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Abstract Let A be a commutative unital C∗-algebra with the unit element e and M be a full

Hilbert A-module. Denote by EndA(M) the algebra of all bounded A-linear mappings on M

and by M
′ the set of all bounded A-linear mappings from M into A. In this paper, we prove

that if there exists x0 in M and f0 in M
′ such that f0(x0) = e, then every A-linear Lie triple

derivation on EndA(M) is standard.
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1. Introduction

Let A be an associative algebra over the complex field C and d be a linear mapping on A.

d is called a derivation if d(xy) = d(x)y + xd(y) for each x, y in A. And d is called an inner

derivation if there exists an element m in A such that d(x) = mx − xm. Clearly, every inner

derivation is a derivation.

One of the interesting problems in the theory of derivations is to identify those algebras on

which every derivation is inner. The following two results are classical. In [1], Sakai proved that

every derivation on a W ∗-algebra is an inner derivation; and in [2], Christensen showed that

every derivation on a nest algebra is an inner derivation.

A linear mapping d on A is called a Lie derivation if d([x, y]) = [d(x), y] + [x, d(y)] for each

x, y in A, where [x, y] = xy−yx is the usual Lie product on A. A Lie derivation d on A is said to

be standard if it can be decomposed as d = δ + τ , where δ is a derivation on A and τ is a linear

mapping from A into Z(A) with τ([x, y]) = 0 for each x, y in A, where Z(A) = {z ∈ A : xz = zx

for every x in A} is the center of A.

Another interesting problem is to identify those algebras on which every Lie derivation is

standard. In [3], Mathieu and Villena proved that every Lie derivation on a C∗-algebra is

standard; in [4], Cheung characterized Lie derivations on triangular algebras; in [5], Lu proved
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that every Lie derivation on a completely distributed commutative subspace lattice algebra is

standard; and in [6], Benkovič proved that every Lie derivation on a matrix algebra Mn(A) is

standard, where n ≥ 2 and A is a unital algebra.

A linear mapping d on A is called a Lie triple derivation if d([[x, y], z]) = [[d(x), y], z] +

[[x, d(y)], z] + [[x, y], d(z)] for each x, y and z in A. It is clear that every Lie derivation is a Lie

triple derivation. A Lie triple derivation d on A is said to be standard if it can be decomposed

as d = δ + τ , where δ is a derivation on A and τ is a linear mapping from A into Z(A) with

τ([[x, y], z]) = 0 for each x, y and z in A.

Similar to Lie derivations, the authors always consider the problem that is to identify those

algebras on which every Lie triple derivation is standard. In [7], Miers proved that if A is a von

Neumann algebra with no central abelian summands, then every Lie triple derivation on A is

standard; in [8], Ji and Wang proved that every continuous Lie triple derivation on the TUHF

algebras is standard; in [9], Zhang, Wu and Cao proved that if N is a nest on a complex separable

Hilbert spaceH, then every Lie triple derivation on the associated nest algebra AlgN is standard;

in [10], Yu and Zhang studied the Lie triple derivations on commutative subspace lattice algebras.

In [6], Benkovič showed that if A is a unital algebra with a nontrivial idempotent, then under

suitable assumptions, every Lie triple derivation d on A is of the form d = ∆ + δ + τ , where ∆

is a derivation on A, δ is a Jordan derivation on A and τ is a linear mapping from A into its

center Z(A) that vanished on [[A,A],A].

In 1953, Kaplansky introduced the concepts of Hilbert C∗-modules for studying the deriva-

tions on AW ∗-algebras of type I. Hilbert C∗-modules provide a natural generalization of Hilbert

spaces by replacing the complex field C with a C∗-algebra. The theory of Hilbert C∗-modules

plays an important role in the theory of operator algebras, as it can be applied in many fields,

such as index theory of elliptic operators, K- and K K-theory, noncommutative geometry, and

so on.

There are few results about derivations, Lie derivations and Lie triple derivations in this

topic. In [11], Li, Han and Tang proved that every derivation on End∗
A
(M) is inner, where M

is a full Hilbert C∗-module over a commutative unital C∗-algebra A; and in [12], Moghadam,

Miri and Janfada proved that every A-linear derivation on EndA(M) is inner, where M is a full

Hilbert C∗-module over a commutative unital C∗-algebra A with the property that there exists

x0 in M and f0 in M′ such that f0(x0) = e.

