A Modified Tikhonov Regularization Method for a Cauchy Problem of the Biharmonic Equation

Fan YANG*, Jianming XU, Xiaoxiao LI
School of Science, Lanzhou University of Technology, Gansu 730050, P. R. China

Abstract

In this paper, the Cauchy problem of biharmonic equation is considered. This problem is ill-posed, i.e., the solution (if exists) does not depend on the measurable data. Firstly, we give the conditional stability result under the a priori bound assumption for the exact solution. Secondly, a modified Tikhonov regularization method is used to solve this ill-posed problem. Under the a priori and the a posteriori regularization parameter choice rule, the error estimates between the regularization solutions and the exact solution are obtained. Finally, some numerical examples are presented to verify that our method is effective.

Keywords Biharmonic equations; inverse problem; Cauchy problem; Tikhonov regularization method

MR(2020) Subject Classification 35R25; 47A52; 35R30

1. Introduction

Biharmonic equation is a kind of elliptic equation, it can describe some basic equations in plane elasticity and reconstruct geometric curves with given boundary conditions [1]. The boundary value problem of biharmonic equation can also be used to model broadband and low frequency radar imaging in [2].

In this paper, we consider the Cauchy problem of biharmonic equation with nonhomogeneous Dirichlet and Neumann boundary conditions:

$$
\begin{cases}u_{x x x x}(x, y)+2 u_{x x y y}(x, y)+u_{y y y y}(x, y)=0, & (x, y) \in(0, \pi) \times(0,1) \tag{1.1}\\ u(x, 0)=\varphi_{1}(x), & x \in[0, \pi] \\ u_{y}(x, 0)=\varphi_{2}(x), & x \in[0, \pi] \\ \Delta u(x, 0)=0, & x \in[0, \pi] \\ \Delta u_{y}(x, 0)=0, & x \in[0, \pi] \\ u(0, y)=u(\pi, y)=\Delta u(0, y)=\Delta u_{y}(\pi, y)=0, & y \in[0,1]\end{cases}
$$

The Cauchy problem of biharmonic equation studied in this paper is to find $u(x, y)$ for $y \in(0,1]$ from the initial data

$$
u(x, 0)=\varphi_{1}(x), x \in[0, \pi], \quad u_{y}(x, 0)=\varphi_{2}(x), x \in[0, \pi] .
$$

[^0]Assume the exact data $\varphi_{1}(x), \varphi_{2}(x)$ and the measurement data $\varphi_{1}^{\delta}(x), \varphi_{2}^{\delta}(x)$ satisfy

$$
\left\|\varphi_{1}^{\delta}(\cdot)-\varphi_{1}(\cdot)\right\| \leq \delta,\left\|\varphi_{2}^{\delta}(\cdot)-\varphi_{2}(\cdot)\right\| \leq \delta
$$

where δ denotes the bound of measured error.
Due to the linear property, we can divide (1.1) into two Cauchy problems as follows:

$$
\begin{cases}f_{x x x x}(x, y)+2 f_{x x y y}(x, y)+f_{y y y y}(x, y)=0, & (x, y) \in(0, \pi) \times(0,1) \tag{1.2}\\ f(x, 0)=\varphi_{1}(x), & x \in[0, \pi] \\ f_{y}(x, 0)=0, & x \in[0, \pi] \\ \Delta f(x, 0)=0, & x \in[0, \pi] \\ \Delta f_{y}(x, 0)=0, & x \in[0, \pi] \\ f(0, y)=f(\pi, y)=\Delta f(0, y)=\Delta f_{y}(\pi, y)=0, & y \in[0,1]\end{cases}
$$

and

$$
\begin{cases}g_{x x x x}(x, y)+2 g_{x x y y}(x, y)+g_{y y y y}(x, y)=0, & (x, y) \in(0, \pi) \times(0,1), \tag{1.3}\\ g(x, 0)=0, & x \in[0, \pi] \\ g_{y}(x, 0)=\varphi_{2}(x), & x \in[0, \pi] \\ \Delta g(x, 0)=0, & x \in[0, \pi] \\ \Delta g_{y}(x, 0)=0, & x \in[0, \pi] \\ g(0, y)=g(\pi, y)=\Delta g(0, y)=\Delta g_{y}(\pi, y)=0, & y \in[0,1]\end{cases}
$$

we know that $u=f+g$ is the solution of problem (1.1). Then we only need to consider (1.2) and (1.3), respectively.

In the sense of Hadamard problems, (1.2) and (1.3) are ill-posed, a small measurement error in the Cauchy data can induce an enormous error in the solution [3]. Thus some regularization techniques are required to overcome the ill-posedness and stabilize numerical computations, please see some regularized strategies in [4]. In the past years, the inverse problem of the biharmonic equation has little research. Kalmenov and Iskakova in $[5,6]$ studied a mixed boundary value problem for the biharmonic equation where boundary conditions are given on the whole boundary of the domain. However, a regularization method has not yet been mentioned in this study. In [7], Luan et al. used a filter regularization method to transform the ill-posed problem into a well-posed problem for the Cauchy problem of the biharmonic equation. In [8], the authors identified the unknown sources of biharmonic equation by using the Landweber regularization method.

In this paper, we study the inverse problem of biharmonic equations with nonhomogeneous Dirichlet and Neumann boundary conditions. We not only give the a priori regularization parameter choice rule, but also give the a posteriori regularization parameter choice rule. Based on the a priori and the a posteriori regularization parameter choice rules, we give both the error estimates within $0<y<1$ and the error estimates at $y=1$. Moreover, we give the optimal error bound analysis. According to the optimal error bound analysis, we find the error estimations are all order optimal.

The paper is organized as follows. In Section 2, we give some preliminary results. In Section 3, we derive the conditional stability of problems under a priori bound condition for the exact
solution. In Section 4, the optimal error bounds for problems (1.2) and (1.3) are given. In Section 5 , we propose a modified Tikhonov regularization method. In Section 6, we give the error estimates under the a priori and the a posteriori regularization choice rules. Finally, numerical examples are given in Section 7.

2. Preparation knowledge

In this section, we present some important definitions and lemmas. Firstly, we introduce a function

$$
H(\eta)= \begin{cases}\eta^{\eta}(1-\eta)^{1-\eta}, & \eta \in(0,1) \tag{2.1}\\ 1, & \eta=0,1\end{cases}
$$

which was defined in [9] (see formula 2.2), we can see that $H(\eta) \leq 1$ clearly.
Lemma 2.1 ([9, Lemma 2 in Section 3]) If $0 \leq p \leq q<\infty, q \neq 0$ and $v>0$, then

$$
\begin{equation*}
\frac{v e^{-p}}{v+e^{-q}} \leq H\left(\frac{p}{q}\right) v^{\frac{p}{q}} \tag{2.2}
\end{equation*}
$$

Lemma 2.2 For $0<\alpha<1$ and $p>0$, we obtain
(a) $\frac{e^{s}}{2} \leq \cosh (s) \leq e^{s}$ for $s \geq 0$.
(b) As $s>0$, for $T_{2}(s):=\frac{\cos h(s y)}{1+\alpha \cos h^{2}(s)}$, there holds $T_{2}(s) \leq 2 \alpha^{-\frac{y}{2}}$.
(c) As $s>0$, for $T_{3}(s):=\frac{\alpha \cos h(s) \cos h(s y)}{1+\alpha \cos h^{2}(s)}$, there holds $T_{3}(s) \leq 4 \alpha^{\frac{1}{2}-\frac{y}{2}}$.
(d) When $s \geq 1$, for $T_{4}(s):=\frac{\alpha \cos h(s)}{1+\alpha \cos h^{2}(s)} e^{-s p}$, there holds

$$
T_{4}(s) \leq \begin{cases}2^{1-p} \alpha^{\frac{1}{2}+\frac{p}{2}}, & 0<p<1 \\ \alpha, & p \geq 1\end{cases}
$$

(e) When $s \geq 1$, for $T_{5}(s):=\frac{\alpha \cos h^{2}(s)}{1+\alpha \cos h^{2}(s)} e^{-s p}$, there holds

$$
T_{5}(s) \leq \begin{cases}2^{2-p} \alpha^{\frac{p}{2}}, & 0<p<1 \\ \alpha^{\frac{1}{2}}, & p \geq 1\end{cases}
$$

Proof (a) is apparent.
(b) Using Lemma 2.1 and (a), we have $T_{2}(s) \leq \frac{e^{s y}}{1+\alpha \frac{e^{2 s}}{4}}=\frac{e^{-2 s+s y}}{e^{-2 s}+\frac{\alpha}{4}}$.

Let $v=\frac{\alpha}{4}, p=2 s-s y, q=2 s$ and use the properties of $H(\eta)$, we obtain

$$
T_{2}(s) \leq\left(\frac{\alpha}{4}\right)^{-1} \frac{\frac{\alpha}{4} e^{-(2 s-s y)}}{\frac{\alpha}{4}+e^{-2 s}}=v^{-1} \frac{v e^{-p}}{v+e^{-q}} \leq v^{-1} H\left(\frac{p}{q}\right) v^{\frac{p}{q}} \leq v^{-1+\frac{p}{q}} \leq\left(\frac{\alpha}{4}\right)^{-\frac{y}{2}} \leq 2 \alpha^{-\frac{y}{2}}
$$

(c) Using Lemma 2.1 and (a), we have

$$
T_{3}(s) \leq \alpha \frac{e^{s+s y}}{1+\alpha \frac{e^{2 s}}{4}}=\alpha \frac{e^{-(s-s y)}}{\frac{\alpha}{4}+e^{-2 s}} \leq \alpha\left(\frac{\alpha}{4}\right)^{-1} \frac{\frac{\alpha}{4} e^{-(s-s y)}}{\frac{\alpha}{4}+e^{-2 s}} \leq \alpha\left(\frac{\alpha}{4}\right)^{-\frac{1}{2}-\frac{y}{2}} \leq 4 \alpha^{\frac{1}{2}-\frac{y}{2}} .
$$

(d) When $0<p<1$, applying Lemma 2.1, we obtain

$$
T_{4}(s) \leq \alpha \frac{e^{s-s p}}{1+\frac{\alpha}{4} e^{2 s}} \leq \alpha\left(\frac{\alpha}{4}\right)^{-\frac{1}{2}+\frac{p}{2}} \leq 2^{1-p} \alpha^{\frac{1}{2}+\frac{p}{2}}
$$

When $p \geq 1$, if $s \geq 1$, we obtain $T_{4}(s) \leq \alpha \cos h(s) e^{-s p} \leq \alpha e^{(1-p) s}<\alpha$.
(e) When $0<p<1$, using Lemma 2.1, we obtain

$$
T_{5}(s) \leq \frac{\alpha e^{2 s-s p}}{1+\alpha \frac{e^{2 s}}{4}}=\frac{\alpha e^{-s p}}{e^{-2 s}+\frac{\alpha}{4}} \leq \alpha\left(\frac{\alpha}{4}\right)^{-1+\frac{p}{2}} \leq 2^{2-p} \alpha^{\frac{p}{2}}
$$

When $p \geq 1$, if $s \geq 1$, we obtain $T_{5}(s) \leq \alpha \frac{\cos h^{2}(s)}{\alpha^{\frac{1}{2}} \cos h(s)} e^{-s p} \leq \alpha^{\frac{1}{2}} e^{(1-p) s}<\alpha^{\frac{1}{2}}$.
Lemma 2.3 ([10]) For $0<\beta<1$ and $p>0$, the following inequalities hold:
(a) $\frac{\sin h(s y)}{s} \leq e^{s y}, \frac{\sin h(s)}{s} \leq e^{s}$ for $s>0$.
(b) $\frac{\sin h(s y)}{\sin h(s)} \leq e^{(y-1) s}$ for $s>0$.
(c) As $s>0$, for $T_{6}(s):=\frac{\frac{\sin h(s y)}{s}}{1+\beta\left(\frac{\sin h(s)}{s}\right)^{2}}$, there holds $T_{6}(s) \leq 2^{-y} \beta^{-\frac{y}{2}}$.
(d) As $s>0$, for $T_{7}(s):=\frac{\beta \frac{\sin h(s)}{s} \frac{\sin h(s y)}{s}}{1+\beta\left(\frac{\sin h(s)}{s}\right)^{2}}$, there holds $T_{7}(s) \leq 2^{y-1} \beta^{\frac{1}{2}-\frac{y}{2}}$.
(e) When $s \geq 1$, for $T_{8}(s):=\frac{\beta k_{2}(1)}{1+\beta k_{2}^{2}(1)} e^{-s p}$, and $k_{2}(1)=\frac{\sin h(s)}{s}$, there holds

$$
T_{8}(s) \leq \begin{cases}\beta^{\frac{1}{2}+\frac{p}{2}}, & 0<p<1 \\ \beta, & p \geq 1\end{cases}
$$

