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Abstract Let A be a commutative unital C*-algebra with the unit element e and M be a full
Hilbert A-module. Denote by End (M) the algebra of all bounded .A-linear mappings on M
and by M’ the set of all bounded A-linear mappings from M into .A. In this paper, we prove
that if there exists z¢ in M and fy in M’ such that fo(z0) = e, then every A-linear Lie triple
derivation on End 4 (M) is standard.
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1. Introduction

Let A be an associative algebra over the complex field C and d be a linear mapping on A.
d is called a derivation if d(zy) = d(z)y + xd(y) for each z,y in A. And d is called an inner
derivation if there exists an element m in A such that d(z) = maz — zm. Clearly, every inner
derivation is a derivation.

One of the interesting problems in the theory of derivations is to identify those algebras on
which every derivation is inner. The following two results are classical. In [1], Sakai proved that
every derivation on a W*-algebra is an inner derivation; and in [2], Christensen showed that
every derivation on a nest algebra is an inner derivation.

A linear mapping d on A is called a Lie derivation if d([z,y]) = [d(z), y] + [z, d(y)] for each
x,y in A, where [z, y] = zy — yx is the usual Lie product on A. A Lie derivation d on A is said to
be standard if it can be decomposed as d = § + 7, where ¢ is a derivation on A and 7 is a linear
mapping from A into Z(A) with 7([x,y]) = 0 for each z,y in A, where Z(A) = {z € A:zz = zx
for every z in A} is the center of A.

Another interesting problem is to identify those algebras on which every Lie derivation is
standard. In [3], Mathieu and Villena proved that every Lie derivation on a C*-algebra is

standard; in [4], Cheung characterized Lie derivations on triangular algebras; in [5], Lu proved
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that every Lie derivation on a completely distributed commutative subspace lattice algebra is
standard; and in [6], Benkovi¢ proved that every Lie derivation on a matrix algebra M, (A) is
standard, where n > 2 and A is a unital algebra.

A linear mapping d on A is called a Lie triple derivation if d([[x,y],z]) = [[d(z),y],z] +
[z, d(y)], 2] + [[=,y],d(z)] for each z, y and z in A. It is clear that every Lie derivation is a Lie
triple derivation. A Lie triple derivation d on A is said to be standard if it can be decomposed
as d = 0 + 7, where ¢ is a derivation on A and 7 is a linear mapping from A into Z(A) with
7([[x,y], z]) = 0 for each z, y and z in A.

Similar to Lie derivations, the authors always consider the problem that is to identify those
algebras on which every Lie triple derivation is standard. In [7], Miers proved that if A is a von
Neumann algebra with no central abelian summands, then every Lie triple derivation on A is
standard; in [8], Ji and Wang proved that every continuous Lie triple derivation on the TUHF
algebras is standard; in [9], Zhang, Wu and Cao proved that if A/ is a nest on a complex separable
Hilbert space H, then every Lie triple derivation on the associated nest algebra Alg\ is standard;
in [10], Yu and Zhang studied the Lie triple derivations on commutative subspace lattice algebras.
In [6], Benkovi¢ showed that if A is a unital algebra with a nontrivial idempotent, then under
suitable assumptions, every Lie triple derivation d on A is of the form d = A + ¢ + 7, where A
is a derivation on A, ¢ is a Jordan derivation on A and 7 is a linear mapping from A into its
center Z(A) that vanished on [[A, A], A].

In 1953, Kaplansky introduced the concepts of Hilbert C*-modules for studying the deriva-
tions on AW *-algebras of type I. Hilbert C*-modules provide a natural generalization of Hilbert
spaces by replacing the complex field C with a C*-algebra. The theory of Hilbert C*-modules
plays an important role in the theory of operator algebras, as it can be applied in many fields,
such as index theory of elliptic operators, K- and K K-theory, noncommutative geometry, and
SO on.