In this paper, we study Lie triple derivations on the algebra of operators in Hilbert C∗-

modules. We prove that ifM is a full Hilbert C∗-module over a commutative unital C∗-algebraA

containing unit e with the property that there exists x0 in M and f0 in M′ such that f0(x0) = e,

then every A-linear Lie triple derivation on EndA(M) is standard.

2. Preliminaries

Let A be a C∗-algebra and M be a left A-module. M is called a Pre-Hilbert A-module if

there exists a mapping 〈·, ·〉 : M×M −→ A such that
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(1) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0;

(2) 〈λx + y, z〉 = λ〈x, z〉+ 〈y, z〉;

(3) 〈ax, y〉 = a〈x, y〉;

(4) 〈x, y〉 = 〈y, x〉∗,

where λ ∈ C, a ∈ A, x, y, z ∈ M. The mapping 〈·, ·〉 is called an A-valued inner product. The

A-valued inner product also induces a norm on M: ‖x‖ = ‖〈x, x〉‖1/2. M is called a Hilbert

A-module (or more exactly, a Hilbert C∗-module over A), if M is complete with respect to this

norm.

We denote by 〈M,M〉 the closure of the linear span of the set {〈x, y〉 : x, y ∈ M}, and M

is called a full Hilbert A-module if 〈M,M〉 = A.

A linear mapping T on M is said to be A-linear if T (ax) = aT (x) for each a in A and x in

M. A bounded A-linear mapping on M is called an operator. Let EndA(M) be the set of all

operators on M, and by [13] we know that EndA(M) is a Banach algebra.

Let A be a commutative C∗-algebra and a be in A. Define an A-linear mapping Ta from M

into itself by Tax = ax for every x in M. It is clear that Ta belongs to EndA(M) and we should

notice that if A is not commutative, then Ta is not A-linear and not in EndA(M).

Lemma 2.1 ([14, Lemma 1.4]) Let A be a commutative unital C∗-algebra and M be a full

HilbertA-module. Then the center of EndA(M) is Z(EndA(M)) = {Ta : a ∈ A} = {aI : a ∈ A},

where I is the unit of EndA(M).

A linear mapping f from M into A is said to be A-linear if f(ax) = af(x) for each a ∈ A

and x ∈ M. The set of all bounded A-linear mappings from M to A is denoted by M′. For

each x in M and f in M′, we can define a mapping θx,f on M by θx,fy = f(y)x for every y in

M. Obviously, θx,f ∈ EndA(M).

Lemma 2.2 ([13]) Let M be a Hilbert C∗-module over a C∗-algebra A. For each a in A, x, y

in M, f, g in M′ and A in EndA(M), we have that

(1) θx,fA = θx,f◦A;

(2) Aθx,f = θAx,f ;

(3) if A is commutative, then θx,fθy,g = f(y)θx,g, θax,f = aθx,f .

3. Main results

In this section, we suppose that A is a commutative unital C∗-algebra with the unit element

e, M is a full Hilbert A-module, and there exists x0 in M and f0 in M′ such that f0(x0) = e.

For the convenience of expression, we give some symbols firstly. Denote EndA(M) by X and

denote by I the unit operator in X . Let P1 = θx0,f0 and P2 = I − P1, it is easy to see that P1

and P2 are two idempotents in EndA(M). Denote PiXPj by Xij and PiAPj by Aij for every A

in X , where 1 ≤ i, j ≤ 2.

The following two lemmas will be used repeatedly.
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Lemma 3.1 For every A in X , we have P1AP1 = f0(Ax0)P1 = f0(P1AP1x0)P1. Moreover, X11

is commutative.

Proof For every A in X , by Lemma 2.2, we have that

P1AP1 = θx0,f0Aθx0,f0 = f0(Ax0)θx0,f0 = f0(Ax0)P1. (3.1)

Replacing A by P1AP1 in (3.1), we get that

P1AP1 = P1P1AP1P1 = f0(P1AP1x0)P1.