(f) When $s \geq 1$, for $T_{9}(s):=\frac{\beta k_{2}^{2}(1)}{1+\beta k_{2}^{2}(1)} e^{-s p}$, there holds

$$
T_{9}(s) \leq \begin{cases}2^{-p} \beta^{\frac{p}{2}}, & 0<p<1 \\ \beta^{\frac{1}{2}}, & p \geq 1\end{cases}
$$

Proof The proofs of (a)-(d) were detailed in [10, Lemma 2.2], so they are omitted. We now demonstrate the items (e) and (f).
(e) When $0<p<1$, if $s \geq \ln \left(\frac{1}{\sqrt{\beta}}\right)$, according to (a) $\frac{\sin h(s)}{s} \leq e^{s}$, we obtain

$$
T_{8}(s) \leq \frac{\beta k_{2}(1)}{\beta^{\frac{1}{2}} k_{2}(1)} e^{-s p} \leq \beta^{\frac{1}{2}} e^{-s p} \leq \beta^{\frac{1}{2}+\frac{p}{2}}
$$

If $0<s \leq \ln \left(\frac{1}{\sqrt{\beta}}\right)$, we obtain $T_{8}(s) \leq \beta k_{2}(1) e^{-s p} \leq \beta^{\frac{1}{2}+\frac{p}{2}}$. So, when $s>0$, we obtain $T_{8}(s) \leq \beta^{\frac{1}{2}+\frac{p}{2}}$. When $p \geq 1$, if $s \geq 1$, we obtain $T_{8}(s) \leq \beta k_{2}(1) e^{-s p} \leq \beta e^{(1-p) s} \leq \beta$. To sum up, when $s \geq 1$, we obtain

$$
T_{8}(s) \leq \begin{cases}\beta^{\frac{1}{2}+\frac{p}{2}}, & 0<p<1 \\ \beta, & p \geq 1\end{cases}
$$

(f) When $0<p<1$, if $s \geq \ln \left(\frac{2}{\sqrt{\beta}}\right)$, we obtain $T_{9}(s) \leq e^{-s p} \leq 2^{-p} \beta^{\frac{p}{2}}$. If $0<s \leq \ln \left(\frac{2}{\sqrt{\beta}}\right)$, we obtain $T_{9}(s) \leq \frac{\beta k_{2}^{2}(1)}{\beta^{\frac{1}{2}} k_{2}(1)} e^{-s p} \leq \frac{\beta^{\frac{1}{2}}}{2} e^{(1-p) s} \leq 2^{-p} \beta^{\frac{p}{2}}$. So, when $s>0$, we obtain $T_{9}(s) \leq 2^{-p} \beta^{\frac{p}{2}}$. When $p \geq 1$, if $s \geq 1$, we obtain

$$
T_{9}(s) \leq \frac{\beta k_{2}^{2}(1)}{\beta^{\frac{1}{2}} k_{2}(1)} e^{-s p} \leq \beta^{\frac{1}{2}} k_{2}(1) e^{-s p} \leq \beta^{\frac{1}{2}} e^{(1-p) s} \leq \beta^{\frac{1}{2}}
$$

To sum up, when $s \geq 1$, we obtain

$$
T_{9}(s) \leq \begin{cases}2^{-p} \beta^{\frac{p}{2}}, & 0<p<1 \\ \beta^{\frac{1}{2}}, & p \geq 1\end{cases}
$$

3. The solution, ill-posed analysis, and the results of conditional stability

Using the method of variables separation, the solutions of problems (1.2), (1.3) can be formulated

$$
\begin{align*}
& f(x, y)=\sum_{n=1}^{\infty} \cos h(n y) \varphi_{1 n} X_{n}(x), \varphi_{1 n}=\left\langle\varphi_{1}, X_{n}\right\rangle \tag{3.1}\\
& g(x, y)=\sum_{n=1}^{\infty} \frac{\sin h(n y)}{n} \varphi_{2 n} X_{n}(x), \varphi_{2 n}=\left\langle\varphi_{2}, X_{n}\right\rangle \tag{3.2}
\end{align*}
$$

where $X_{n}:=X_{n}(x)=\sqrt{\frac{\pi}{2}} \sin (n x)$ is the eigenfunction in $L^{2}(0, \pi)$, and $\varphi_{1 n}, \varphi_{2 n}$ stand for its Fourier coefficient. Two notations $k_{1}(y), k_{2}(y)$ are given to simplify the solution.

$$
f(x, y)=\sum_{n=1}^{\infty} k_{1}(y) \varphi_{1 n} X_{n}(x), g(x, y)=\sum_{n=1}^{\infty} k_{2}(y) \varphi_{2 n} X_{n}(x) .
$$

From formula (3.1), as $n \rightarrow \infty, \cos h(n y) \rightarrow \infty$, the small perturbation of $\varphi_{1}^{\delta}(x)$ will cause a great change in the source term $f(x, y)$. This means that problem (1.2) is ill-posed. For the formula (3.2), as $n \rightarrow \infty, \frac{\sin h(n y)}{n} \rightarrow \infty$, the small perturbation of $\varphi_{2}^{\delta}(x)$ will cause a great change in the source term $g(x, y)$. This means that problems (1.3) is also ill-posed. So the regularization method is required to solve problem (1.2) and (1.3). Below, we give the a priori bound as follows:

$$
\begin{equation*}
\max \left\{\|f(x, 1)\|_{L^{2}(0, \pi)},\|g(x, 1)\|_{L^{2}(0, \pi)}\right\} \leq E_{1} \tag{3.3}
\end{equation*}
$$

here $\|f(x, 1)\|_{L^{2}(0, \pi)}=\left(\sum_{n=1}^{\infty}\left(\cosh (n) \varphi_{1 n}\right)^{2}\right)^{\frac{1}{2}},\|g(x, 1)\|_{L^{2}(0, \pi)}=\left(\sum_{n=1}^{\infty}\left(\frac{\sin h(n)}{n} \varphi_{2 n}\right)^{2}\right)^{\frac{1}{2}}$.
Theorem 3.1 If $f(x, y)$ and $g(x, y)$ satisfy the priori bound condition (3.3), then we obtain

$$
\begin{gather*}
\|f(x, y)\|_{L^{2}(0, \pi)} \leq 2^{y} E_{1}^{y}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{1-y} \tag{3.4}\\
\|g(x, y)\|_{L^{2}(0, \pi)} \leq \frac{2^{y}}{\left(1-e^{-2}\right)^{y}} E_{1}^{y}\left\|\varphi_{2}\right\|_{L^{2}(0, \pi)}^{1-y} . \tag{3.5}
\end{gather*}
$$

Proof According to the formula (3.1), (3.3) and using the Hölder inequality, we have

$$
\begin{aligned}
\|f(x, y)\|_{L^{2}(0, \pi)}^{2} & =\left\|\sum_{n=1}^{\infty} \cos h(n y) \varphi_{1 n} X_{n}(x)\right\|_{L^{2}(0, \pi)}^{2} \\
& =\sum_{n=1}^{\infty} \cos h^{2}(n y) \varphi_{1 n}^{2}=\sum_{n=1}^{\infty} \cos h^{2}(n y) \varphi_{1 n}^{2 y} \varphi_{1 n}^{2-2 y} \\
& \leq\left(\sum_{n=1}^{\infty} \cos h^{\frac{2}{y}}(n y) \varphi_{1 n}^{2}\right)^{y}\left(\sum_{n=1}^{\infty} \varphi_{1 n}^{2}\right)^{1-y} \\
& \leq \sup _{n \geq 1}\left|\frac{\cos h^{\frac{2}{y}}(n y)}{\cos h^{2}(n)}\right|^{y}\left(\sum_{n=1}^{\infty} \cos h^{2}(n) \varphi_{1 n}^{2}\right)^{y}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{2-2 y} \\
& \leq \sup _{n \geq 1}\left|\frac{e^{2 n}}{\frac{e^{2 n}}{4}}\right|^{y} E_{1}^{2 y}\left\|\varphi_{1}\right\|^{2-2 y}
\end{aligned}
$$

$$
\leq 4^{y} E_{1}^{2 y}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{2-2 y}
$$

Thus

$$
\|f(x, y)\|_{L^{2}(0, \pi)} \leq 2^{y} E_{1}^{y}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{1-y} .
$$

Proof The proof of $g(x, y)$ is the same as that of $f(x, y)$, so it is omitted.
Remark 3.2 When $y=1$, the error estimate in Theorem 3.1 is only bounded instead of convergence. In order to obtain the convergent error estimate at $y=1$, a stronger a priori hypothesis must be introduced as follows.

The a priori bound in H^{p} space of functions $f(x, 1) g(x, 1)$ is defined as follows:

$$
\begin{equation*}
\max \left\{\|f(x, 1)\|_{H^{p}(0, \pi)},\|g(x, 1)\|_{H^{p}(0, \pi)}\right\} \leq E_{2} \tag{3.6}
\end{equation*}
$$

here

$$
\begin{aligned}
& \|f(x, 1)\|_{H^{p}(0, \pi)}=\left(\sum_{n=1}^{\infty}\left(e^{n p} \cos h(n) \varphi_{1 n}\right)^{2}\right)^{\frac{1}{2}} \\
& \|g(x, 1)\|_{H^{p}(0, \pi)}=\left(\sum_{n=1}^{\infty}\left(e^{n p} \frac{\sin h(n)}{n} \varphi_{2 n}\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

E_{1}, E_{2} are positive constants.
Theorem 3.3 Let $p>0, f(x, 1)$ and $g(x, 1)$ satisfy the priori bound condition (3.6). Then we obtain

$$
\begin{align*}
& \|f(x, 1)\|_{L^{2}(0, \pi)} \leq E_{2}^{\frac{1}{p+1}}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{\frac{p}{p+1}}, \tag{3.7}\\
& \|g(x, 1)\|_{L^{2}(0, \pi)} \leq E_{2}^{\frac{1}{p+1}}\left\|\varphi_{2}\right\|_{L^{2}(0, \pi)}^{\frac{p}{p+1}} . \tag{3.8}
\end{align*}
$$

Proof According to the formula (3.1), (3.6) and using the Hölder inequality, we have

$$
\begin{aligned}
\|f(x, 1)\|_{L^{2}(0, \pi)}^{2} & =\left\|\sum_{n=1}^{\infty} \cos h(n) \varphi_{1 n} X_{n}(x)\right\|_{L^{2}(0, \pi)}^{2} \\
& =\sum_{n=1}^{\infty} \cos h^{2}(n) \varphi_{1 n}^{2}=\sum_{n=1}^{\infty} \cos h^{2}(n) \varphi_{1 n}^{\frac{2}{p+1}} \varphi_{1 n}^{\frac{2 p}{p+1}} \\
& \leq\left(\sum_{n=1}^{\infty} \cos h^{2 p+2}(n) \varphi_{1 n}^{2}\right)^{\frac{1}{p+1}}\left(\sum_{n=1}^{\infty} \varphi_{1 n}^{2}\right)^{\frac{p}{p+1}} \\
& \leq\left(\sum_{n=1}^{\infty} e^{2 n p} \cos h^{2}(n) \varphi_{1 n}^{2}\right)^{\frac{1}{p+1}}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{\frac{2 p}{p+1}} \\
& \leq E_{2}^{\frac{2}{p+1}}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{\frac{2 p}{p+1}} .
\end{aligned}
$$

Thus

$$
\|f(x, 1)\|_{L^{2}(0, \pi)} \leq E_{2}^{\frac{1}{p+1}}\left\|\varphi_{1}\right\|_{L^{2}(0, \pi)}^{\frac{p}{p+1}}
$$

The proof of $g(x, 1)$ is the same as that of $f(x, 1)$, so it is omitted.