There are few results about derivations, Lie derivations and Lie triple derivations in this
topic. In [11], Li, Han and Tang proved that every derivation on End* (M) is inner, where M
is a full Hilbert C*-module over a commutative unital C*-algebra A; and in [12], Moghadam,
Miri and Janfada proved that every A-linear derivation on End 4(M) is inner, where M is a full
Hilbert C*-module over a commutative unital C*-algebra A with the property that there exists
2o in M and fo in M’ such that fo(zo) = e.

In this paper, we study Lie triple derivations on the algebra of operators in Hilbert C*-
modules. We prove that if M is a full Hilbert C*-module over a commutative unital C*-algebra A
containing unit e with the property that there exists xp in M and fy in M’ such that fo(z¢) = e,
then every A-linear Lie triple derivation on End 4(M) is standard.

2. Preliminaries

Let A be a C*-algebra and M be a left A-module. M is called a Pre-Hilbert A-module if
there exists a mapping (-, ) : M x M — A such that
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(1) (z,z) >0, and (z,z) = 0 if and only if = 0;
(2) (Az+y,2) =Nz, 2) + (y,2);

(3) (az,y) = a(z,y);

4) (z,y) = (y,2)",

where A € C,a € A,z,y,2 € M. The mapping (-,-) is called an A-valued inner product. The
A-valued inner product also induces a norm on M: |jz|| = ||(z,z)|'/?. M is called a Hilbert
A-module (or more exactly, a Hilbert C*-module over A), if M is complete with respect to this
norm.

We denote by (M, M) the closure of the linear span of the set {{x,y): z,y € M}, and M
is called a full Hilbert A-module if (M, M) = A.

A linear mapping T on M is said to be A-linear if T'(azx) = aT'(x) for each a in A and x in
M. A bounded A-linear mapping on M is called an operator. Let End 4(M) be the set of all
operators on M, and by [13] we know that End 4(M) is a Banach algebra.

Let A be a commutative C*-algebra and a be in A. Define an A-linear mapping 7, from M
into itself by T,z = ax for every x in M. It is clear that T, belongs to End 4(M) and we should

notice that if A is not commutative, then T, is not A-linear and not in End 4(M).

Lemma 2.1 ([14, Lemma 1.4]) Let A be a commutative unital C*-algebra and M be a full
Hilbert A-module. Then the center of End 4(M) is Z(End 4(M)) = {T, : a € A} = {al : a € A},
where I is the unit of End 4(M).

A linear mapping f from M into A is said to be A-linear if f(ax) = af(x) for each a € A
and x € M. The set of all bounded A-linear mappings from M to A is denoted by M’. For
each z in M and f in M’, we can define a mapping 6, y on M by 0, sy = f(y)z for every y in
M. Obviously, 8, ; € End 4(M).

Lemma 2.2 ([13]) Let M be a Hilbert C*-module over a C*-algebra A. For each a in A, x,y
in M, f,gin M’ and A in End 4(M), we have that

(1) Op5A =0z fon;

(2) Aby =04z r;

(3) if A is commutative, then 0, 0y 3 = f(Y)0z.g, oz, f = 0y ;-

3. Main results

In this section, we suppose that A is a commutative unital C*-algebra with the unit element
e, M is a full Hilbert A-module, and there exists xo in M and fy in M’ such that fo(zo) = e.

For the convenience of expression, we give some symbols firstly. Denote End 4(M) by X and
denote by I the unit operator in X. Let P = 0., ¢, and P, = I — P, it is easy to see that P,
and P, are two idempotents in End 4(M). Denote P,XP; by &;; and P,AP; by A;; for every A
in X, where 1 <1,5 < 2.

The following two lemmas will be used repeatedly.
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Lemma 3.1 For every A in X, we have Py AP, = fo(Axo) Py = fo(PLAP xo)P1. Moreover, X1

is commutative.
Proof For every A in X', by Lemma 2.2, we have that
PiAPy = 04 5, A0 1o = fo(A0)0z0,5, = fo(Azo)Pi. (3.1)
Replacing A by Py AP; in (3.1), we get that
PyAPy = PLPLAP Py = fo(P1APyxo) Py
Notice that fo(Azo) belongs to A. It follows that X7 is commutative. O

Lemma 3.2 (1) If BAs; = 0 for every Agy in Xoy, then BPy, = 0. (2) If A12B = 0 for every
A12 in Xlg, then PQB =0.

