδ
2(x)‖ = τδ, (6.9)

where K2(y) =
1

k2(y)
, τ > 1 is a positive constant, and ‖ ϕδ

2(x) ‖≥ τδ.

Lemma 6.4 Let ̺(β1) =‖ K2(y)g
δ
1,β1

(x, y)− ϕδ
2(x) ‖. If ‖ ϕδ

2(x) ‖≥ τδ, we have

(a) ̺(β1) is a continuous function;

(b) limβ1→0 ̺(β1) = 0;

(c) limβ1→∞ ̺(β1) =‖ ϕδ
2 ‖;

(d) For β1 ∈ (0,∞), ̺(β1) is a strictly increasing function.

Proof Lemma 6.4 can be easily proven with expression

̺(β1) =
(

∞
∑

n=1

(
β1k

2
2(1)

1 + β1k22(1)
)2(ϕδ

2n)
2
)

1
2

. 2 (6.10)

Lemma 6.4 indicates that there exists a unique solution for (6.9).

Lemma 6.5 For fixed τ > 1, let the regularization parameter β1 satisfy (6.9) and g(x, y) satisfy

(3.2). Then we obtain β−1
1 ≤ ( E1

(τ−1)δ )
2.

Proof According to (6.9) and basic inequality, we have

τδ =
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕδ
2nXn(x)

∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
(ϕδ

2n − ϕ2n)Xn(x) +
∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

≤
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
(ϕδ

2n − ϕ2n)Xn(x)
∥

∥

∥
+
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

≤ δ +
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

and

∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥
=

(

∞
∑

n=1

(
β1k

2
2(1)

1 + β1k22(1)
)2ϕ2

2n

)
1
2

≤ sup
n≥1

| β1k2(1)

1 + β1k22(1)
|
(

∞
∑

n=1

k22(1)ϕ
2
2n

)
1
2

≤ sup
n≥1

| β1k2(1)

1 + β1k22(1)
| E1 ≤ β

1
2
1 E1.

According to the proofs above, we obtain that (τ − 1)δ ≤
√
β1E1. Then Lemma 6.5 is proved. 2

Theorem 6.6 g(x, y) is the exact solution of problem (1.3). The regularization solution
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gδ1,β1
(x, y) is given by (5.12), the measured data ϕδ

2(x) satisfies (5.13). When 0 < y < 1, if

the priori condition (3.3) holds, and the regularization parameter β1 is selected by (6.9), we have

the error estimate

‖ gδ1,β1
(x, y)− g(x, y) ‖≤ C2δ

1−yEy
1 , (6.11)

where C2 := 2−y( 1
(τ−1))

y + 2y(1− e−2)−y(τ + 1)1−y.

Proof Using the triangle inequality, we obtain

‖ gδ1,β1
(x, y)− g(x, y) ‖≤‖ gδ1,β1

(x, y)− g1,β1(x, y) ‖ + ‖ g1,β1(x, y)− g(x, y) ‖ . (6.12)

By (6.4)) and Lemma 6.5, we have

‖ gδ1,β1
(x, y)− g1,β1(x, y) ‖≤ 2−yβ

− y

2
1 δ ≤ 2−y(

1

τ − 1
)yδ1−yEy

1 . (6.13)

According to the priori bound condition (3.3), we have

‖ g1,β1(x, y)− g(x, y) ‖L2(0,π)=‖
∞
∑

n=

β1k
2
2(1)k2(y)

1 + β1k22(1)
ϕ2nXn(x) ‖

=
(

∞
∑

n=1

(
β1k

2
2(1)k2(y)

1 + β1k22(1)
)2ϕ2

2n

)
1
2

≤
(

∞
∑

n=1

k22(y)ϕ
2
2n

)
1
2 ≤

(

∞
∑

n=1

k22(1)ϕ
2
2n

)
1
2 ≤ E1.