4. Optimal error bounds

In this section, we will give the optimal error bounds of problems (1.2) and (1.3). Now we first give some preliminary conclusions.

4.1. Preliminary

Consider an ill-posed operator equation [11-15]:

$$
\begin{equation*}
K x=y \tag{4.1}
\end{equation*}
$$

where $K: X \rightarrow Y$ is a linear bounded operator between infinite dimensional Hilbert spaces X and Y with non-closed range in Y. We assume that $y^{\delta} \in Y(\delta>0)$ is data with measurement error and satisfies

$$
\begin{equation*}
\left\|y^{\delta}-y\right\| \leq \delta \tag{4.2}
\end{equation*}
$$

any operator $R: Y \rightarrow X$ can be considered as a useful method for solving (4.1), and the approximate solution of problem (4.1) is given by $R y^{\delta}$.

Let $M \subset X$ be a bounded set. Define the worst case error $\Delta(\delta, R)$ for identifying x with y^{δ} (see $[12-14,16]$)

$$
\begin{equation*}
\Delta(\delta, R):=\sup \left\{\left\|R y^{\delta}-x\right\| \mid x \in M, y^{\delta} \in Y,\left\|K x-y^{\delta}\right\| \leqslant \delta\right\} \tag{4.3}
\end{equation*}
$$

The best possible error bound (or optimal error bound) is defined as the infimum over all mappings $R: Y \rightarrow X$,

$$
\begin{equation*}
\omega(\delta):=\inf _{R} \Delta(\delta, R) \tag{4.4}
\end{equation*}
$$

According to [15], the set $M=M_{\varphi, E}$ is a set of elements which satisfy some source condition:

$$
\begin{equation*}
M_{\varphi, E}=\left\{x \in X \left\lvert\, x=\left[\varphi\left(K^{*} K\right)\right]^{\frac{1}{2}} v\right.,\|v\| \leqslant E\right\} \tag{4.5}
\end{equation*}
$$

where the operator function $\varphi\left(K^{*} K\right)$ is well defined spectral representation

$$
\begin{equation*}
\varphi\left(K^{*} K\right)=\int_{0}^{a} \varphi(\lambda) \mathrm{d} E_{\lambda}, \tag{4.6}
\end{equation*}
$$

where $\left\{E_{\lambda}\right\}$ is the spectral family of the operator $K^{*} K$. There exists a constant a so that $\left\|K^{*} K\right\| \leqslant a$. When $K: L^{2}(R) \rightarrow L^{2}(R)$ is a multiplication operator, $K x(s)=r(s) x(s)$, the operator function $\varphi\left(K^{*} K\right)$ has the following form:

$$
\begin{equation*}
\varphi\left(K^{*} K\right) x(s)=\varphi\left(|r(s)|^{2}\right) x(s) \tag{4.7}
\end{equation*}
$$

There exists a method R_{0} which is called $[11,17]$
(i) Optimal on the set $M_{\varphi, E}$ if $\Delta(\delta, R)=\omega(\delta, E)$.
(ii) Order optimal on the set $M_{\varphi, E}$ if $\Delta(\delta, R) \leqslant C \omega(\delta, E)$ with $C \geqslant 1$.

Through the assumption in $[11,17]$, we can derive an explicit (best possible) optimal error bound for the worst case error $\Delta(\delta, R)$ defined in (4.3).

Assumption 4.1 ([11,14,18]) In the formula (4.7), function $\varphi(\lambda):(0, a] \rightarrow(0, \infty)$ is a continuous function, then it has the following properties:

- $\lim _{\lambda \rightarrow 0} \varphi(\lambda)=0$.
- $\varphi(\lambda)$ is strictly monotonically increasing on $(0, a]$.
- $\rho(\lambda)=\lambda \varphi^{-1}(\lambda):(0, \varphi(a)] \rightarrow(0, a \varphi(a)]$ is convex.

Based on the above assumptions, the next theorem provides us a general formula for the optimal error bound.

Theorem 4.2 ($[11,14,16,18]$) Let $M_{\varphi, E}$ be given by formula (4.5). Assumption 4.1 holds and $\frac{\delta^{2}}{E^{2}} \in \sigma\left(K^{*} K \varphi\left(K^{*} K\right)\right)$, where $\sigma\left(K^{*} K\right)$ represents the spectrum of operator $K^{*} K$, then there is

$$
\begin{equation*}
\omega\left(\delta, M_{\varphi, E}\right)=E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)} \tag{4.8}
\end{equation*}
$$

We can obtain the optimal error bound from Theorem 4.2. That is a good conclusion, but there also exist two difficulties. One difficulty is that it is hard to check the convexity of ρ, and sometimes it is violated. Another difficulty is that even for very small $\delta, \frac{\delta^{2}}{E^{2}}$ may not belong to $\sigma\left(K^{*} K \varphi\left(K^{*} K\right)\right)$; for example, K is a compact operator. In the next, we present two lemmas to solve the first and the second problems.

Lemma 4.3 ([19]) If ρ is not necessarily convex, we obtain

- $E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)} \leqslant \omega\left(\delta, M_{\varphi, E}\right) \leqslant \sqrt{2} E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}$ for $\frac{\delta^{2}}{E^{2}} \in \sigma\left(K^{*} K \varphi\left(K^{*} K\right)\right)$.
- $\omega\left(\delta, M_{\varphi, E}\right) \leqslant \sqrt{2} E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}$ for $\frac{\delta^{2}}{E^{2}} \notin \sigma\left(K^{*} K \varphi\left(K^{*} K\right)\right)$.

Lemma 4.4 ([19]) Let $K^{*} K$ be compact and let $\lambda_{1}>\lambda_{2}>\cdots$ be the ordered eigenvalued of $K^{*} K$. If there exists a constant $k>0$ such that $\varphi\left(\lambda_{i+1}\right) \geqslant k \varphi\left(\lambda_{i}\right)$ for all $i \in N$, then

$$
\omega\left(\delta, M_{\varphi, E}\right) \geqslant \sqrt{k} E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}
$$

for $\delta \in\left(0, \delta_{1}\right]$, where $\delta_{1}=E \sqrt{\lambda_{1} \varphi\left(\lambda_{1}\right)}$.
4.2. Optimal error bound for problems (1.2) and (1.3)

In this part, we will present the optimal error bound for problems (1.2) and (1.3). Now, we analyse the optimal error bound for problem (1.2) first. The noise datum $\varphi_{1}^{\delta}(x) \in L^{2}(0, \pi)$ is processed to identify the best possible worst-case error given by formula (4.4) of $f(x, y)$, where $f(x, y) \in M_{p, E}, M_{p, E}$ is defined as follows:

$$
\begin{equation*}
f(x, y) \in M_{p, E}=\left\{f(x, y) \in L^{2}(0, \pi) \mid\|f(x, 1)\|_{H^{p}} \leq E_{i}, p \geq 0, i=1,2\right\} \tag{4.9}
\end{equation*}
$$

when $p=0,\|f(x, 1)\|_{H^{p}}$ is L^{2}-norm, and $\|f(x, 1)\| \leq E_{1}$. When $p \neq 0,\|f(x, 1)\|_{H^{p}}$ is Hilbertnorm, thus $\|f(x, 1)\|_{H^{p}} \leq E_{2}$.

Rewrite Eq. (2.1) as an operator equation:

$$
\begin{equation*}
K_{1} f(x, y)=\varphi_{1}(x), \tag{4.10}
\end{equation*}
$$

where K_{1} is a multiplication operator with parametric variable y and its singular value is as follows:

$$
\begin{equation*}
K_{1 n}=\frac{1}{\cos h(n y)}, \quad K_{1 n}^{*} K_{1 n}=\frac{1}{\cos h^{2}(n y)} \tag{4.11}
\end{equation*}
$$

Now let us reformulate condition (4.9) into an equivalent one of form (4.5) with a special function $\varphi=\varphi(\lambda)$.

Propositon 4.5 Consider the operator Eq. (4.10). Then the set $M_{p, E}$ given in (4.9) is equivalent to the general source set $M_{\varphi, E}$ given in (4.5) provided $\varphi=\varphi(\lambda)$ is given (in parameter representation) by

$$
\left\{\begin{array}{l}
\lambda(n)=\frac{1}{\cos h^{2}(n y)}, \tag{4.12}\\
\varphi(n)=e^{-2 n p \frac{\cos h^{2}(n y)}{\cos h^{2}(n)} .}
\end{array}\right.
$$

Proof Due to $K_{1} f(x, y)=\varphi_{1}(x)$ for $0<y \leq 1$, we have

$$
\varphi_{1}(x)=\frac{\left(f(x, y), X_{n}\right)}{\cosh h(n y)}=\frac{\left(f(x, 1), X_{n}\right)}{\cos h(n)}
$$

which gives

$$
f(x, 1)=\frac{\cosh (n)}{\cosh (n y)} f(x, y)
$$

Thus, the inequality $\|f(x, 1)\|_{H^{p}} \leq E_{i}$ is equivalent to the inequality

$$
\left\|e^{n p} \frac{\cos h(n)}{\cosh (n y)} f(x, y)\right\| \leq E_{i}
$$

which shows us that the operator function $\varphi\left(K^{*} K\right)$ has the representation

$$
\begin{equation*}
\varphi\left(K^{*} K\right)=e^{-2 n p} \frac{\cos h^{2}(n y)}{\cos h^{2}(n)} \tag{4.13}
\end{equation*}
$$

Together with (4.11), the proposition is proved.
Proposition 4.6 The function $\varphi(\lambda)$ defined by (4.12) is continuous and has the following properties:

Case 1. $p=0,0<y<1$.
(I) $\lim _{\lambda \rightarrow 0} \varphi(\lambda)=0$.
(II) $\varphi(\lambda)$ is strictly monotonically increasing.
(III) $\rho(\lambda)=\lambda \varphi^{-1}(\lambda)$ is strictly monotonic and has the following parameter form:

$$
\left\{\begin{array}{l}
\lambda(n)=\frac{\cos h^{2}(n y)}{\cos h^{2}(n)}, \quad 1 \leqslant n<\infty . \tag{4.14}\\
\rho(n)=\frac{1}{\cos h^{2}(n)},
\end{array}\right.
$$

(IV) $\rho^{-1}(\lambda)$ is strictly monotonically increasing and is represented by the following parameter forms:

$$
\left\{\begin{array}{l}
\lambda(n)=\frac{1}{\cos h^{2}(n)}, \tag{4.15}\\
\rho^{-1}(n)=\frac{\cosh ^{2}(n)}{\cos h^{2}(n)},
\end{array} \quad 1 \leqslant n<\infty .\right.
$$

(V) For the inverse function $\rho^{-1}(\lambda)$, there is

$$
\begin{equation*}
\rho^{-1}(\lambda)=\left(\frac{\lambda}{4}\right)^{1-y}(1+O(1)) \text { for } \lambda \rightarrow \infty \tag{4.16}
\end{equation*}
$$

Case 2. $p>0, y=1$.
(I) $\lim _{\lambda \rightarrow 0} \varphi(\lambda)=0$.
(II) $\varphi(\lambda)$ is strictly monotonically increasing.
(III) $\rho(\lambda)=\lambda \varphi^{-1}(\lambda)$ is strictly monotonic and has the following parameter form:

$$
\left\{\begin{array}{l}
\lambda(n)=e^{-2 n p \frac{\cos h^{2}(n y)}{\cos h^{2}(n)}}, \quad 1 \leqslant n<\infty \tag{4.17}\\
\rho(n)=e^{-2 n p} \frac{1}{\cos h^{2}(n)},
\end{array}\right.
$$

(IV) $\rho^{-1}(\lambda)$ is strictly monotonically increasing and is represented by the following parameter forms:

$$
\left\{\begin{array}{l}
\lambda(n)=e^{-2 n p} \frac{1}{\cos h^{2}(n)}, \tag{4.18}\\
\rho^{-1}(n)=e^{-2 n p \frac{\cos ^{2}(n y)}{\cos h^{2}(n)}},
\end{array} \quad 1 \leqslant n<\infty\right.
$$