Proof (1) Let Ay = P20, 5, P1, where x is an arbitrary element in M. We can obtain that
0= BP29x7f0P1£L'O = fo(PllL'())BPQCL' = BPQCL’

It follows that BP, = 0.
(2) Let Aio = P10y, P>, where f is an arbitrary element in M’. We can obtain that

0= Plexo,ngBac = f(PQBI)PlIQ = f(Png)IO

It follows that f(P.Bx) = 0 for every f € M’. Define a mapping g in M’ by ¢(y) = (y, P.Bz).
Hence g(PyBx) = (P2 Bz, PoBx) = 0. It follows that PoBx = 0, thus P.B = 0. O

The following theorem is the main result in this paper.

Theorem 3.3 Let A be a commutative unital C*-algebra with the unit element e and M be a
full Hilbert A-module. If there exists xg in M and fo in M’ such that fy(x¢) = e, then every
A-linear Lie triple derivation 6 on End4(M) is standard.

Before we prove Theorem 3.3, we show some lemmas.

Lemma 3.4 Suppose that ¢ is the A-linear Lie triple derivation ¢ that occurs in Theorem 3.3,
then §(I) € Z(X).

Proof Let P be an idempotent in X'. We have that
0=94(L,P],P]) =1[6(I),P],P]=1[6(I)P —Pé(I),P] = 6(I)P + Pé(I) — 2P5(I)P.

Multiplying the above equation by P from the right side, we can obtain that P§(I)P = o(I)P. It
means that (I — P)§(I)P = 0. Thus P16(I)P, = P26(I)Py = 0, it follows that 6(I) € X171 + Xao.
By Lemma 3.1, we know that Xy is commutative, so [0(I), Aj1] = 0 for every Ayy in Xy1. In the

following, we show that
[0(1), Az] = [6(I), A12] = [6(1), Ana] = 0

for every Ags in Xoo, A1o in X9 and Asp in Xy,
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For each A, B in X', we have that
14, Bl 6(1)] = 8([[A, BJ, 1)) — [[4,6(B)], 1] — [15(4), BJ, 1] = 0.
By A1z = [P1, A12] and Agy = [A2;, P1], we have that
[0(1), A12] = [6(1), A21] = 0. (3.2)
By (3.2), it follows that
0=[6(I), AsaBo1] = [6(]), Aaz] Ba1 + Aaz[6(I), Ba1] = [6(I), A22] B2y

for every Ags in Xae and Bap in A, By Lemma 3.2, we have that [0(]), Ae]P, = 0. By
d(I) € X1 + Xag, we can obtain that [0(]), Aaa] € Xag, it follows that [6(]), A22] = 0. Hence
(1) e Z(X). O

Lemma 3.5 Suppose that ¢ is the A-linear Lie triple derivation ¢ that occurs in Theorem 3.3,

then P15(P1)P1 + P25(P1)P2 S Z(X)

Proof By Lemma 3.1, we know that Py6(Py)P; = aPy, where a = fo(P1d(P1)Pixg). For every
x in M, denote by P>, 5, P1 = A21, we have that

—6(A21) =6([[P2, An1], P2]) = [[6(P2), A2, Po] + [[P2, 6(A21)], Po] + [P, Az1], 6(P2)]
= — A210(P2) Py — Pod(P2) Aoy + A210(Ps) + 2P20(A21) Pa—
0(Aa1 )Py — Py6(Ag1) + A216(Pa) — 6(P2)Agy. (3.3)
Multiplying (3.3) by P» from the left side and by P; from the right side, we can obtain that
Py5(P2) Aoy = A216(Ps) Py
That is
Py3(P3)Pafy. 1, P = Paby 1, PL6(Py) P (3.4)
Both the two sides of (3.4) acting on zg in M, we have that
Jo(P1zo) P20 (Pa) Pax = fo(P1d(Pa)Prxg)Pox.
Since fo(Prxo) = fo(zo) = e, it follows that
Py8(Py)Py = fo(P16(Py)Prao)Pa. (3.5)
By Lemma 3.4, we know that 6(I) € Z(X) = AI. Since fy is A-linear, we have that
Py5(I)Py = 6(1) P2 = 6(I) fo(z0) P2 = fo(6(I)xo) Py = fo(P16(I)Pyxg)Pa.
Now replacing 6(P») by 6(I) — §(P1) in (3.5), we can obtain that
PoS(P)Py = fo(Py6(Py)Piag) Py = aPs.