By the condition stability result (3.5), we have

‖ g1,β1(x, y)− g(x, y) ‖≤ 2y(1− e−2)−yEy
1‖K2(y)g1,β1(x, y)−K2(y)g(x, y)‖1−y, (6.14)

here

‖K2(y)g1,β1(x, y)−K2(y)g(x, y)‖ =
∥

∥

∥

∞
∑

n=1

1

1 + β1k22(1)
ϕ2nXn(x) −

∞
∑

n=1

ϕ2nXn(x)
∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

−β1k
2
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
(ϕδ

2n − ϕ2n)Xn(x) +

∞
∑

n=1

−β1k
2
2(1)

1 + β1k22(1)
ϕδ
2nXn(x)

∥

∥

∥

≤
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
(ϕδ

2n − ϕ2n)Xn(x)
∥

∥

∥
+
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕδ
2nXn(x)

∥

∥

∥

≤ δ +
∥

∥

∥

∞
∑

n=1

β1k
2
2(1)

1 + β1k22(1)
ϕδ
2nXn(x)

∥

∥

∥
≤ δ + τδ.

From (6.14), we have

‖ g1,β1(x, y)− g(x, y) ‖≤ 2y(1− e−2)−y(τ + 1)1−yδ1−yEy
1 . (6.15)

Finally, combining (6.13) with (6.15), we can obtain the error estimate (6.11). 2

Next, the posteriori convergence error estimate for problem (1.2) is given.
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When 0 < y < 1, we select the regularization parameter α1 by the following equation

‖ K1(y)f
δ
1,α1

(x, y)− ϕδ
1(x) ‖= τδ, (6.16)

where τ > 1 is a positive constant, and ‖ ϕδ
1(x) ‖≥ τδ.

Lemma 6.7 Let ρ(α1) =‖ K1(y)f(x, y)− ϕδ
1(x) ‖. If ‖ ϕδ

1(x) ‖≥ τδ, we have

(a) ρ(α1) is a continuous function;

(b) limα1→0 ρ(α1) = 0;

(c) limα1→∞ ρ(α1) =‖ ϕδ
1 ‖;

(d) For α1 ∈ (0,∞), ρ(α1) is a strictly increasing function.

Proof Lemma 6.7 can be easily proven with expression

ρ(α1) =
(

∞
∑

n=1

(
α1k

2
1(1)

1 + α1k21(1)
)2(ϕδ

1n)
2
)

1
2

. 2 (6.17)

Lemma 6.7 indicates that there exists a unique solution for (6.16).

Lemma 6.8 For fixed τ > 1, let the regularization parameter α1 satisfy (6.16) and f(x, y)

satisfy (3.1). Then we obtain α−1
1 ≤ ( E1

(τ−1)δ )
2.

Proof The proof of Lemma 6.8 is similar to Lemma 6.5, so it is omitted. 2

Theorem 6.9 f(x, y) is the exact solution of problem (1.2). The regularization solution

f δ
1,α1

(x, y) is given by (5.10), the measured data ϕδ
1(x) satisfies (5.9). When 0 < y < 1, the

regularization parameter α1 is selected by (6.16), we have the error estimate

‖ f δ
1,α1

(x, y)− f(x, y) ‖≤ C3δ
1−yEy

1 , (6.18)

where C3 := 2( 1
τ−1)

y + 2y(τ + 1)1−y.

Proof The proof of Theorem 6.9 is similar to Theorem 6.6, so it is omitted. 2

Remark 6.10 From Theorems 6.6, 6.9, 4.7 and 4.10, we can deduce that the error estimate

obtained by the posteriori regularization parameter choice rule is order optimal for 0 < y < 1.

6.3. The priori convergence error estimation at endpoint y = 1

From Theorems 6.9 and 6.6, we cannot obtain the error estimation at y = 1. So in this section,

we will give the error estimation between the regularization solution and the exact solution at

y = 1.