Notice that f0(Ax0) belongs to A. It follows that X11 is commutative. 2

Lemma 3.2 (1) If BA21 = 0 for every A21 in X21, then BP2 = 0. (2) If A12B = 0 for every

A12 in X12, then P2B = 0.

Proof (1) Let A21 = P2θx,f0P1, where x is an arbitrary element in M. We can obtain that

0 = BP2θx,f0P1x0 = f0(P1x0)BP2x = BP2x.

It follows that BP2 = 0.

(2) Let A12 = P1θx0,fP2, where f is an arbitrary element in M′. We can obtain that

0 = P1θx0,fP2Bx = f(P2Bx)P1x0 = f(P2Bx)x0.

It follows that f(P2Bx) = 0 for every f ∈ M′. Define a mapping g in M′ by g(y) = 〈y, P2Bx〉.

Hence g(P2Bx) = 〈P2Bx, P2Bx〉 = 0. It follows that P2Bx = 0, thus P2B = 0. 2

The following theorem is the main result in this paper.

Theorem 3.3 Let A be a commutative unital C∗-algebra with the unit element e and M be a

full Hilbert A-module. If there exists x0 in M and f0 in M′ such that f0(x0) = e, then every

A-linear Lie triple derivation δ on EndA(M) is standard.

Before we prove Theorem 3.3, we show some lemmas.

Lemma 3.4 Suppose that δ is the A-linear Lie triple derivation δ that occurs in Theorem 3.3,

then δ(I) ∈ Z(X ).

Proof Let P be an idempotent in X . We have that

0 = δ([[I, P ], P ]) = [[δ(I), P ], P ] = [δ(I)P − Pδ(I), P ] = δ(I)P + Pδ(I)− 2Pδ(I)P.

Multiplying the above equation by P from the right side, we can obtain that Pδ(I)P = δ(I)P . It

means that (I − P )δ(I)P = 0. Thus P1δ(I)P2 = P2δ(I)P1 = 0, it follows that δ(I) ∈ X11 +X22.

By Lemma 3.1, we know that X11 is commutative, so [δ(I), A11] = 0 for every A11 in X11. In the

following, we show that

[δ(I), A22] = [δ(I), A12] = [δ(I), A21] = 0

for every A22 in X22, A12 in X12 and A21 in X21.
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For each A,B in X , we have that

[[A,B], δ(I)] = δ([[A,B], I]) − [[A, δ(B)], I]− [[δ(A), B], I] = 0.

By A12 = [P1, A12] and A21 = [A21, P1], we have that

[δ(I), A12] = [δ(I), A21] = 0. (3.2)

By (3.2), it follows that

0 = [δ(I), A22B21] = [δ(I), A22]B21 +A22[δ(I), B21] = [δ(I), A22]B21

for every A22 in X22 and B21 in X21. By Lemma 3.2, we have that [δ(I), A22]P2 = 0. By

δ(I) ∈ X11 + X22, we can obtain that [δ(I), A22] ∈ X22, it follows that [δ(I), A22] = 0. Hence

δ(I) ∈ Z(X ). 2

Lemma 3.5 Suppose that δ is the A-linear Lie triple derivation δ that occurs in Theorem 3.3,

then P1δ(P1)P1 + P2δ(P1)P2 ∈ Z(X ).

Proof By Lemma 3.1, we know that P1δ(P1)P1 = aP1, where a = f0(P1δ(P1)P1x0). For every

x in M, denote by P2θx,f0P1 = A21, we have that

−δ(A21) =δ([[P2, A21], P2]) = [[δ(P2), A21], P2] + [[P2, δ(A21)], P2] + [[P2, A21], δ(P2)]

=−A21δ(P2)P2 − P2δ(P2)A21 +A21δ(P2) + 2P2δ(A21)P2−

δ(A21)P2 − P2δ(A21) +A21δ(P2)− δ(P2)A21. (3.3)

Multiplying (3.3) by P2 from the left side and by P1 from the right side, we can obtain that

P2δ(P2)A21 = A21δ(P2)P1.

That is

P2δ(P2)P2θx,f0P1 = P2θx,f0P1δ(P2)P1. (3.4)

Both the two sides of (3.4) acting on x0 in M, we have that

f0(P1x0)P2δ(P2)P2x = f0(P1δ(P2)P1x0)P2x.