It implies that P1o(P1)P1 + P2d(Py) Py, = a(Py + P2) = al belongs to Z(X).
Let G = P16(P1)Py — P26(Py) Py and define a mapping A on X by

A(A) = §(4) - [A,6]



392 Guangyu AN, Jun SHENG and Jun HE
for every A in X. Obviously, A is also an A-linear Lie triple derivation on X. Moreover,

A(Py) =6(P1) — [P1,G] = PLo(P) Py + Pad(Pr) P
and by Lemma 3.5, we know that A(Py) € Z(X). O

In Lemmas 3.6-3.8, we show some properties of A.
Lemma 3.6 For every A;; in A, we have A(A;;) C Xj;, where 1 <i,5 <2 and i # j.

Proof Since A(P;) € Z(X), for each A2 in X2, we have that
A(Arz) =A([[Ar2, P, P1)

=[[A(Ar2), Pr], Pi] + [[A12, A(P1)], Pa] + [[A12, P1], A(P1)]
=[[A(A12), P], P1]
:PlA(Alg)PQ + PQA(Alg)Pl. (36)

In the following, we show that PoA(A12)P; = 0.
Let Bis be in Xjo. Then [Aj9, Bi2] = 0. Thus

0=A(0) = A([[Ar2, B12], C]) =[[A(A12), Biz2], C] + [[A12, A(B12)], C]
=[[A(A12), Biz] + [A12, A(B12)], C]
for every C'in X. Tt means that J = [A(A412), Bia]+[A412, A(B12)] € Z(X). Since Ao = [Py, A12],
we have that
[A(A12), Bio] =J — [A12, A(Bui2)] = J — [[P1, A1z}, A(Bi2)]
=J = (A([[Pr, Ar2], Bia]) — [[A(P1), Ar2], Bia] — [[P1, A(A12)], Biz))
=J + [[P1, A(A12)], Bi2].
By (3.6), we have that
[PLA(A12) Py + PoA(Ar) Py, Big) =J + [[P1, PLA(A12) Py + Py A(Ar2) Py, Bro]
=J + [PiA(A12) Py — Py A(A12) Pr, Bra.
Hence
[PyA(Ara) Py, Bra = %J € Z(X).
It follows from the Kleinecke-Shirokov Theorem [15, Problem 230], we know that [PoA(A12) Py, B1a]

is a quasi-nilpotent element. Since Z(X) = AI is a commutative unital C*-algebra, it is well
known that [PoA(A12)Py, Bia] = 0. Thus P,A(A13)B1a = B12A(A12)Py = 0 for every Bjs in
Xp2. By Lemma 3.2, we know that P,A(A13)P; = 0. Similarly, we have that A( A1) C Aoy, O

Lemma 3.7 For every Aj; in X1, we have A(A11) C Z(X) for every Ajp in Xiq.

Proof For every Aj; in Ajp, by Lemma 3.1, we have that
A(Ap1) = A(PrAn Pr) = A(fo(A11wo) Pr) = fo(A11m0) A(P).
Since A(Py) € Z(X) and fy(Ai1z0) € A, it follows that A(A11) € Z(X). O
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Lemma 3.8 For every Ags in Ase, we have A(Ago) — fo(A(A2)xg)l € Xog. Particularly,
A(PQ) = fQ(A(Pg)IQ)I

Proof Through simple calculation, we have that

0= A([[P1, A2z], P1]) = [[P1, A(As2)], P1] = —PiA(Agz) Pa — PaA(Ag) Py
It follows that A(Agz) € X117 + Aas. By Lemma 3.1, we can obtain that

A(Az) = PIA(A22)P1 + PoA(A2) P = fo(A(A22)x0) 1 + P2A(A22) P2
It menas that

A(Az) — fo(A(A22)70)] = — fo(A(A22)z0) P2 + Py A(A22) Py € Ao
Since A(Py) = A(I) — A(Py) € Z(X), we have that
A(P2) — fo(A(P2)xo)I € Z(X) N Xay = {0}.