Theorem 6.11 g(x, 1) is the exact solution of problem (1.3). The regularization solution

gδ2,β2
(x, 1) is given by (5.12), the measured data ϕδ

2(x) satisfies (5.13). When y = 1, if the priori

condition (3.6) holds, and the regularization parameter β2 is selected as

β2 =

{

( δ
E2

)
2

p+1 , 0 < p < 1,
δ
E2

, p ≥ 1,
(6.19)
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we have the error estimate

‖ gδ2,β2
(x, 1)− g(x, 1) ‖≤







(2−p + 1)δ
p

p+1E
1

p+1

2 , 0 < p < 1,

2δ
1
2E

1
2
2 , p ≥ 1.

(6.20)

Proof Using the triangle inequalities, we have

‖ gδ2,β2
(x, 1)− g(x, 1) ‖≤‖ gδ2,β2

(x, 1)− g2,β2(x, 1) ‖ + ‖ g2,β2(x, 1)− g(x, 1) ‖, (6.21)

where g2,β2(x, 1) is the regularization solution with no error.

From (5.12), (5.13) and basic inequality, we have

‖ gδ2,β2
(x, 1)− g2,β2(x, 1) ‖=

∥

∥

∥

∞
∑

n=1

k2(1)

1 + β1k22(1)
(ϕδ

2n − ϕ2n)Xn(x)
∥

∥

∥

=
(

∞
∑

n=1

(
k2(1)

1 + β1k22(1)
)2(ϕδ

2n − ϕ2n)
2
)

1
2

≤ sup
n≥1

| k2(1)

1 + β1k22(1)
|
(

∞
∑

n=1

(ϕδ
2n − ϕ2n)

2
)

1
2 ≤ β

− 1
2

2 δ.

Thus

‖ gδ2,β2
(x, 1)− g2,β2(x, 1) ‖≤ β

− 1
2

2 δ. (6.22)

Applying Lemma 2.3 (f) and formula (3.2), (3.6), (5.12), we have

‖ g2,β2(x, 1)− g(x, 1) ‖=
∥

∥

∥

∞
∑

n=1

β1k
3
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

=
(

∞
∑

n=1

(
β1k

3
2(1)

1 + β1k22(1)
)2ϕ2

2n

)
1
2 ≤ sup

n≥1
| β1k

2
2(1)

1 + β1k22(1)
e−np |

(

∞
∑

n=1

e2npk22(1)ϕ
2
2n

)
1
2

≤ sup
n≥1

| β1k
2
2(1)

1 + β1k22(1)
e−np | ·E2

≤
{

2−pβ
p

2
2 E2, 0 < p < 1,

β
1
2
2 E2, p ≥ 1.

To sum up,

‖ g2,β2(x, 1)− g(x, 1) ‖≤
{

2−pβ
p

2
2 E2, 0 < p < 1,

β
1
2
2 E2, p ≥ 1.

(6.23)

By (6.22) and (6.23), the regularization parameter β2 is chosen as

β2 =

{

( δ
E2

)
2

p+1 , 0 < p < 1,
δ
E2

, p ≥ 1.
(6.24)

From (6.21)–(6.24), we have

‖ gδ2,β2
(x, 1)− g(x, 1) ‖≤







(2−p + 1)δ
p

p+1E
1

p+1

2 , 0 < p < 1,

2δ
1
2E

1
2
2 , p ≥ 1.

2 (6.25)

Theorem 6.12 f(x, 1) is the exact solution of problem (1.2). The regularization solution

f δ
2,α2

(x, 1) is given by (5.11), the measured data ϕδ
1(x) satisfies (5.9). When y = 1, if the priori
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condition (3.6) holds, and the regularization parameter α2 is selected as

α2 =

{

( δ
E2

)
2

p+1 , 0 < p < 1;
δ
E2

, p ≥ 1,
(6.26)

we have the error estimate

‖ f δ
2,α2

(x, 1)− f(x, 1) ‖≤







(22−p + 1)δ
p

p+1E
1

p+1

2 , 0 < p < 1,

2δ
1
2E

1
2
2 , p ≥ 1.