Since f0(P1x0) = f0(x0) = e, it follows that

P2δ(P2)P2 = f0(P1δ(P2)P1x0)P2. (3.5)

By Lemma 3.4, we know that δ(I) ∈ Z(X ) = AI. Since f0 is A-linear, we have that

P2δ(I)P2 = δ(I)P2 = δ(I)f0(x0)P2 = f0(δ(I)x0)P2 = f0(P1δ(I)P1x0)P2.

Now replacing δ(P2) by δ(I)− δ(P1) in (3.5), we can obtain that

P2δ(P1)P2 = f0(P1δ(P1)P1x0)P2 = aP2.

It implies that P1δ(P1)P1 + P2δ(P1)P2 = a(P1 + P2) = aI belongs to Z(X ).

Let G = P1δ(P1)P2 − P2δ(P1)P1 and define a mapping ∆ on X by

∆(A) = δ(A)− [A,G]
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for every A in X . Obviously, ∆ is also an A-linear Lie triple derivation on X . Moreover,

∆(P1) = δ(P1)− [P1, G] = P1δ(P1)P1 + P2δ(P1)P2

and by Lemma 3.5, we know that ∆(P1) ∈ Z(X ). 2

In Lemmas 3.6–3.8, we show some properties of ∆.

Lemma 3.6 For every Aij in Xij , we have ∆(Aij) ⊆ Xij , where 1 ≤ i, j ≤ 2 and i 6= j.

Proof Since ∆(P1) ∈ Z(X ), for each A12 in X12, we have that

∆(A12) =∆([[A12, P1], P1])

=[[∆(A12), P1], P1] + [[A12,∆(P1)], P1] + [[A12, P1],∆(P1)]

=[[∆(A12), P1], P1]

=P1∆(A12)P2 + P2∆(A12)P1. (3.6)

In the following, we show that P2∆(A12)P1 = 0.

Let B12 be in X12. Then [A12, B12] = 0. Thus

0 = ∆(0) = ∆([[A12, B12], C]) =[[∆(A12), B12], C] + [[A12,∆(B12)], C]

=[[∆(A12), B12] + [A12,∆(B12)], C]

for every C in X . It means that J = [∆(A12), B12]+[A12,∆(B12)] ∈ Z(X ). Since A12 = [P1, A12],

we have that

[∆(A12), B12] =J − [A12,∆(B12)] = J − [[P1, A12],∆(B12)]

=J − (∆([[P1, A12], B12])− [[∆(P1), A12], B12]− [[P1,∆(A12)], B12])

=J + [[P1,∆(A12)], B12].

By (3.6), we have that

[P1∆(A12)P2 + P2∆(A12)P1, B12] =J + [[P1, P1∆(A12)P2 + P2∆(A12)P1], B12]

=J + [P1∆(A12)P2 − P2∆(A12)P1, B12].

Hence

[P2∆(A12)P1, B12] =
1

2
J ∈ Z(X ).

It follows from the Kleinecke-ShirokovTheorem [15, Problem 230], we know that [P2∆(A12)P1, B12]

is a quasi-nilpotent element. Since Z(X ) = AI is a commutative unital C∗-algebra, it is well

known that [P2∆(A12)P1, B12] = 0. Thus P2∆(A12)B12 = B12∆(A12)P1 = 0 for every B12 in

X12. By Lemma 3.2, we know that P2∆(A12)P1 = 0. Similarly, we have that ∆(A21) ⊆ X21. 2

Lemma 3.7 For every A11 in X11, we have ∆(A11) ⊆ Z(X ) for every A11 in X11.

Proof For every A11 in X11, by Lemma 3.1, we have that

∆(A11) = ∆(P1A11P1) = ∆(f0(A11x0)P1) = f0(A11x0)∆(P1).

Since ∆(P1) ∈ Z(X ) and f0(A11x0) ∈ A, it follows that ∆(A11) ∈ Z(X ). 2
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Lemma 3.8 For every A22 in X22, we have ∆(A22) − f0(∆(A22)x0)I ∈ X22. Particularly,

∆(P2) = f0(∆(P2)x0)I.

Proof Through simple calculation, we have that

0 = ∆([[P1, A22], P1]) = [[P1,∆(A22)], P1] = −P1∆(A22)P2 − P2∆(A22)P1.