(V) For the inverse function $\rho^{-1}(\lambda)$, there is

$$
\begin{equation*}
\rho^{-1}(\lambda)=\left(\frac{\lambda}{4}\right)^{\frac{p}{p+1}}\left(\ln \frac{1}{\sqrt{\lambda}}\right)^{-2 p}(1+O(1)) \text { for } \lambda \rightarrow \infty \tag{4.19}
\end{equation*}
$$

Proof For the case 1, we will prove (I) first.
(I) From (4.12), we can see $\lambda(n)=\frac{1}{\cos h^{2}(n y)}$. When $\lambda \rightarrow 0$, that means $n \rightarrow \infty$. Therefore,

$$
\lim _{\lambda \rightarrow 0} \varphi(\lambda)=\lim _{n \rightarrow \infty} \frac{\cos h^{2}(n y)}{\cos h^{2}(n)}=0, \quad \text { as } 0<y<1
$$

The proof of (II), (III) and (IV) is simple, so we omit the proof.
(V) We only need to prove that $\lim _{\lambda \rightarrow 0} F_{1}(\lambda)=1$, where

$$
F_{1}(\lambda):=\rho^{-1}(\lambda) /\left(\frac{\lambda}{4}\right)^{1-y}
$$

According to [17], using (4.15) and noting $\lambda(n)$ is strictly monotonically decreasing with $\lim _{n \rightarrow \infty} \lambda(n)=0$, we have

$$
\lim _{\lambda \rightarrow 0} F_{1}(\lambda)=\lim _{n \rightarrow \infty} \frac{\cos h^{2}(n y)}{\cos h^{2}(n)}\left[4 \cos h^{2}(n)\right]^{1-y}=1
$$

The proof of Case 2 is similar to Case 1 , so it is omitted.
Theorem 4.7 Assume condition (4.9) holds. Then the optimal error bound of the inverse problem (1.2) is as follows:
(i) For $p=0$ and $0<y<1$, we have

$$
\begin{equation*}
\omega(\delta, E)=E^{y}\left(\frac{\delta}{2}\right)^{1-y}(1+O(1)) \tag{4.20}
\end{equation*}
$$

(ii) For $p>0$ and $y=1$, we have

$$
\begin{equation*}
\omega(\delta, E)=E^{\frac{1}{p+1}}\left(\frac{\delta}{2}\right)^{\frac{p}{p+1}} \ln \left(\frac{E}{\delta}\right)^{-2 p} \tag{4.21}
\end{equation*}
$$

Proof Combining formula (4.8), (4.16) with (4.19), for (i), we obtain

$$
\begin{equation*}
\omega(\delta, E)=E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}=E \sqrt{\left(\frac{\delta^{2}}{4 E^{2}}\right)^{1-y}}=E^{y}\left(\frac{\delta}{2}\right)^{1-y} \tag{4.22}
\end{equation*}
$$

For (ii), we have

$$
\begin{equation*}
\omega(\delta, E)=E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}=E \sqrt{\left(\frac{\delta^{2}}{4 E^{2}}\right)^{\frac{p}{p+1}}} \ln \left(\frac{E}{\delta}\right)^{-2 p}=E^{\frac{1}{p+1}}\left(\frac{\delta}{2}\right)^{\frac{p}{p+1}} \ln \left(\frac{E}{\delta}\right)^{-2 p} \tag{4.23}
\end{equation*}
$$

Now, we analyse the optimal error bound for problem (1.3). The noise data $\varphi_{2}^{\delta}(x) \in L^{2}(0, \pi)$ is also processed to identify the best possible worst-case error given by formula (4.4) of $g(x, y)$, where $g(x, y) \in M_{p, E}, M_{p, E}$ is defined as follows:

$$
\begin{equation*}
g(x, y) \in M_{p, E}=\left\{g(x, y) \in L^{2}(0, \pi) \mid\|g(x, 1)\|_{H^{p}} \leq E_{i}, \quad p \geq 0, i=3,4\right\} \tag{4.24}
\end{equation*}
$$

when $p=0,\|g(x, 1)\|_{H^{p}}$ is L^{2}-norm, and $\|g(x, 1)\| \leq E_{3}$. When $p \neq 0,\|g(x, 1)\|_{H^{p}}$ is Hilbertnorm, thus $\|g(x, 1)\|_{H^{p}} \leq E_{4}$. Rewrite Eq. (2.2) as an operator equation:

$$
\begin{equation*}
K_{2} g(x, y)=\varphi_{2}(x) \tag{4.25}
\end{equation*}
$$

where K_{2} is a multiplication operator with parametric variable y and its singular value is as follows:

$$
\begin{equation*}
K_{2 n}=\frac{n}{\sin h(n y)}, \quad K_{2 n}^{*} K_{2 n}=\frac{n^{2}}{\sin h^{2}(n y)} . \tag{4.26}
\end{equation*}
$$

Next up, let us reformulate condition (4.24) into an equivalent one of form (4.5) with a special function $\varphi=\varphi(\lambda)$.

Proposition 4.8 Consider the operator Eq. (4.25). Then the set $M_{p, E}$ given in (4.24) is equivalent to the general source set $M_{\varphi, E}$ given in (4.5) provided $\varphi=\varphi(\lambda)$ is given (in parameter representation) by

$$
\left\{\begin{array}{l}
\lambda(n)=\frac{1}{\sin h^{2}(n y)}, \tag{4.27}\\
\varphi(n)=e^{-2 n p \frac{\sin h^{2}(n y)}{\sin h^{2}(n)} .}
\end{array}\right.
$$

Proof This proof is the same as Proposition 4.5 and the proof is omitted.
Proposition 4.9 The function $\varphi(\lambda)$ defined by (4.27) is continuous and has the following properties:

Case 1. $p=0,0<y<1$.
(I) $\lim _{\lambda \rightarrow 0} \varphi(\lambda)=0$.
(II) $\varphi(\lambda)$ is strictly monotonically increasing.
(III) $\rho(\lambda)=\lambda \varphi^{-1}(\lambda)$ is strictly monotonic and has the following parameter form:

$$
\left\{\begin{array}{l}
\lambda(n)=\frac{\sin h^{2}(n y)}{\sin h^{2}(n)}, \quad 1 \leqslant n<\infty . \tag{4.28}\\
\rho(n)=\frac{n^{2}}{\sin h^{2}(n)},
\end{array}\right.
$$

(IV) $\rho^{-1}(\lambda)$ is strictly monotonically increasing and is represented by the following parameter forms:

$$
\left\{\begin{array}{l}
\lambda(n)=\frac{n^{2}}{\sin h^{2}(n)}, \tag{4.29}\\
\rho^{-1}(n)=\frac{\sin h^{2}(n)}{\sin h^{2}(n)},
\end{array} \quad 1 \leqslant n<\infty .\right.
$$

(V) For the inverse function $\rho^{-1}(\lambda)$, there is

$$
\begin{equation*}
\rho^{-1}(\lambda)=\lambda^{1-y}\left(\ln \frac{1}{\sqrt{\lambda}}\right)^{2(y-1)}(1+O(1)) \text { for } \lambda \rightarrow \infty \tag{4.30}
\end{equation*}
$$

Case 2. $p>0, y=1$.
(I) $\lim _{\lambda \rightarrow 0} \varphi(\lambda)=0$.
(II) $\varphi(\lambda)$ is strictly monotonically increasing.
(III) $\rho(\lambda)=\lambda \varphi^{-1}(\lambda)$ is strictly monotonic and has the following parameter form:

$$
\left\{\begin{array}{l}
\lambda(n)=e^{-2 n p} \frac{\sin h^{2}(n y)}{\sin h^{2}(n)}, \quad 1 \leqslant n<\infty . \tag{4.31}\\
\rho(n)=e^{-2 n p} \frac{n^{2}}{\sin h^{2}(n)},
\end{array}\right.
$$

(IV) $\rho^{-1}(\lambda)$ is strictly monotonically increasing and is represented by the following parameter forms:

$$
\left\{\begin{array}{l}
\lambda(n)=e^{-2 n p} \frac{n^{2}}{\sin h^{2}(n)}, \tag{4.32}\\
\rho^{-1}(n)=e^{-2 n p \frac{\sin h^{2}(n y)}{\sin h^{2}(n)}},
\end{array} \quad 1 \leqslant n<\infty .\right.
$$

(V) For the inverse function $\rho^{-1}(\lambda)$, there is

$$
\begin{equation*}
\rho^{-1}(\lambda)=\lambda^{\frac{p}{p+1}}\left(\ln \frac{1}{\sqrt{\lambda}}\right)^{\frac{2}{p+1}}(1+O(1)) \text { for } \lambda \rightarrow \infty \tag{4.33}
\end{equation*}
$$

Proof The proofs of (I)-(IV) are obvious, we only give the proof of (V). We only need to prove that $\lim _{\lambda \rightarrow 0} F_{3}(\lambda)=1$, where

$$
F_{3}(\lambda):=\rho^{-1}(\lambda) / \lambda^{1-y}\left(\ln \frac{1}{\sqrt{\lambda}}\right)^{2(y-1)} .
$$

Using (4.29) and noting $\lambda(n)$ is strictly monotonically decreasing with $\lim _{n \rightarrow \infty} \lambda(n)=0$, we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow 0} F_{3}(\lambda) & =\lim _{n \rightarrow \infty} \frac{\sin h^{2}(n y)}{\sin h^{2}(n)} /\left(\frac{n^{2}}{\sin h^{2}(n)}\right)^{1-y}\left(\ln \frac{1}{\sqrt{\frac{n^{2}}{\sin ^{2}(n)}}}\right)^{2(y-1)} \\
& =\lim _{n \rightarrow \infty} \frac{\sin h^{2}(n y) \sin h^{2-2 y}(n)}{\sin h^{2}(n)} / n^{2-2 y}\left(\ln \frac{\sin h(n)}{n}\right)^{2(y-1)} \\
& =1
\end{aligned}
$$

The proof of Case 2 is similar to Case 1 , so it is omitted.
Theorem 4.10 Assume condition (4.9) holds. Then the optimal error bound of the inverse problem (1.3) is as follows:
(i) For $p=0$ and $0<y<1$, we have

$$
\begin{equation*}
\omega(\delta, E)=E^{y} \delta^{1-y}\left(\ln \frac{\delta}{E}\right)^{y-1}(1+O(1)) . \tag{4.34}
\end{equation*}
$$

(ii) For $p>0$ and $y=1$, we have

$$
\begin{equation*}
\omega(\delta, E)=E^{\frac{1}{p+1}} \delta^{\frac{p}{p+1}}\left(\ln \frac{E}{\delta}\right)^{\frac{1}{p+1}}(1+O(1)) . \tag{4.35}
\end{equation*}
$$

Proof Combining formula (4.8), (4.30) with (4.33), for (i), we obtain

$$
\omega(\delta, E)=E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}=E \sqrt{\left(\frac{\delta^{2}}{E^{2}}\right)^{1-y}\left(\ln \frac{1}{\sqrt{\frac{\delta^{2}}{E^{2}}}}\right)^{2(y-1)}}=E^{y} \delta^{1-y}\left(\ln \frac{E}{\delta}\right)^{y-1}
$$

For (ii), we have

$$
\omega(\delta, E)=E \sqrt{\rho^{-1}\left(\frac{\delta^{2}}{E^{2}}\right)}=E \sqrt{\left(\frac{\delta^{2}}{E^{2}}\right)^{\frac{p}{p+1}}\left(\ln \frac{1}{\sqrt{\frac{\delta^{2}}{E^{2}}}}\right)^{\frac{2}{p+1}}}=E^{\frac{1}{p+1}} \delta^{\frac{p}{p+1}}\left(\ln \frac{E}{\delta}\right)^{\frac{1}{p+1}}
$$

5. The regularization method

From the formula of the solutions, we can see that $\cos h(n y), \frac{\sin h(n y)}{n}$ are unbounded as $n \rightarrow \infty$, so problems (1.2) and (1.3) are ill-posed. If we want to restore the stability of solutions, we need to use the regularization method. In this section, we use the modified Tikhonov regularization method to obtain regularization solutions for (1.2) and (1.3).