(6.27)

Proof The proof of Theorem 6.12 is similar to Theorem 6.11, so it is omitted. 2

Remark 6.13 From Theorems 6.11, 6.12, 4.7 and 4.10, we can deduce that the error estimate

obtained by the priori regularization parameter choice rule is order optimalO(δ
p

p+1 ) for 0 < p < 1.

When p ≥ 1 , the modified Tikhonov regularization method will cause saturation effect.

6.4. The posteriori convergence error estimation at endpoint y = 1

When y = 1, we select the regularization parameter β2 by the following equation

‖K2(1)g
δ
2,β2

(x, 1)− ϕδ
2(x)‖ = τδ, (6.28)

where τ > 1 is a positive constant, and ‖ϕδ
2‖ ≥ τδ.

Lemma 6.14 Let ̺(β2) =‖ K2(1)g
δ
2,β2

(x, 1)− ϕδ
2(x) ‖. If ‖ ϕδ

2(x) ‖≥ τδ, we have

(a) ̺(β2) is a continuous function;

(b) limβ2→0 ̺(β2) = 0;

(c) limβ2→∞ ̺(β2) =‖ ϕδ
2 ‖;

(d) For β2 ∈ (0,∞), ̺(β2) is a strictly increasing function.

Proof The Lemma can be easily proven with expression

̺(β2) = (

∞
∑

n=1

(
β2k

2
2(1)

1 + β2k22(1)
)2(ϕδ

2n)
2)

1
2 . 2 (6.29)

Lemma 6.14 indicates that there exists a unique solution for (6.28).

Lemma 6.15 For fixed τ > 1, let the regularization parameter β2 satisfy (6.28) and g(x, y)

satisfy (3.6). Then, we can see that the regularization parameter β2 = β2(δ, ϕ
δ
2) satisfies

β−1
2 ≤

{

( E2

(τ−1)δ )
2

p+1 , 0 < p < 1,
E2

(τ−1)δ , p ≥ 1.
(6.30)

Proof Applying Lemma 2.3 (e) and formula (6.28), we have

τδ =
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕδ
2nXn(x)

∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
(ϕδ

2n − ϕ2n)Xn(x) +

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕ2nXn(x)

∥

∥

∥
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≤
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
(ϕδ

2n − ϕ2n)Xn(x)
∥

∥

∥
+
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕ2nXn(x)

∥

∥

∥

≤ δ +
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕ2nXn(x)

∥

∥

∥

= δ +
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕ2nXn(x)

∥

∥

∥

and

∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕ2nXn(x)

∥

∥

∥

=
(

∞
∑

n=1

(
β2k

2
2(1)

1 + β2k22(1)
)2ϕ2

2n

)
1
2

≤ sup
n≥1

| β2k2(1)

1 + β2k22(1)
e−np |

(

∞
∑

n=1

e2npk22(1)ϕ
2
2n

)
1
2

≤
{

β
1
2+

p

2
2 E2, 0 < p < 1,

β2E2, p ≥ 1.

To sum up

β−1
2 ≤

{

( E2

(τ−1)δ )
2

p+1 , 0 < p < 1,
E2

(τ−1)δ , p ≥ 1.
2

Theorem 6.16 If expressions (3.2) and (5.12) hold and β2 satisfies (6.28), then

(1) If 0 < p < 1, then the following error estimate is obtained

‖gδ2,β2
(x, 1)− g(x, 1)‖ ≤ C4δ

p

p+1E
1

p+1

2 , (6.31)

where C4 := ( 1
τ−1)

1
p+1 + (τ + 1)

p
p+1 .

(2) If p > 1, then the following convergent estimate is obtained

‖gδ2,β2
(x, 1)− g(x, 1)‖ ≤ C5δ

1
2E

1
2
2 , (6.32)

where C5 := ( 1
τ−1)

1
2 + (τ + 1)

1
2 .

Proof Using the triangle inequality, we obtain

‖ gδ2,β2
(x, 1)− g(x, 1) ‖≤‖ gδ2,β2

(x, 1)− g2,β2(x, 1) ‖ + ‖ g2,β2(x, 1)− g(x, 1) ‖, (6.33)

where g2,β2(x, 1) is the regularization solution with no error.