It follows that ∆(A22) ∈ X11 + X22. By Lemma 3.1, we can obtain that

∆(A22) = P1∆(A22)P1 + P2∆(A22)P2 = f0(∆(A22)x0)P1 + P2∆(A22)P2.

It menas that

∆(A22)− f0(∆(A22)x0)I = −f0(∆(A22)x0)P2 + P2∆(A22)P2 ∈ X22.

Since ∆(P2) = ∆(I)−∆(P1) ∈ Z(X ), we have that

∆(P2)− f0(∆(P2)x0)I ∈ Z(X ) ∩ X22 = {0}.

Thus ∆(P2) = f0(∆(P2)x0)I. 2

In the following, we prove Theorem 3.3.

Proof of Theorem 3.3 Define two mappings τ and D on X by

τ(A) = f0(P1AP1x0)∆(P1) + f0(∆(P2AP2)x0)I

and

D(A) = ∆(A) − τ(A)

for every A in X . It is clear that τ is an A-linear mapping from X into Z(X ) and D is an

A-linear mapping on X . Moreover, according to the previous lemmas and the definitions of τ

and D , we have that

(1) D(Aij) = ∆(Aij) ∈ Xij for every Aij in Xij , where 1 ≤ i, j ≤ 2 and i 6= j;

(2) D(P1) = D(P2) = D(I) = 0;

(3) D(A11) = 0 for every A11 in X11;

(4) D(A22) ∈ X22 for every A22 in X22.

To prove that ∆ is standard, it is sufficient to show thatD is a derivation on X and τ([[A,B], C]) =

0 for each A, B and C in X .

In the following we show that D(AijBsk) = D(Aij)Bsk +AijD(Bsk) for every Aij in Xij and

Bsk in Xsk, where 1 ≤ i, j, s, k ≤ 2.

Since D(Xij) ∈ Xij , we have that D(AijBsk) = D(Aij)Bsk +AijD(Bsk) for j 6= s. Thus we

only need to prove the following 8 cases:

(1) D(A11B11) = D(A11)B11 +A11D(B11);

(2) D(A11B12) = D(A11)B12 +A11D(B12);

(3) D(A12B22) = D(A12)B22 +A12D(B22);

(4) D(A21B11) = D(A21)B11 +A21D(B11);

(5) D(A22B21) = D(A22)B21 +A22D(B21);

(6) D(A22B22) = D(A22)B22 +A22D(B22);
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(7) D(A12B21) = D(A12)B21 +A12D(B21);

(8) D(A21B12) = D(A21)B12 +A21D(B12).

Since D(A11) = 0 for every A11 in X11, the case (1) is trivial.

For each A,B in X , by ∆(A) −D(A) = τ(A) ∈ Z(X ), we have that [∆(A), B] = [D(A), B].

It follows that

D(A11B12) =∆(A11B12) = −∆([[P1, B12], A11])

= − [[P1,∆(B12)], A11]− [[P1, B12],∆(A11)]

= − [∆(B12), A11]− [B12,∆(A11)]

=[A11, D(B12)] + [D(A11), B12]

=A11D(B12) +D(A11)B12

for each A11 in X11 and B12 in X12. Thus the case (2) holds. The cases (3), (4) and (5) are

similar to the case (2), so we omit the proofs.

For every C21 in X21, according to the case (5), we have the following two equations:

D(A22B22C21) = D(A22B22)C21 +A22B22D(C21) (3.7)

and

D(A22B22C21) =D(A22)B22C21 +A22D(B22C21)

=D(A22)B22C21 +A22D(B22)C21 +A22B22D(C21) (3.8)

for each A22, B22 in X22. Comparing (3.7) and (3.8), we have that

D(A22B22)C21 = D(A22)B22C21 +A22D(B22)C21.

It follows that (D(A22B22)−D(A22)B22 −A22D(B22))C21 = 0 for every C21 in X21. By Lemma

3.2 and D(A22) ∈ X22, we know that

D(A22B22)−D(A22)B22 −A22D(B22) = 0.