Define an operator $K_{1}(\cdot): L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)$ for $0<y \leq 1$, so problem (1.2) can be formulated as the following operator equation:

$$
\begin{gather*}
K_{1}(y) f(x, y)=\varphi_{1}(x), \quad 0<y<1, \tag{5.1}\\
K_{1}(1) f(x, 1)=\varphi_{1}(x), \quad y=1 . \tag{5.2}
\end{gather*}
$$

Define $f^{\delta}(x, 0)=\varphi_{1}^{\delta}$, and we seek Tikhonov regularization solutions $f_{\alpha_{1}}^{\delta}(x, y)$ and $f_{\alpha_{2}}^{\delta}(x, 1)$ by solving the minimization problems,

$$
\begin{align*}
& \min _{f \in L^{2}(0, \pi)} J_{\alpha_{1}}(f), J_{\alpha_{1}}(f):=\left\|K_{1}(y) f(x, y)-\varphi_{1}^{\delta}\right\|^{2}+\alpha_{1}\|f(x, y)\|^{2} \tag{5.3}\\
& \min _{f \in L^{2}(0, \pi)} J_{\alpha_{2}}(f), J_{\alpha_{2}}(f):=\left\|K_{1}(1) f(x, 1)-\varphi_{1}^{\delta}\right\|^{2}+\alpha_{2}\|f(x, 1)\|^{2} \tag{5.4}
\end{align*}
$$

Hence, $f_{\alpha_{1}}^{\delta}(x, y), f_{\alpha_{2}}^{\delta}(x, 1)$ are the solutions of Euler equations respectively

$$
\begin{align*}
& \left(\frac{1}{k_{1}^{2}(y)}+\alpha_{1}\right) f_{\alpha_{1}}^{\delta}(x, y)=\frac{1}{k_{1}(y)} \varphi_{1}^{\delta}(x) \tag{5.5}\\
& \left(\frac{1}{k_{1}^{2}(1)}+\alpha_{2}\right) f_{\alpha_{2}}^{\delta}(x, 1)=\frac{1}{k_{1}(1)} \varphi_{1}^{\delta}(x) \tag{5.6}
\end{align*}
$$

From (5.5) and (5.6), we can derive that

$$
\begin{align*}
& f_{\alpha_{1}}^{\delta}(x, y)=\sum_{n=1}^{\infty} \frac{k_{1}(y) \varphi_{1 n}^{\delta} X_{n}(x)}{1+\alpha_{1} k_{1}^{2}(y)} \tag{5.7}\\
& f_{\alpha_{2}}^{\delta}(x, 1)=\sum_{n=1}^{\infty} \frac{k_{1}(1) \varphi_{1 n}^{\delta} X_{n}(x)}{1+\alpha_{2} k_{1}^{2}(1)} \tag{5.8}
\end{align*}
$$

where $\varphi_{1 n}^{\delta}=\left\langle\varphi_{1}^{\delta}, X_{n}\right\rangle$, the error data $\varphi_{1}^{\delta}(x)$ satisfies

$$
\begin{equation*}
\left\|\varphi_{1}^{\delta}(\cdot)-\varphi_{1}(\cdot)\right\| \leq \delta \tag{5.9}
\end{equation*}
$$

δ denotes the bound of measured error, α is the regularization parameter.
In this paper, we replace the kernel $\frac{k_{1}(y)}{1+\alpha_{1} k_{1}^{2}(y)}$ by the modified kernel $\frac{k_{1}(y)}{1+\alpha_{1} k_{1}^{2}(1)}$ and obtain a modified regularization solution

$$
\begin{equation*}
f_{1, \alpha_{1}}^{\delta}(x, y)=\sum_{n=1}^{\infty} \frac{k_{1}(y) \varphi_{1 n}^{\delta} X_{n}(x)}{1+\alpha_{1} k_{1}^{2}(1)} \tag{5.10}
\end{equation*}
$$

For the endpoint, let $f_{\alpha_{2}}^{\delta}(x, 1)=f_{2, \alpha_{2}}^{\delta}(x, 1)$, we can obtain

$$
\begin{equation*}
f_{2, \alpha_{2}}^{\delta}(x, 1)=\sum_{n=1}^{\infty} \frac{k_{1}(1) \varphi_{1 n}^{\delta} X_{n}(x)}{1+\alpha_{2} k_{1}^{2}(1)} \tag{5.11}
\end{equation*}
$$

Similarly, we define an operator $K_{2}(\cdot): L^{2}(0, \pi) \rightarrow L^{2}(0, \pi)$ for $0<y \leq 1$, so problem (1.3) can be formulated as the following operator equation:

$$
\begin{gathered}
K_{2}(y) g(x, y)=\varphi_{2}(x), \quad 0<y<1, \\
K_{2}(1) g(x, 1)=\varphi_{2}(x), \quad y=1 .
\end{gathered}
$$

Using the same method as above, we can derive the regular solution of $g(x, y)$ at interval $0<y<1$ and endpoint $y=1$:

$$
\begin{equation*}
g_{1, \beta_{1}}^{\delta}(x, y)=\sum_{n=1}^{\infty} \frac{k_{2}(y) \varphi_{2 n}^{\delta} X_{n}(x)}{1+\beta_{1} k_{2}^{2}(1)}, \quad g_{2, \beta_{2}}^{\delta}(x, 1)=\sum_{n=1}^{\infty} \frac{k_{2}(1) \varphi_{2 n}^{\delta} X_{n}(x)}{1+\beta_{1} k_{2}^{2}(1)}, \tag{5.12}
\end{equation*}
$$

and the error data $\varphi_{2}^{\delta}(x)$ satisfies

$$
\begin{equation*}
\left\|\varphi_{2}^{\delta}(\cdot)-\varphi_{2}(\cdot)\right\| \leq \delta \tag{5.13}
\end{equation*}
$$

6. The error estimation

In this section, under the a priori and a posteriori rules, we are going to present the convergence error estimations for problems (1.2) and (1.3). Since the derivation of the convergence error estimate of problem (1.3) is more difficult than that of problem (1.2), in the following parts, we focus on the derivation process of problem (1.3).

6.1. The priori convergence error estimation in interval $0<y<1$

In this section, under the priori regularization parameter choice rule, we first give the priori error estimation between the regularization solution and the exact solution.

Theorem 6.1 $g(x, y)$ is the exact solution of problem (1.3). The regularization solution $g_{1, \beta_{1}}^{\delta}(x, y)$ is given by (5.12) and the measured data $\varphi_{2}^{\delta}(x)$ satisfies (5.13). When $0<y<1$, if the priori bound condition (3.3) holds, and the regularization parameter β_{1} is selected as

$$
\begin{equation*}
\beta_{1}=\left(\frac{\delta}{E_{1}}\right)^{2} \tag{6.1}
\end{equation*}
$$

we have the error estimate

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g(x, y)\right\| \leq C_{1} E_{1}^{y} \delta^{1-y} \tag{6.2}
\end{equation*}
$$

where $C_{1}:=2^{-y}+2^{y-1}$.
Proof Using the triangle inequality, we have

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g(x, y)\right\| \leq\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g_{1, \beta_{1}}(x, y)\right\|+\left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\| \tag{6.3}
\end{equation*}
$$

where $g_{1, \beta_{1}}(x, y)$ is the regularization solution with no error. From Lemma 2.3 (c), (5.12), and (5.13), we have

$$
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g_{1, \beta_{1}}(x, y)\right\|=\left\|\sum_{n=1}^{\infty} \frac{k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)\right\|
$$

$$
\begin{aligned}
& =\left(\sum_{n=1}^{\infty}\left(\frac{k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right)^{2}\right)^{\frac{1}{2}} \\
& \leq \sup _{n \geq 1}\left|\frac{k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\right|\left(\sum_{n=1}^{\infty}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right)^{2}\right)^{\frac{1}{2}} \leq 2^{-y} \beta_{1}^{-\frac{y}{2}} \delta
\end{aligned}
$$

So

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g_{1, \beta_{1}}(x, y)\right\| \leq 2^{-y} \beta_{1}^{-\frac{y}{2}} \delta \tag{6.4}
\end{equation*}
$$

By (3.2), (3.3), (5.12), and Lemma 2.3 (d), we have

$$
\begin{aligned}
& \left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\|=\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1) k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \quad=\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{1} k_{2}^{2}(1) k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2} \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq \sup _{n \geq 1}\left|\frac{\beta_{1} k_{2}(1) k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\right|\left(\sum_{n=1}^{\infty} k_{2}^{2}(1) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq \sup _{n \geq 1}\left|\frac{\beta_{1} k_{2}(1) k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\right| \cdot E_{1} \leq 2^{y-1} \beta_{1}^{\frac{1}{2}-\frac{y}{2}} E_{1}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\| \leq 2^{y-1} \beta_{1}^{\frac{1}{2}-\frac{y}{2}} E_{1} \tag{6.5}
\end{equation*}
$$

Combining (6.3), (6.4) with (6.5), if the regularization parameter $\beta_{1}=\left(\frac{\delta}{E_{1}}\right)^{2}$ is selected, then

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g(x, y)\right\| \leq C_{1} \delta^{1-y} E_{1}^{y} \tag{6.6}
\end{equation*}
$$

where $C_{1}:=2^{-y}+2^{y-1}$.
Theorem 6.2 $f(x, y)$ is the exact solution of problem (1.2). The regularization solution $f_{1, \alpha_{1}}^{\delta}(x, y)$ is given by (5.10), the measured data $\varphi_{1}^{\delta}(x)$ satisfies (5.9). When $0<y<1$, if the priori bound condition (3.3) holds, and the regularization parameter α_{1} is selected as

$$
\begin{equation*}
\alpha_{1}=\left(\frac{\delta}{E_{1}}\right)^{2} \tag{6.7}
\end{equation*}
$$

we have the error estimate

$$
\begin{equation*}
\left\|f_{1, \alpha_{1}}^{\delta}(x, y)-f(x, y)\right\| \leq 6 \delta^{1-y} E_{1}^{y} \tag{6.8}
\end{equation*}
$$

Proof The proof of Theorem 6.2 is similar to Theorem 6.1 , so it is omitted.
Remark 6.3 From Theorems 6.1, 6.2, 4.7 and 4.10, we can deduce that the error estimate obtained by the priori regularization parameter choice rule is order optimal for $0<y<1$.
6.2. The posteriori convergence error estimation in interval $0<y<1$

The priori parameter choice is based on the priori bound E_{1} of the exact solution. However, in practice the priori bound E_{1} generally can not be known easily. In this condition, we choose
the regularization parameter by adopting the posteriori rule. We consider an a posteriori regularization choice rule which is called Morozov's discrepancy principle. When $0<y<1$, we select the regularization parameter β_{1} by the following equation

$$
\begin{equation*}
\left\|K_{2}(y) g_{1, \beta_{1}}^{\delta}(x, y)-\varphi_{2}^{\delta}(x)\right\|=\tau \delta \tag{6.9}
\end{equation*}
$$

where $K_{2}(y)=\frac{1}{k_{2}(y)}, \tau>1$ is a positive constant, and $\left\|\varphi_{2}^{\delta}(x)\right\| \geq \tau \delta$.
Lemma 6.4 Let $\varrho\left(\beta_{1}\right)=\left\|K_{2}(y) g_{1, \beta_{1}}^{\delta}(x, y)-\varphi_{2}^{\delta}(x)\right\|$. If $\left\|\varphi_{2}^{\delta}(x)\right\| \geq \tau \delta$, we have
(a) $\varrho\left(\beta_{1}\right)$ is a continuous function;
(b) $\lim _{\beta_{1} \rightarrow 0} \varrho\left(\beta_{1}\right)=0$;
(c) $\lim _{\beta_{1} \rightarrow \infty} \varrho\left(\beta_{1}\right)=\left\|\varphi_{2}^{\delta}\right\|$;
(d) For $\beta_{1} \in(0, \infty), \varrho\left(\beta_{1}\right)$ is a strictly increasing function.