Case 1. 0 < p < 1.

By (6.22), (6.30), we have

‖ gδ2,β2
(x, 1)− g2,β2(x, 1) ‖≤ β

− 1
2

2 δ ≤ (
1

τ − 1
)

1
p+1 δ

p

p+1E
1

p+1

2 . (6.34)

Next, we estimate the second term of formula (6.33). According to the priori bound condition
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(3.6), we have

‖ g2,β2(x, 1)− g(x, 1) ‖Hp=
∥

∥

∥

∞
∑

n=

enp
β1k

3
2(1)

1 + β1k22(1)
ϕ2nXn(x)

∥

∥

∥

=
(

∞
∑

n=1

e2np(
β1k

3
2(1)

1 + β1k22(1)
)2ϕ2

2n

)
1
2

≤
(

∞
∑

n=1

e2npk22(1)ϕ
2
2n

)
1
2 ≤ E2.

Applying the condition stability result (3.8), we have

‖ g2,β2(x, 1)− g(x, 1) ‖≤ E
1

p+1

2 ‖K2(1)g2,β2(x, 1)−K2(1)g(x, 1)‖
p

p+1 , (6.35)

where

‖K2(1)g2,β2(x, 1)−K2(1)g(x, 1)‖

=
∥

∥

∥

∞
∑

n=1

1

1 + β2k22(1)
ϕ2nXn(x) −

∞
∑

n=1

ϕ2nXn(x)
∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

−β2k
2
2(1)

1 + β2k22(1)
ϕ2nXn(x)

∥

∥

∥

=
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
(ϕδ

2n − ϕ2n)Xn(x) +

∞
∑

n=1

−β2k
2
2(1)

1 + β2k22(1)
ϕδ
2nXn(x)

∥

∥

∥

≤
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
(ϕδ

2n − ϕ2n)Xn(x)
∥

∥

∥
+
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕδ
2nXn(x)

∥

∥

∥

≤ δ +
∥

∥

∥

∞
∑

n=1

β2k
2
2(1)

1 + β2k22(1)
ϕδ
2nXn(x)

∥

∥

∥
≤ δ + τδ.

From (6.35), we have

‖ g2,β2(x, 1)− g(x, 1) ‖≤ (τ + 1)
p

p+1 δ
p

p+1E
1

p+1

2 . (6.36)

Finally, combining (6.34) with (6.36), we can obtain the error estimate (6.31).

Case 2. p ≥ 1.

By (6.22), (6.30), we have

‖ gδ2,β2
(x, 1)− g2,β2(x, 1) ‖≤ β

− 1
2

2 δ ≤ (
1

τ − 1
)

1
2 δ

1
2E

1
2
2 . (6.37)

Now, we estimate the second term of formula (6.33)

‖g2,β2(x, 1)− g(x, 1)‖ ≤ (τ + 1)
1
2 δ

1
2E

1
2
2 . (6.38)

The proof of this item is the same as that of (6.36), so it is omitted. Combining (6.37) with

(6.38), we can obtain the convergence estimate (6.32). 2

Next, the posteriori convergence error estimate for problem (1.2) is given. When y = 1, we

select the regularization parameter α2 by the following equation

‖ K1(1)f
δ
2,α2

(x, 1)− ϕδ
1(x) ‖= τδ, (6.39)
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where τ > 1 is a positive constant, and ‖ ϕδ
1(x) ‖≥ τδ.

Lemma 6.17 Let ρ(α2) =‖ K1(1)f
δ
2,α2

(x, 1)− ϕδ
1(x) ‖. If ‖ ϕδ

1(x) ‖≥ τδ, we have

(a) ρ(α2) is a continuous function;

(b) limα2→0 ρ(α2) = 0;

(c) limα2→∞ ρ(α2) =‖ ϕδ
1 ‖;

(d) For α2 ∈ (0,∞), ρ(α2) is a strictly increasing function.