Finally, we show the cases (7) and (8). Let A12 be in X12 and B21 be in X21. Through simple

calculation, we can obtain that

∆([[A12, P2], B21])−D([[A12, P2, ], B21])

= [[∆(A12), P2], B21] + [[A12, P2],∆(B21)]−D([[A12, P2, ], B21])

= [∆(A12), B21] + [A12,∆(B21)]−D[A12, B21]

= [D(A12), B21] + [A12, D(B21)]−D(A12B21 −B21A12)

= D(A12)B21 −B21D(A12) +A12D(B21)−D(B21)A12 −D(A12B21) +D(B21A12)

= (D(A12)B21 +A12D(B21)−D(A12B21)) + (D(B21A12)−B21D(A12)−D(B21)A12).

Since ∆([A12, B21])−D([A12, B21]) belongs to Z(X ), by Lemma 2.1, we may assume that

∆([A12, B21])−D([A12, B21]) = λI
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for some λ in A. That is,

λI =(D(A12)B21 +A12D(B21)−D(A12B21))+

(D(B21A12)−B21D(A12)−D(B21)A12). (3.9)

Since D(Xij) ∈ Xij , it follows that

D(A12)B21 +A12D(B21)−D(A12B21) ∈ X11

and

D(B21A12)−B21D(A12)−D(B21)A12 ∈ X22.

Multiplying (3.9) by P1 and P2, respectively, from the right side, we obtain the following two

equations:

D(A12B21) = D(A12)B21 +A12D(B21)− λP1 (3.10)

and

D(B21A12) = B21D(A12) +D(B21)A12 + λP2. (3.11)

By the case (2) and Eq. (3.10), we can obtain that

D(A12B21A12) =D(A12B21)A12 +A12B21D(A12)

=D(A12)B21A12 +A12D(B21)A12 − λA12 +A12B21D(A12). (3.12)

By the case (3) and Eq. (3.11), we can obtain that

D(A12B21A12) =D(A12)B21A12 +A12D(B21A12)

=D(A12)B21A12 +A12D(B21)A12 +A12B21D(A12) + λA12. (3.13)

Comparing (3.12) and (3.13), we have that λA12 = 0. Noticing that D is A-linear, we can obtain

λ2P1 = λ2P2 = 0 through multiplying (3.10) and (3.11) by λ, respectively. Hence λ2 = 0. Since

A is a commutative C∗-algebra, it is well known that λ2 = 0 implies λ = 0. By (3.10) and (3.11),

the cases (7) and (8) hold.

By the cases (1)–(8), it implies that D is a derivation immediately. Now we show that

τ([[A,B], C]) = 0 for each A, B and C in X . Indeed,

τ([[A,B], C]) =∆([[A,B], C]) −D([[A,B], C])

=[[∆(A), B], C] + [[A,∆(B)], C] + [[A,B],∆(C)]−D([[A,B], C])

=[[D(A), B], C] + [[A,D(B)], C] + [[A,B], D(C)] −D([[A,B], C])

=0.

It follows that ∆(A) = D(A)+ τ(A) is a standard Lie triple derivation on X . Define an A-linear

mapping on X by d(A) = D(A) + [A,G] for every A in X . Thus we have that

δ(A) = ∆(A) + [A,G] = D(A) + τ(A) + [A,G] = d(A) + τ(A),

where d is a derivation on X and τ is an A-linear mapping from X into Z(X ) such that

τ([[A,B], C]) = 0 for each A, B and C in X . 2
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Remark 3.9 In [6], Benkovic supposed that X is a unital algebra with a nontrivial idempotent

P1 and P2 = I − P1, and denoted PiXPj by Xij and PiAPj by Aij for every A in X , where

1 ≤ i, j ≤ 2. He showed that if

A22X21 = 0 or X12A22 = 0 implies A22 = 0,

and

A11X12 = 0 or X21A11 = 0 implies A11 = 0,

then every Lie triple derivation d on X is of the form d = ∆+ δ + τ , where ∆ is a derivation on

X , δ is a Jordan derivation on X and τ is a linear mapping from X into its center Z(X ) that

vanishes on [[X ,X ],X ].

In this paper, by Lemma 3.2, we know that

A22X21 = 0 or X12A22 = 0 implies A22 = 0.

But it is also a question that whether A11X12 = 0 or X21A11 = 0 implies that A11 = 0.
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