Proof Lemma 6.4 can be easily proven with expression

$$
\begin{equation*}
\varrho\left(\beta_{1}\right)=\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2}\left(\varphi_{2 n}^{\delta}\right)^{2}\right)^{\frac{1}{2}} \tag{6.10}
\end{equation*}
$$

Lemma 6.4 indicates that there exists a unique solution for (6.9).
Lemma 6.5 For fixed $\tau>1$, let the regularization parameter β_{1} satisfy (6.9) and $g(x, y)$ satisfy (3.2). Then we obtain $\beta_{1}^{-1} \leq\left(\frac{E_{1}}{(\tau-1) \delta}\right)^{2}$.

Proof According to (6.9) and basic inequality, we have

$$
\begin{aligned}
\tau \delta & =\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \\
& =\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)+\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \leq\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)\right\|+\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \leq \delta+\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\|=\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2} \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq \sup _{n \geq 1}\left|\frac{\beta_{1} k_{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right|\left(\sum_{n=1}^{\infty} k_{2}^{2}(1) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq \sup _{n \geq 1}\left|\frac{\beta_{1} k_{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right| E_{1} \leq \beta_{1}^{\frac{1}{2}} E_{1} .
\end{aligned}
$$

According to the proofs above, we obtain that $(\tau-1) \delta \leq \sqrt{\beta_{1}} E_{1}$. Then Lemma 6.5 is proved.
Theorem 6.6 $g(x, y)$ is the exact solution of problem (1.3). The regularization solution
$g_{1, \beta_{1}}^{\delta}(x, y)$ is given by (5.12), the measured data $\varphi_{2}^{\delta}(x)$ satisfies (5.13). When $0<y<1$, if the priori condition (3.3) holds, and the regularization parameter β_{1} is selected by (6.9), we have the error estimate

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g(x, y)\right\| \leq C_{2} \delta^{1-y} E_{1}^{y} \tag{6.11}
\end{equation*}
$$

where $C_{2}:=2^{-y}\left(\frac{1}{(\tau-1)}\right)^{y}+2^{y}\left(1-e^{-2}\right)^{-y}(\tau+1)^{1-y}$.
Proof Using the triangle inequality, we obtain

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g(x, y)\right\| \leq\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g_{1, \beta_{1}}(x, y)\right\|+\left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\| \tag{6.12}
\end{equation*}
$$

By (6.4)) and Lemma 6.5, we have

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}^{\delta}(x, y)-g_{1, \beta_{1}}(x, y)\right\| \leq 2^{-y} \beta_{1}^{-\frac{y}{2}} \delta \leq 2^{-y}\left(\frac{1}{\tau-1}\right)^{y} \delta^{1-y} E_{1}^{y} \tag{6.13}
\end{equation*}
$$

According to the priori bound condition (3.3), we have

$$
\begin{aligned}
& \left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\|_{L^{2}(0, \pi)}=\left\|\sum_{n=}^{\infty} \frac{\beta_{1} k_{2}^{2}(1) k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \\
& =\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{1} k_{2}^{2}(1) k_{2}(y)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2} \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq\left(\sum_{n=1}^{\infty} k_{2}^{2}(y) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{n=1}^{\infty} k_{2}^{2}(1) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \leq E_{1}
\end{aligned}
$$

By the condition stability result (3.5), we have

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\| \leq 2^{y}\left(1-e^{-2}\right)^{-y} E_{1}^{y}\left\|K_{2}(y) g_{1, \beta_{1}}(x, y)-K_{2}(y) g(x, y)\right\|^{1-y} \tag{6.14}
\end{equation*}
$$

here

$$
\begin{aligned}
& \left\|K_{2}(y) g_{1, \beta_{1}}(x, y)-K_{2}(y) g(x, y)\right\|=\left\|\sum_{n=1}^{\infty} \frac{1}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)-\sum_{n=1}^{\infty} \varphi_{2 n} X_{n}(x)\right\| \\
& \quad=\left\|\sum_{n=1}^{\infty} \frac{-\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \quad=\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)+\sum_{n=1}^{\infty} \frac{-\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \\
& \quad \leq\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)\right\|+\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \\
& \quad \leq \delta+\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \leq \delta+\tau \delta
\end{aligned}
$$

From (6.14), we have

$$
\begin{equation*}
\left\|g_{1, \beta_{1}}(x, y)-g(x, y)\right\| \leq 2^{y}\left(1-e^{-2}\right)^{-y}(\tau+1)^{1-y} \delta^{1-y} E_{1}^{y} \tag{6.15}
\end{equation*}
$$

Finally, combining (6.13) with (6.15), we can obtain the error estimate (6.11).
Next, the posteriori convergence error estimate for problem (1.2) is given.

When $0<y<1$, we select the regularization parameter α_{1} by the following equation

$$
\begin{equation*}
\left\|K_{1}(y) f_{1, \alpha_{1}}^{\delta}(x, y)-\varphi_{1}^{\delta}(x)\right\|=\tau \delta \tag{6.16}
\end{equation*}
$$

where $\tau>1$ is a positive constant, and $\left\|\varphi_{1}^{\delta}(x)\right\| \geq \tau \delta$.
Lemma 6.7 Let $\rho\left(\alpha_{1}\right)=\left\|K_{1}(y) f(x, y)-\varphi_{1}^{\delta}(x)\right\|$. If $\left\|\varphi_{1}^{\delta}(x)\right\| \geq \tau \delta$, we have
(a) $\rho\left(\alpha_{1}\right)$ is a continuous function;
(b) $\lim _{\alpha_{1} \rightarrow 0} \rho\left(\alpha_{1}\right)=0$;
(c) $\lim _{\alpha_{1} \rightarrow \infty} \rho\left(\alpha_{1}\right)=\left\|\varphi_{1}^{\delta}\right\|$;
(d) For $\alpha_{1} \in(0, \infty), \rho\left(\alpha_{1}\right)$ is a strictly increasing function.

Proof Lemma 6.7 can be easily proven with expression

$$
\begin{equation*}
\rho\left(\alpha_{1}\right)=\left(\sum_{n=1}^{\infty}\left(\frac{\alpha_{1} k_{1}^{2}(1)}{1+\alpha_{1} k_{1}^{2}(1)}\right)^{2}\left(\varphi_{1 n}^{\delta}\right)^{2}\right)^{\frac{1}{2}} . \tag{6.17}
\end{equation*}
$$

Lemma 6.7 indicates that there exists a unique solution for (6.16).
Lemma 6.8 For fixed $\tau>1$, let the regularization parameter α_{1} satisfy (6.16) and $f(x, y)$ satisfy (3.1). Then we obtain $\alpha_{1}^{-1} \leq\left(\frac{E_{1}}{(\tau-1) \delta}\right)^{2}$.

Proof The proof of Lemma 6.8 is similar to Lemma 6.5, so it is omitted.
Theorem $6.9 f(x, y)$ is the exact solution of problem (1.2). The regularization solution $f_{1, \alpha_{1}}^{\delta}(x, y)$ is given by (5.10), the measured data $\varphi_{1}^{\delta}(x)$ satisfies (5.9). When $0<y<1$, the regularization parameter α_{1} is selected by (6.16), we have the error estimate

$$
\begin{equation*}
\left\|f_{1, \alpha_{1}}^{\delta}(x, y)-f(x, y)\right\| \leq C_{3} \delta^{1-y} E_{1}^{y} \tag{6.18}
\end{equation*}
$$

where $C_{3}:=2\left(\frac{1}{\tau-1}\right)^{y}+2^{y}(\tau+1)^{1-y}$.
Proof The proof of Theorem 6.9 is similar to Theorem 6.6, so it is omitted.
Remark 6.10 From Theorems 6.6, 6.9, 4.7 and 4.10, we can deduce that the error estimate obtained by the posteriori regularization parameter choice rule is order optimal for $0<y<1$.

6.3. The priori convergence error estimation at endpoint $y=1$

From Theorems 6.9 and 6.6, we cannot obtain the error estimation at $y=1$. So in this section, we will give the error estimation between the regularization solution and the exact solution at $y=1$.

Theorem 6.11 $g(x, 1)$ is the exact solution of problem (1.3). The regularization solution $g_{2, \beta_{2}}^{\delta}(x, 1)$ is given by (5.12), the measured data $\varphi_{2}^{\delta}(x)$ satisfies (5.13). When $y=1$, if the priori condition (3.6) holds, and the regularization parameter β_{2} is selected as

$$
\beta_{2}= \begin{cases}\left(\frac{\delta}{E_{2}}\right)^{\frac{2}{p+1}}, & 0<p<1 \tag{6.19}\\ \frac{\delta}{E_{2}}, & p \geq 1\end{cases}
$$

we have the error estimate

$$
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g(x, 1)\right\| \leq \begin{cases}\left(2^{-p}+1\right) \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}}, & 0<p<1 \tag{6.20}\\ 2 \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}}, & p \geq 1\end{cases}
$$

Proof Using the triangle inequalities, we have

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g(x, 1)\right\| \leq\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g_{2, \beta_{2}}(x, 1)\right\|+\left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\| \tag{6.21}
\end{equation*}
$$

where $g_{2, \beta_{2}}(x, 1)$ is the regularization solution with no error.
From (5.12), (5.13) and basic inequality, we have

$$
\begin{aligned}
& \left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g_{2, \beta_{2}}(x, 1)\right\|=\left\|\sum_{n=1}^{\infty} \frac{k_{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)\right\| \\
& =\left(\sum_{n=1}^{\infty}\left(\frac{k_{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right)^{2}\right)^{\frac{1}{2}} \\
& \quad \leq \sup _{n \geq 1}\left|\frac{k_{2}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right|\left(\sum_{n=1}^{\infty}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right)^{2}\right)^{\frac{1}{2}} \leq \beta_{2}^{-\frac{1}{2}} \delta .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g_{2, \beta_{2}}(x, 1)\right\| \leq \beta_{2}^{-\frac{1}{2}} \delta \tag{6.22}
\end{equation*}
$$

Applying Lemma 2.3 (f) and formula (3.2), (3.6), (5.12), we have

$$
\begin{aligned}
& \left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\|=\left\|\sum_{n=1}^{\infty} \frac{\beta_{1} k_{2}^{3}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& =\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{1} k_{2}^{3}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2} \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \leq \sup _{n \geq 1}\left|\frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} e^{-n p}\right|\left(\sum_{n=1}^{\infty} e^{2 n p} k_{2}^{2}(1) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \leq \sup _{n \geq 1}\left|\frac{\beta_{1} k_{2}^{2}(1)}{1+\beta_{1} k_{2}^{2}(1)} e^{-n p}\right| \cdot E_{2} \\
& \leq \begin{cases}2^{-p} \beta_{2}^{\frac{p}{2}} E_{2}, & 0<p<1, \\
\beta_{2}^{\frac{1}{2}} E_{2}, & p \geq 1 .\end{cases}
\end{aligned}
$$

To sum up,

$$
\left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\| \leq \begin{cases}2^{-p} \beta_{2}^{\frac{p}{2}} E_{2}, & 0<p<1 \tag{6.23}\\ \beta_{2}^{\frac{1}{2}} E_{2}, & p \geq 1\end{cases}
$$

By (6.22) and (6.23), the regularization parameter β_{2} is chosen as

$$
\beta_{2}=\left\{\begin{array}{l}
\left(\frac{\delta}{E_{2}}\right)^{\frac{2}{p+1}}, 0<p<1, \tag{6.24}\\
\frac{\delta}{E_{2}}, p \geq 1
\end{array}\right.
$$

From (6.21)-(6.24), we have

$$
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g(x, 1)\right\| \leq \begin{cases}\left(2^{-p}+1\right) \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}}, & 0<p<1 \tag{6.25}\\ 2 \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}}, & p \geq 1\end{cases}
$$

Theorem 6.12 $f(x, 1)$ is the exact solution of problem (1.2). The regularization solution $f_{2, \alpha_{2}}^{\delta}(x, 1)$ is given by (5.11), the measured data $\varphi_{1}^{\delta}(x)$ satisfies (5.9). When $y=1$, if the priori
condition (3.6) holds, and the regularization parameter α_{2} is selected as

$$
\alpha_{2}= \begin{cases}\left(\frac{\delta}{E_{2}}\right)^{\frac{2}{p+1}}, & 0<p<1 \tag{6.26}\\ \frac{\delta}{E_{2}}, & p \geq 1\end{cases}
$$

we have the error estimate

$$
\left\|f_{2, \alpha_{2}}^{\delta}(x, 1)-f(x, 1)\right\| \leq \begin{cases}\left(2^{2-p}+1\right) \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}}, & 0<p<1 \tag{6.27}\\ 2 \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}}, & p \geq 1\end{cases}
$$

Proof The proof of Theorem 6.12 is similar to Theorem 6.11, so it is omitted.
Remark 6.13 From Theorems 6.11, 6.12, 4.7 and 4.10, we can deduce that the error estimate obtained by the priori regularization parameter choice rule is order optimal $O\left(\delta^{\frac{p}{p+1}}\right)$ for $0<p<1$. When $p \geq 1$, the modified Tikhonov regularization method will cause saturation effect.