Proof The Lemma can be easily proven with expression

ρ(α2) =
(

∞
∑

n=1

(
α2k

2
1(1)

1 + α2k21(1)
)2(ϕδ

1n)
2
)

1
2

. 2 (6.40)

Lemma 6.17 indicates that there exists a unique solution for (6.39).

Lemma 6.18 For fixed τ > 1, let the regularization parameter α2 satisfy (6.39) and f(x, y)

satisfy (3.6). Then, we can see that the regularization parameter α2 = α2(δ, ϕ
δ
1) satisfies

α−1
2 ≤

{

(2
1−pE2

(τ−1)δ )
2

p+1 , 0 < p < 1,
E2

(τ−1)δ , p ≥ 1.
(6.41)

Proof The proof of Lemma 6.18 is similar to Lemma 6.8, so it is omitted. 2

Theorem 6.19 If expressions (3.1) and (5.9) hold and α2 satisfies the regularization parameter

selection rule:

(1) If 0 < p < 1, then the following convergent estimate is obtained

‖f δ
2,α2

(x, 1)− f(x, 1)‖ ≤ C6δ
p

p+1E
1

p+1

2 , (6.42)

where C6 := (2
1−p

τ−1 )
1

p+1 + (τ + 1)
p

p+1 .

(2) If p > 1, then the following convergent estimate is obtained

‖f δ
2,α2

(x, 1)− f(x, 1)‖ ≤ C7δ
1
2E

1
2
2 , (6.43)

where C7 := ( 1
τ−1)

1
2 + (τ + 1)

1
2 .

Proof The proof of Theorem 6.19 is similar to Theorem 6.16, so it is omitted. 2

Remark 6.20 From Theorems 6.16, 6.19, 4.7 and 4.10, we can deduce that the error estimate

obtained by the posteriori regularization parameter choice rule is order optimal O(δ
p

p+1 ) for

0 < p < 1. When p ≥ 1, the modified Tikhonov regularization method will cause saturation

effect.
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7. Numerical implementation

In this section, we are going to use several numerical examples to verify the efficiency of our

method. Consider the problem










































uxxxx(x, y) + 2uxxyy(x, y) + uyyyy(x, y) = 0, (x, y) ∈ (0, π)× (0, 1),

u(x, 0) = ϕ1(x), x ∈ [0, π],

uy(x, 0) = ϕ2(x), x ∈ [0, π],

∆u(x, 0) = 0, x ∈ [0, π],

∆uy(x, 0) = 0, x ∈ [0, π],

u(0, y) = u(π, y) = ∆u(0, y) = ∆uy(π, y) = 0, y ∈ [0, 1]

(7.1)

with the given data ϕ1(x), ϕ2(x). We define

xi = i∆x, i = 0, 1, . . . , N, yj = j∆y, j = 0, 1, . . . ,M,

where ∆x = 1
N

is the step size of spatial direction and ∆y is the step size of temporal direction.

For the simplification, we only investigate the numerical efficiency of the regularization method

for (1.2), and the problem (1.3) is similar to the problem (1.2).
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Figure 1 The exact solution and the modified Tikhonov regularization solution of Example 7.1 with

(a) y = 0.1; (b) y = 0.25; (c) y = 0.45 for ε = 0.0001, 0.00001, 0.000001

According to [20], we can obtain the 13-point approximation of the biharmonic equation,

which can be written as

1

(∆x)2(∆y)2
(

20f j
i − 8(f j

i+1 + f j+1
i + f j

i−1 + f j−1
i ) + 2(f j

i+1 + f j+1
i−1 + f j−1

i−1 + f j−1
i+1 )+

(f j
i+2 + f j+2

i + f j
i−2 + f j−2

i )
)

= 0.
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We generate the noise-contaminated data by adding a random perturbation, i.e.,

f δ(x, y) = f(x, y) + ε · f(x, y)(2 rand(size(f))− 1), (7.2)