Thus A(P) = fo(A(P2)zo)l. O

In the following, we prove Theorem 3.3.

Proof of Theorem 3.3 Define two mappings 7 and D on X by
T(A) = fo(PLAP120)A(Py) + fo(A(PyAPy)xo)l

and

D(A) = A(4) = 7(4)

for every A in X. It is clear that 7 is an A-linear mapping from X into Z(X) and D is an
A-linear mapping on X. Moreover, according to the previous lemmas and the definitions of 7
and D , we have that

(1) D(Aij) = A(Aij) € & for every A;j in X5, where 1 < 4,7 <2 and i # j;

(2) D(Py) = D(P>) = D(I) = 0:

(3) D(A11) =0 for every Ajq in Xi1;

(4) D(Aaz) € X for every Ags in Xoo.
To prove that A is standard, it is sufficient to show that D is a derivation on X and 7([[4, B], C]) =
0 for each A, B and C' in X.

In the following we show that D(A;; Bsx) = D(A;;)Bsi + AijD(Bsyi) for every A;; in A;; and
By in X, where 1 <1i,j, s,k < 2.

Since D(X;;) € &jj;, we have that D(A;;Bsi) = D(A;j)Bsi + AijD(Bsy) for j # s. Thus we

only need to prove the following 8 cases:

(1) D(A11B11) = D(A11)B11 + A11D(B11);
(2) D(A11B12) = D(A11)Bi2 + A11D(B12);
(3) D(A12B23) = D(A12)Bas + A12D(B22);
(4) D(A21B11) = D(A21)B11 + A21D(B11);
(5) D(A22Ba1) = D(A22)Ba1 + A2 D(Bay);
(6) D(A2Baz) = D(A22)Bas + A2z D(Ba2);
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(7) D(Ai2B21) = D(A12)Ba1 + A12D(B21);
(8) D(A21B12) = D(A21)Bi2 + A21 D(Bi2).
Since D(A;1) = 0 for every Ay in Xj1, the case (1) is trivial.
For each A, B in X, by A(A) — D(A) = 7(A) € Z(X), we have that [A(A), B] = [D(A), B].
It follows that
D(A11B12) =A(A11B12) = —A([[Py1, Biz2), A11])
= —[[P1, A(B12)], A11] — [[P1, Bi2], A(A11)]
= — [A(B12), A11] — [Bi2, A(A11)]
=[A11, D(B12)] + [D(A11), Bi2]
=A11D(B12) + D(A11)B12
for each Aj; in Xy; and Big in Xjp. Thus the case (2) holds. The cases (3), (4) and (5) are

similar to the case (2), so we omit the proofs.

For every Co; in Xy1, according to the case (5), we have the following two equations:
D(Ag2B32C51) = D(A23B23)Co1 + Az Boa D(Coy) (3.7)
and
D(A22B22C51) =D(A22)B22Co1 + A2 D(B22Coa1)
=D(A2)ByyCa1 + Aga D(Bas)Cay + Ao Bay D(Coy) (3.8)
for each Agg, Bay in Xay. Comparing (3.7) and (3.8), we have that
D(A22B22)Ca1 = D(A22)BaaCa1 + A3z D(Bag)Ca;.

It follows that (D(Ag2Bag) — D(Agg)Baa — AsaD(Ba2))Ca1 = 0 for every Co; in Xa1. By Lemma
3.2 and D(Agz) € Xoo, we know that

D(A22B22) — D(A33)Bas — A3 D(Bag) = 0.