6.4. The posteriori convergence error estimation at endpoint $y=1$

When $y=1$, we select the regularization parameter β_{2} by the following equation

$$
\begin{equation*}
\left\|K_{2}(1) g_{2, \beta_{2}}^{\delta}(x, 1)-\varphi_{2}^{\delta}(x)\right\|=\tau \delta \tag{6.28}
\end{equation*}
$$

where $\tau>1$ is a positive constant, and $\left\|\varphi_{2}^{\delta}\right\| \geq \tau \delta$.
Lemma 6.14 Let $\varrho\left(\beta_{2}\right)=\left\|K_{2}(1) g_{2, \beta_{2}}^{\delta}(x, 1)-\varphi_{2}^{\delta}(x)\right\|$. If $\left\|\varphi_{2}^{\delta}(x)\right\| \geq \tau \delta$, we have
(a) $\varrho\left(\beta_{2}\right)$ is a continuous function;
(b) $\lim _{\beta_{2} \rightarrow 0} \varrho\left(\beta_{2}\right)=0$;
(c) $\lim _{\beta_{2} \rightarrow \infty} \varrho\left(\beta_{2}\right)=\left\|\varphi_{2}^{\delta}\right\|$;
(d) For $\beta_{2} \in(0, \infty), \varrho\left(\beta_{2}\right)$ is a strictly increasing function.

Proof The Lemma can be easily proven with expression

$$
\begin{equation*}
\varrho\left(\beta_{2}\right)=\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)}\right)^{2}\left(\varphi_{2 n}^{\delta}\right)^{2}\right)^{\frac{1}{2}} . \tag{6.29}
\end{equation*}
$$

Lemma 6.14 indicates that there exists a unique solution for (6.28).
Lemma 6.15 For fixed $\tau>1$, let the regularization parameter β_{2} satisfy (6.28) and $g(x, y)$ satisfy (3.6). Then, we can see that the regularization parameter $\beta_{2}=\beta_{2}\left(\delta, \varphi_{2}^{\delta}\right)$ satisfies

$$
\beta_{2}^{-1} \leq\left\{\begin{array}{l}
\left(\frac{E_{2}}{(\tau-1) \delta}\right)^{\frac{2}{p+1}}, 0<p<1 \tag{6.30}\\
\frac{E_{2}}{(\tau-1) \delta}, p \geq 1
\end{array}\right.
$$

Proof Applying Lemma 2.3 (e) and formula (6.28), we have

$$
\begin{aligned}
\tau \delta & =\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \\
& =\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)+\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)\right\|+\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \leq \delta+\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& =\delta+\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \quad=\left(\sum_{n=1}^{\infty}\left(\frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)}\right)^{2} \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq \sup _{n \geq 1}\left|\frac{\beta_{2} k_{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} e^{-n p}\right|\left(\sum_{n=1}^{\infty} e^{2 n p} k_{2}^{2}(1) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \quad \leq\left\{\begin{array}{l}
\beta_{2}^{\frac{1}{2}+\frac{p}{2}} E_{2}, 0<p<1, \\
\beta_{2} E_{2}, p \geq 1 .
\end{array}\right.
\end{aligned}
$$

To sum up

$$
\beta_{2}^{-1} \leq\left\{\begin{array}{l}
\left(\frac{E_{2}}{(\tau-1) \delta}\right)^{\frac{2}{p+1}}, 0<p<1 \\
\frac{E_{2}}{(\tau-1) \delta}, p \geq 1
\end{array}\right.
$$

Theorem 6.16 If expressions (3.2) and (5.12) hold and β_{2} satisfies (6.28), then
(1) If $0<p<1$, then the following error estimate is obtained

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g(x, 1)\right\| \leq C_{4} \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}} \tag{6.31}
\end{equation*}
$$

where $C_{4}:=\left(\frac{1}{\tau-1}\right)^{\frac{1}{p+1}}+(\tau+1)^{\frac{p}{p+1}}$.
(2) If $p \geqslant 1$, then the following convergent estimate is obtained

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g(x, 1)\right\| \leq C_{5} \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}} \tag{6.32}
\end{equation*}
$$

where $C_{5}:=\left(\frac{1}{\tau-1}\right)^{\frac{1}{2}}+(\tau+1)^{\frac{1}{2}}$.
Proof Using the triangle inequality, we obtain

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g(x, 1)\right\| \leq\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g_{2, \beta_{2}}(x, 1)\right\|+\left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\| \tag{6.33}
\end{equation*}
$$

where $g_{2, \beta_{2}}(x, 1)$ is the regularization solution with no error.
Case 1. $0<p<1$.
By (6.22), (6.30), we have

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g_{2, \beta_{2}}(x, 1)\right\| \leq \beta_{2}^{-\frac{1}{2}} \delta \leq\left(\frac{1}{\tau-1}\right)^{\frac{1}{p+1}} \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}} \tag{6.34}
\end{equation*}
$$

Next, we estimate the second term of formula (6.33). According to the priori bound condition
(3.6), we have

$$
\begin{aligned}
& \left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\|_{H^{p}}=\left\|\sum_{n=}^{\infty} e^{n p} \frac{\beta_{1} k_{2}^{3}(1)}{1+\beta_{1} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& =\left(\sum_{n=1}^{\infty} e^{2 n p}\left(\frac{\beta_{1} k_{2}^{3}(1)}{1+\beta_{1} k_{2}^{2}(1)}\right)^{2} \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{n=1}^{\infty} e^{2 n p} k_{2}^{2}(1) \varphi_{2 n}^{2}\right)^{\frac{1}{2}} \leq E_{2} .
\end{aligned}
$$

Applying the condition stability result (3.8), we have

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\| \leq E_{2}^{\frac{1}{p+1}}\left\|K_{2}(1) g_{2, \beta_{2}}(x, 1)-K_{2}(1) g(x, 1)\right\|^{\frac{p}{p+1}} \tag{6.35}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left\|K_{2}(1) g_{2, \beta_{2}}(x, 1)-K_{2}(1) g(x, 1)\right\| \\
& \quad=\left\|\sum_{n=1}^{\infty} \frac{1}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)-\sum_{n=1}^{\infty} \varphi_{2 n} X_{n}(x)\right\| \\
& \quad=\left\|\sum_{n=1}^{\infty} \frac{-\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n} X_{n}(x)\right\| \\
& \quad=\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)+\sum_{n=1}^{\infty} \frac{-\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \\
& \quad \leq\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)}\left(\varphi_{2 n}^{\delta}-\varphi_{2 n}\right) X_{n}(x)\right\|+\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \\
& \quad \leq \delta+\left\|\sum_{n=1}^{\infty} \frac{\beta_{2} k_{2}^{2}(1)}{1+\beta_{2} k_{2}^{2}(1)} \varphi_{2 n}^{\delta} X_{n}(x)\right\| \leq \delta+\tau \delta .
\end{aligned}
$$

From (6.35), we have

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\| \leq(\tau+1)^{\frac{p}{p+1}} \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}} \tag{6.36}
\end{equation*}
$$

Finally, combining (6.34) with (6.36), we can obtain the error estimate (6.31).
Case 2. $p \geq 1$.
By (6.22), (6.30), we have

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}^{\delta}(x, 1)-g_{2, \beta_{2}}(x, 1)\right\| \leq \beta_{2}^{-\frac{1}{2}} \delta \leq\left(\frac{1}{\tau-1}\right)^{\frac{1}{2}} \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}} \tag{6.37}
\end{equation*}
$$

Now, we estimate the second term of formula (6.33)

$$
\begin{equation*}
\left\|g_{2, \beta_{2}}(x, 1)-g(x, 1)\right\| \leq(\tau+1)^{\frac{1}{2}} \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}} \tag{6.38}
\end{equation*}
$$

The proof of this item is the same as that of (6.36), so it is omitted. Combining (6.37) with (6.38), we can obtain the convergence estimate (6.32).

Next, the posteriori convergence error estimate for problem (1.2) is given. When $y=1$, we select the regularization parameter α_{2} by the following equation

$$
\begin{equation*}
\left\|K_{1}(1) f_{2, \alpha_{2}}^{\delta}(x, 1)-\varphi_{1}^{\delta}(x)\right\|=\tau \delta \tag{6.39}
\end{equation*}
$$

where $\tau>1$ is a positive constant, and $\left\|\varphi_{1}^{\delta}(x)\right\| \geq \tau \delta$.
Lemma 6.17 Let $\rho\left(\alpha_{2}\right)=\left\|K_{1}(1) f_{2, \alpha_{2}}^{\delta}(x, 1)-\varphi_{1}^{\delta}(x)\right\|$. If $\left\|\varphi_{1}^{\delta}(x)\right\| \geq \tau \delta$, we have
(a) $\rho\left(\alpha_{2}\right)$ is a continuous function;
(b) $\lim _{\alpha_{2} \rightarrow 0} \rho\left(\alpha_{2}\right)=0$;
(c) $\lim _{\alpha_{2} \rightarrow \infty} \rho\left(\alpha_{2}\right)=\left\|\varphi_{1}^{\delta}\right\|$;
(d) For $\alpha_{2} \in(0, \infty), \rho\left(\alpha_{2}\right)$ is a strictly increasing function.

Proof The Lemma can be easily proven with expression

$$
\begin{equation*}
\rho\left(\alpha_{2}\right)=\left(\sum_{n=1}^{\infty}\left(\frac{\alpha_{2} k_{1}^{2}(1)}{1+\alpha_{2} k_{1}^{2}(1)}\right)^{2}\left(\varphi_{1 n}^{\delta}\right)^{2}\right)^{\frac{1}{2}} . \tag{6.40}
\end{equation*}
$$

Lemma 6.17 indicates that there exists a unique solution for (6.39).
Lemma 6.18 For fixed $\tau>1$, let the regularization parameter α_{2} satisfy (6.39) and $f(x, y)$ satisfy (3.6). Then, we can see that the regularization parameter $\alpha_{2}=\alpha_{2}\left(\delta, \varphi_{1}^{\delta}\right)$ satisfies

$$
\alpha_{2}^{-1} \leq \begin{cases}\left(\frac{2^{1-p} E_{2}}{(\tau-1) \delta}\right)^{\frac{2}{p+1}}, & 0<p<1, \tag{6.41}\\ \frac{E_{2}}{(\tau-1) \delta}, & p \geq 1 .\end{cases}
$$

Proof The proof of Lemma 6.18 is similar to Lemma 6.8, so it is omitted.
Theorem 6.19 If expressions (3.1) and (5.9) hold and α_{2} satisfies the regularization parameter selection rule:
(1) If $0<p<1$, then the following convergent estimate is obtained

$$
\begin{equation*}
\left\|f_{2, \alpha_{2}}^{\delta}(x, 1)-f(x, 1)\right\| \leq C_{6} \delta^{\frac{p}{p+1}} E_{2}^{\frac{1}{p+1}} \tag{6.42}
\end{equation*}
$$

where $C_{6}:=\left(\frac{2^{1-p}}{\tau-1}\right)^{\frac{1}{p+1}}+(\tau+1)^{\frac{p}{p+1}}$.
(2) If $p \geqslant 1$, then the following convergent estimate is obtained

$$
\begin{equation*}
\left\|f_{2, \alpha_{2}}^{\delta}(x, 1)-f(x, 1)\right\| \leq C_{7} \delta^{\frac{1}{2}} E_{2}^{\frac{1}{2}} \tag{6.43}
\end{equation*}
$$

where $C_{7}:=\left(\frac{1}{\tau-1}\right)^{\frac{1}{2}}+(\tau+1)^{\frac{1}{2}}$.
Proof The proof of Theorem 6.19 is similar to Theorem 6.16 , so it is omitted.
Remark 6.20 From Theorems 6.16, 6.19, 4.7 and 4.10, we can deduce that the error estimate obtained by the posteriori regularization parameter choice rule is order optimal $O\left(\delta^{\frac{p}{p+1}}\right)$ for $0<p<1$. When $p \geq 1$, the modified Tikhonov regularization method will cause saturation effect.