ϕδ = ϕ+ ε · ϕ(x)(2 rand(size(ϕ) − 1)), (7.3)

here, size(f) represents the size of f in space and time, size(ϕ) represents the size of ϕ in space,

the function rand(·) generates arrays of random numbers whose elements are normally distributed

with mean 0, variance σ2 = 1, and the noise level is:

δ = ‖ϕδ − ϕ‖ =

√

√

√

√

1

N + 1

N+1
∑

i=1

(ϕi − ϕδ
i )

2. (7.4)

Actually, the priori regularization parameter may consider the smooth condition of the exact

solution. But it is difficult to get it in practical problem. The Tikhonov regularization method

is validated based on the posteriori regularization parameter choice rule. The effectiveness and

stability of this method are verified by three examples. Let us take τ = 1.01. Choosing N = 100,

M = 1000, we give the following three examples.
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Figure 2 The exact solution and the modified Tikhonov regularization solution of Example 7.2 with

(a) y = 0.1; (b) y = 0.25; (c) y = 0.45 for ε = 0.0001, 0.00001, 0.000001

Example 7.1 Consider the function

f(x) = x cos(2x), x ∈ [0, π].
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Example 7.2 Consider the piecewise smooth function

f(x) =























0, x ∈ [0, π
4 ),

4(x− 1
4 ), x ∈ [π4 ,

π
2 ),

−4(x− 3
4 ), x ∈ [π2 ,

3
4π),

0, x ∈ [ 34π, π].

Example 7.3 Consider the function

f(x) =











0, x ∈ [0, π3 ),
1
2 , x ∈ [π3 ,

2
3π),

1, x ∈ [ 23π, π].

Example 7.4 Consider the non-smooth function

f(x) =























0, x ∈ [0, π
4 ],

1, x ∈ (π4 ,
π
2 ],

0, x ∈ (π2 ,
3
4π],

−1, x ∈ (34π, π].

Figures 1–3 show the error of the exact solution and the approximate solution of the modified

Tikhonov regularization method.
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Figure 3 The exact solution and the modified Tikhonov regularization solution of Example 7.3 with

(a) y = 0.1; (b) y = 0.25; (c) y = 0.45 for ε = 0.0001, 0.00001, 0.000001

Figure 1 shows the exact solution f(x) and the modified Tikhonov regularization solution

f δ
α(x) of Example 7.1 for the relative error levels ε = 0.0001, 0.00001, 0.000001 with various values

y = 0.1, 0.25, 0.45. Figure 2 shows the exact solution f(x) and the modified Tikhonov regular-

ization solution f δ
α(x) of Example 7.2 for the relative error levels ε = 0.0001, 0.00001, 0.000001
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with various values y = 0.1, 0.25, 0.45. Figure 3 shows the exact solution f(x) and the mod-

ified Tikhonov regularization solution f δ
α(x) of Example 7.3 for the relative error levels ε =

0.0001, 0.00001, 0.000001 with various values y = 0.1, 0.25, 0.45. From above three figures we can

see, the same numerical example, the smaller the value of ε and y, the better the fitting effect of

the exact solution f(x) and the corresponding regular solution f δ
α(x) will be. For different nu-

merical examples, the fitting results of the function with better smoothness are better than that

of the function with worse smoothness. Above four examples show that the modified Tikhonov

regularization method is very effective.
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Figure 4 The exact solution and the modified Tikhonov regularization solution of Example 7.4 with

(a) y = 0.1; (b) y = 0.25; (c) y = 0.45 for ε = 0.0001, 0.00001, 0.000001

8. Conclusion

This paper investigates the Cauchy problem of biharmonic equations and the condition sta-

bility is given under the a priori bound assumption for the exact solution. A modified Tikhonov

regularization method is used to solve this ill-posed problem. For the choice of regularization

parameter, we give the priori and the posteriori rules. Under the priori regularization parameter

selection rules and the posteriori regularization parameter selection rules, the corresponding er-

ror estimates are obtained respectively. Finally, we verify the feasibility of our method by doing

the corresponding numerical experiments.
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