Finally, we show the cases (7) and (8). Let A15 be in Xj2 and Bgy be in Xa;. Through simple
calculation, we can obtain that
A([[Ar2, P2}, Ba1]) — D([[A12, P2, ], Bai)
= [[A(A12), P], Bar] + [[Ar2, P2], A(B21)] — D([[A12, P2, ], Bai)
= [A(A12), Bo1] + [A12, A(B21)] — D[A12, Bai]
= [D(A12), Ba1] + [A12, D(Ba1)] — D(A12B21 — B21 A1)
= D(A12)Ba1 — Ba1D(A12) + A12D(B21) — D(Ba1)A12 — D(A12B21) + D(Ba21 A12)
= (D(A12)B21 + A12D(Bg1) — D(A12B21)) + (D(B21A12) — Ba1 D(A12) — D(B21)A12).

Since A([A12, B21]) — D([A12, B21]) belongs to Z(X), by Lemma 2.1, we may assume that

A([A12, B21]) — D([A12, Ba1]) = A
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for some A in A. That is,
M =(D(A12)Ba1 + A12D(Bs1) — D(A12B21))+
(D(Bg1A12) — Ba1 D(A12) — D(Ba1)A12). (3.9)
Since D(X;;) € Xjj, it follows that
D(A12)B21 + A12D(Ba21) — D(A12B21) € &1y

and
D(Bg1A12) — Bo1D(A12) — D(Ba1)A12 € Xas.

Multiplying (3.9) by P, and Ps, respectively, from the right side, we obtain the following two

equations:
D(Alngl) = D(A12)321 + AlgD(Bgl) —\P; (3.10)
and
D(BglAlg) = Bng(Alg) + D(BQl)AlQ + )\PQ (311)
By the case (2) and Eq. (3.10), we can obtain that
D(A12B21A12) =D(A12B21)A12 + A12Ba1 D( A1)
:D(A12)B21A12 + A12D(B21)A12 — )\A12 —+ A12321D(A12). (312)
By the case (3) and Eq. (3.11), we can obtain that
D(A12B21A12) =D(A12)Ba1 A12 + A12D(B21A12)
=D(A12)Ba1 A1 + A12D(Ba1) A1z + A12B21 D(A12) + M. (3.13)
Comparing (3.12) and (3.13), we have that AA12 = 0. Noticing that D is A-linear, we can obtain
A2P; = \2P; = 0 through multiplying (3.10) and (3.11) by A, respectively. Hence A\? = 0. Since
A is a commutative C*-algebra, it is well known that A\? = 0 implies A = 0. By (3.10) and (3.11),
the cases (7) and (8) hold.

By the cases (1)—(8), it implies that D is a derivation immediately. Now we show that
7([[4, B],C]) =0 for each A, B and C in X. Indeed,

7([[4, B, C1) =A([[4, B], €]) = D([[A, B, C])
A(A), B], Cl +[[A, A(B)), €]
D(A), B],C] + [[A, D(B)], C]
=0.

[[A(A), B],C
[[D(4), B],C

It follows that A(A) = D(A)+ 7(A) is a standard Lie triple derivation on X. Define an A-linear
mapping on X by d(A) = D(A) + [A, G] for every A in X. Thus we have that

0(A) =A(A) +[A,G] = D(A)+ 1(A) + [A,G] = d(A) + T(A),

where d is a derivation on X and 7 is an A-linear mapping from X into Z(X) such that
7([[A, B],C]) = 0 for each A, B and C in X. O
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Remark 3.9 In [6], Benkovic supposed that X’ is a unital algebra with a nontrivial idempotent
P, and P, = I — Py, and denoted P,X'P; by &;; and P,AP; by A;; for every A in X, where
1 <i,7 < 2. He showed that if

A22X21 =0 or X12A22 =0 implies AQQ = 0,

and
A11X12 =0or XglAll =0 1rnphes A11 = 0,

then every Lie triple derivation d on X is of the form d = A 4+ § + 7, where A is a derivation on
X, 0 is a Jordan derivation on X and 7 is a linear mapping from X into its center Z(X’) that
vanishes on [[X, X], X].

In this paper, by Lemma 3.2, we know that

A22X21 =0or X12A22 =0 implies A22 =0.
But it is also a question that whether A1 X2 = 0 or A1 A1 = 0 implies that A;; = 0.
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