7. Numerical implementation

In this section, we are going to use several numerical examples to verify the efficiency of our method. Consider the problem

$$
\begin{cases}u_{x x x x}(x, y)+2 u_{x x y y}(x, y)+u_{y y y y}(x, y)=0, & (x, y) \in(0, \pi) \times(0,1), \tag{7.1}\\ u(x, 0)=\varphi_{1}(x), & x \in[0, \pi] \\ u_{y}(x, 0)=\varphi_{2}(x), & x \in[0, \pi] \\ \Delta u(x, 0)=0, & x \in[0, \pi] \\ \Delta u_{y}(x, 0)=0, & x \in[0, \pi] \\ u(0, y)=u(\pi, y)=\Delta u(0, y)=\Delta u_{y}(\pi, y)=0, & y \in[0,1]\end{cases}
$$

with the given data $\varphi_{1}(x), \varphi_{2}(x)$. We define

$$
x_{i}=i \Delta x, i=0,1, \ldots, N, \quad y_{j}=j \Delta y, j=0,1, \ldots, M
$$

where $\Delta x=\frac{1}{N}$ is the step size of spatial direction and Δy is the step size of temporal direction. For the simplification, we only investigate the numerical efficiency of the regularization method for (1.2), and the problem (1.3) is similar to the problem (1.2).

Figure 1 The exact solution and the modified Tikhonov regularization solution of Example 7.1 with (a) $y=0.1$; (b) $y=0.25$; (c) $y=0.45$ for $\varepsilon=0.0001,0.00001,0.000001$

According to [20], we can obtain the 13-point approximation of the biharmonic equation, which can be written as

$$
\begin{aligned}
& \frac{1}{(\Delta x)^{2}(\Delta y)^{2}}\left(20 f_{i}^{j}-8\left(f_{i+1}^{j}+f_{i}^{j+1}+f_{i-1}^{j}+f_{i}^{j-1}\right)+2\left(f_{i+1}^{j}+f_{i-1}^{j+1}+f_{i-1}^{j-1}+f_{i+1}^{j-1}\right)+\right. \\
& \left.\quad\left(f_{i+2}^{j}+f_{i}^{j+2}+f_{i-2}^{j}+f_{i}^{j-2}\right)\right)=0 .
\end{aligned}
$$

We generate the noise-contaminated data by adding a random perturbation, i.e.,

$$
\begin{align*}
f^{\delta}(x, y) & =f(x, y)+\varepsilon \cdot f(x, y)(2 \operatorname{rand}(\operatorname{size}(f))-1), \tag{7.2}\\
\varphi^{\delta} & =\varphi+\varepsilon \cdot \varphi(x)(2 \operatorname{rand}(\operatorname{size}(\varphi)-1)) \tag{7.3}
\end{align*}
$$

here, $\operatorname{size}(f)$ represents the size of f in space and time, $\operatorname{size}(\varphi)$ represents the size of φ in space, the function $\operatorname{rand}(\cdot)$ generates arrays of random numbers whose elements are normally distributed with mean 0 , variance $\sigma^{2}=1$, and the noise level is:

$$
\begin{equation*}
\delta=\left\|\varphi^{\delta}-\varphi\right\|=\sqrt{\frac{1}{N+1} \sum_{i=1}^{N+1}\left(\varphi_{i}-\varphi_{i}^{\delta}\right)^{2}} . \tag{7.4}
\end{equation*}
$$

Actually, the priori regularization parameter may consider the smooth condition of the exact solution. But it is difficult to get it in practical problem. The Tikhonov regularization method is validated based on the posteriori regularization parameter choice rule. The effectiveness and stability of this method are verified by three examples. Let us take $\tau=1.01$. Choosing $N=100$, $M=1000$, we give the following three examples.

Figure 2 The exact solution and the modified Tikhonov regularization solution of Example 7.2 with (a) $y=0.1$; (b) $y=0.25$; (c) $y=0.45$ for $\varepsilon=0.0001,0.00001,0.000001$

Example 7.1 Consider the function

$$
f(x)=x \cos (2 x), \quad x \in[0, \pi] .
$$

Example 7.2 Consider the piecewise smooth function

$$
f(x)= \begin{cases}0, & x \in\left[0, \frac{\pi}{4}\right), \\ 4\left(x-\frac{1}{4}\right), & x \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right) \\ -4\left(x-\frac{3}{4}\right), & x \in\left[\frac{\pi}{2}, \frac{3}{4} \pi\right), \\ 0, & x \in\left[\frac{3}{4} \pi, \pi\right]\end{cases}
$$

Example 7.3 Consider the function

$$
f(x)= \begin{cases}0, & x \in\left[0, \frac{\pi}{3}\right) \\ \frac{1}{2}, & x \in\left[\frac{\pi}{3}, \frac{2}{3} \pi\right) \\ 1, & x \in\left[\frac{2}{3} \pi, \pi\right]\end{cases}
$$

Example 7.4 Consider the non-smooth function

$$
f(x)= \begin{cases}0, & x \in\left[0, \frac{\pi}{4}\right] \\ 1, & x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right] \\ 0, & x \in\left(\frac{\pi}{2}, \frac{3}{4} \pi\right] \\ -1, & x \in\left(\frac{3}{4} \pi, \pi\right]\end{cases}
$$

Figures 1-3 show the error of the exact solution and the approximate solution of the modified Tikhonov regularization method.

Figure 3 The exact solution and the modified Tikhonov regularization solution of Example 7.3 with (a) $y=0.1$; (b) $y=0.25$; (c) $y=0.45$ for $\varepsilon=0.0001,0.00001,0.000001$

Figure 1 shows the exact solution $f(x)$ and the modified Tikhonov regularization solution $f_{\alpha}^{\delta}(x)$ of Example 7.1 for the relative error levels $\varepsilon=0.0001,0.00001,0.000001$ with various values $y=0.1,0.25,0.45$. Figure 2 shows the exact solution $f(x)$ and the modified Tikhonov regularization solution $f_{\alpha}^{\delta}(x)$ of Example 7.2 for the relative error levels $\varepsilon=0.0001,0.00001,0.000001$
with various values $y=0.1,0.25,0.45$. Figure 3 shows the exact solution $f(x)$ and the modified Tikhonov regularization solution $f_{\alpha}^{\delta}(x)$ of Example 7.3 for the relative error levels $\varepsilon=$ $0.0001,0.00001,0.000001$ with various values $y=0.1,0.25,0.45$. From above three figures we can see, the same numerical example, the smaller the value of ε and y, the better the fitting effect of the exact solution $f(x)$ and the corresponding regular solution $f_{\alpha}^{\delta}(x)$ will be. For different numerical examples, the fitting results of the function with better smoothness are better than that of the function with worse smoothness. Above four examples show that the modified Tikhonov regularization method is very effective.

Figure 4 The exact solution and the modified Tikhonov regularization solution of Example 7.4 with (a) $y=0.1$; (b) $y=0.25$; (c) $y=0.45$ for $\varepsilon=0.0001,0.00001,0.000001$

8. Conclusion

This paper investigates the Cauchy problem of biharmonic equations and the condition stability is given under the a priori bound assumption for the exact solution. A modified Tikhonov regularization method is used to solve this ill-posed problem. For the choice of regularization parameter, we give the priori and the posteriori rules. Under the priori regularization parameter selection rules and the posteriori regularization parameter selection rules, the corresponding error estimates are obtained respectively. Finally, we verify the feasibility of our method by doing the corresponding numerical experiments.

Acknowledgements The authors would like to thanks the editor and the referees for their valuable comments and suggestions that improve the quality of our paper.

References

[1] J. MOMTERDE, H. UGAIL. A general 4th-order PDE method to generate Bzier surfaces from the boundary. Comput. Aided Geom. Design, 2006, 23(2): 208-225.
[2] L. E. ANDERSSON, T. ELFVING, G. H. GOLUB. Solution of biharmonic equations with application to radar imaging. J. Comput. Appl. Math., 1998, 94(2): 153-180.
[3] J. HADAMARD, P. M. MORSE. Lectures on cauchy's problem in linear partial differential equations. 1924, https://api.semanticscholar.org/CorpusID:121693976.
[4] T. SHIGETA, D. L. YOUNG. Regularized solutions with a sigular point for the inverse biharmoic boundary value problem by the method of fundamental solutions. Eng. Anal. Bound. Elem., 2011, 35 (7): 883-894.
[5] T. KALMENOV, U. ISKAKOVAA. On an ill-posed problem for a biharmonic equation. Filomat, 2017, 31(4): 1051-1056.
[6] T. KALMENOV, M. A. SADYBEKOV, U. A. ISKAKOVA. On a criterion for the solvability of one ill-posed problem for the biharmonic equation. J. Inverse Ill-Posed Probl., 2016, 24(6): 777-783.
[7] T. N. LUAN, T. KHIEU, T. Q. KHANH. A filter method with a priori and a posteriori parameter choice for the regularization of Cauchy problems for biharmonic equations. Numer. Algorithms, 2021, 86(4): 1721-1746.
[8] Fan YANG, Qianchao WANG, Xiaoxiao LI. Landweber iterative regulation method for identifying unkonwn source for the biharmonic equation. Iran. J. Sci. Technol. A., 2021, 45: 2029-2040.
[9] D. HAO, N. V. DUC, D. LESNIC. A non-local boundary value problem method for the cauchy problem for elliptic equations. Inverse Problems, 2009, 25(5): 055002, 27 pp.
[10] Xiaoli FENG, Chuli FU, Hao CHENG. A regularization method for solving the Cauchy problem for the Helmholtz equation. Appl. Math. Model., 2011, 35(7): 3301-3315.
[11] U. TAUTENHAHN. Optimality for ill-posed problems under general source conditions. Numer. Funct. Anal. Optim., 1998, 19(3-4): 377-398.
[12] M. I. IVANCHOV. The inverse problem of determining the heat source power for a parabolic equationunder arbitrary boundary conditions. J. Math. Sci., 1998, 88(3): 432-436.
[13] T. SCHRÖTER, U. TAUTENHAHN. On the optimality of regularization methods for solving linear ill-posed problems. Z. Anal. Anwendungen, 1994, 13(4): 697-710.
[14] U. TAUTENHAHN. Optimal stable approximations for the sideways heat equation. J. Inverse Ill-Posed Probl., 1997, 5(3): 287-307.
[15] G. VAINIKKO. On the optimality of methods for ill-posed problems. Z. Anal. Anwendungen, 1987, 6(4): 351-362.
[16] H. THORSTEN. Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optim., 2000, 21(3-4): 439-464.
[17] U. TAUTENHAHN. Optimal stable solution of cauchy problems for elliptic equations. Z. Anal. Anwendungen, 1996, 15(4): 961-984.
[18] U. TAUTENHAHN, R. GORENFLO. On optimal regularization methods for fractional differentiation. Z. Anal. Anwendungen, 1999, 18(2): 449-467.
[19] U. TAUTENHAHN, U. HMARIK, B. HOFMANN, et al. Conditional stability estimates for ill-posed pde problems by using interpolation. Numer. Funct. Anal. Optim., 2013, 34(12): 1370-1417.
[20] I. ALTAS. J. DYM, M. M. GUPTA, et al. Multigrid solution of automatically generated high order discretizations for the biharmonic equation. SIAM J. Sci. Comput., 1998, 19(5): 1575-1585.

[^0]: Received April 21, 2023; Accepted January 8, 2024
 Supported by the National Natural Science Foundation of China (Grant No. 11961044).

 * Corresponding author

 E-mail address: fanyang@lut.edu.cn (Fan YANG); jianmingxu97@163.com (Jianming XU); lixiaoxiaogood@126. com (Xiaoxiao LI)

