Journal of Mathematical Research with Applications May, 2024, Vol. 44, No. 3, pp. 387–396 DOI:10.3770/j.issn:2095-2651.2024.03.009 Http://jmre.dlut.edu.cn

Characterizations of Lie Triple Derivations on the Algebra of Operators in Hilbert C^* -Modules

Guangyu AN¹, Jun SHENG¹, Jun HE^{2,*}

1. Department of Mathematics, Shaanxi University of Science and Technology, Shaanxi 710021, P. R. China;

2. Department of Mathematics, Anhui Polytechnic University, Anhui 241000, P. R. China

Abstract Let \mathcal{A} be a commutative unital C^* -algebra with the unit element e and \mathcal{M} be a full Hilbert \mathcal{A} -module. Denote by $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ the algebra of all bounded \mathcal{A} -linear mappings on \mathcal{M} and by \mathcal{M}' the set of all bounded \mathcal{A} -linear mappings from \mathcal{M} into \mathcal{A} . In this paper, we prove that if there exists x_0 in \mathcal{M} and f_0 in \mathcal{M}' such that $f_0(x_0) = e$, then every \mathcal{A} -linear Lie triple derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is standard.

Keywords Lie triple derivation; standard; derivation; Hilbert C^* -module

MR(2020) Subject Classification 47B48; 47L35; 47C15

1. Introduction

Let \mathcal{A} be an associative algebra over the complex field \mathbb{C} and d be a linear mapping on \mathcal{A} . d is called a derivation if d(xy) = d(x)y + xd(y) for each x, y in \mathcal{A} . And d is called an inner derivation if there exists an element m in \mathcal{A} such that d(x) = mx - xm. Clearly, every inner derivation is a derivation.

One of the interesting problems in the theory of derivations is to identify those algebras on which every derivation is inner. The following two results are classical. In [1], Sakai proved that every derivation on a W^* -algebra is an inner derivation; and in [2], Christensen showed that every derivation on a nest algebra is an inner derivation.

A linear mapping d on \mathcal{A} is called a Lie derivation if d([x, y]) = [d(x), y] + [x, d(y)] for each x, y in \mathcal{A} , where [x, y] = xy - yx is the usual Lie product on \mathcal{A} . A Lie derivation d on \mathcal{A} is said to be standard if it can be decomposed as $d = \delta + \tau$, where δ is a derivation on \mathcal{A} and τ is a linear mapping from \mathcal{A} into $\mathcal{Z}(\mathcal{A})$ with $\tau([x, y]) = 0$ for each x, y in \mathcal{A} , where $\mathcal{Z}(\mathcal{A}) = \{z \in \mathcal{A} : xz = zx \text{ for every } x \text{ in } \mathcal{A}\}$ is the center of \mathcal{A} .

Another interesting problem is to identify those algebras on which every Lie derivation is standard. In [3], Mathieu and Villena proved that every Lie derivation on a C^* -algebra is standard; in [4], Cheung characterized Lie derivations on triangular algebras; in [5], Lu proved

Received June 24, 2023; Accepted September 23, 2023

Supported by the Shaanxi College Students Innovation and Entrepreneurship Training Program (Grant No. S202110708069).

^{*} Corresponding author

E-mail address: anguangyu@sust.edu.cn (Guangyu AN); 876821092@qq.com (Jun SHENG); hejun_12@163.com (Jun HE)

that every Lie derivation on a completely distributed commutative subspace lattice algebra is standard; and in [6], Benkovič proved that every Lie derivation on a matrix algebra $M_n(\mathcal{A})$ is standard, where $n \geq 2$ and \mathcal{A} is a unital algebra.

A linear mapping d on \mathcal{A} is called a Lie triple derivation if d([[x, y], z]) = [[d(x), y], z] + [[x, d(y)], z] + [[x, y], d(z)] for each x, y and z in \mathcal{A} . It is clear that every Lie derivation is a Lie triple derivation. A Lie triple derivation d on \mathcal{A} is said to be *standard* if it can be decomposed as $d = \delta + \tau$, where δ is a derivation on \mathcal{A} and τ is a linear mapping from \mathcal{A} into $\mathcal{Z}(\mathcal{A})$ with $\tau([[x, y], z]) = 0$ for each x, y and z in \mathcal{A} .

Similar to Lie derivations, the authors always consider the problem that is to identify those algebras on which every Lie triple derivation is standard. In [7], Miers proved that if \mathcal{A} is a von Neumann algebra with no central abelian summands, then every Lie triple derivation on \mathcal{A} is standard; in [8], Ji and Wang proved that every continuous Lie triple derivation on the TUHF algebras is standard; in [9], Zhang, Wu and Cao proved that if \mathcal{N} is a nest on a complex separable Hilbert space \mathcal{H} , then every Lie triple derivation on the associated nest algebra Alg \mathcal{N} is standard; in [10], Yu and Zhang studied the Lie triple derivations on commutative subspace lattice algebras. In [6], Benkovič showed that if \mathcal{A} is a unital algebra with a nontrivial idempotent, then under suitable assumptions, every Lie triple derivation on \mathcal{A} and τ is a linear mapping from \mathcal{A} into its center $\mathcal{Z}(\mathcal{A})$ that vanished on $[[\mathcal{A}, \mathcal{A}], \mathcal{A}]$.

In 1953, Kaplansky introduced the concepts of Hilbert C^* -modules for studying the derivations on AW^* -algebras of type I. Hilbert C^* -modules provide a natural generalization of Hilbert spaces by replacing the complex field \mathbb{C} with a C^* -algebra. The theory of Hilbert C^* -modules plays an important role in the theory of operator algebras, as it can be applied in many fields, such as index theory of elliptic operators, K- and K K-theory, noncommutative geometry, and so on.

There are few results about derivations, Lie derivations and Lie triple derivations in this topic. In [11], Li, Han and Tang proved that every derivation on $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ is inner, where \mathcal{M} is a full Hilbert C^* -module over a commutative unital C^* -algebra \mathcal{A} ; and in [12], Moghadam, Miri and Janfada proved that every \mathcal{A} -linear derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is inner, where \mathcal{M} is a full Hilbert C^* -module over a commutative unital C^* -algebra \mathcal{A} ; and in [12], Moghadam, Miri and Janfada proved that every \mathcal{A} -linear derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is inner, where \mathcal{M} is a full Hilbert C^* -module over a commutative unital C^* -algebra \mathcal{A} with the property that there exists x_0 in \mathcal{M} and f_0 in \mathcal{M}' such that $f_0(x_0) = e$.

In this paper, we study Lie triple derivations on the algebra of operators in Hilbert C^* modules. We prove that if \mathcal{M} is a full Hilbert C^* -module over a commutative unital C^* -algebra \mathcal{A} containing unit e with the property that there exists x_0 in \mathcal{M} and f_0 in \mathcal{M}' such that $f_0(x_0) = e$, then every \mathcal{A} -linear Lie triple derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is standard.

2. Preliminaries

Let \mathcal{A} be a C^* -algebra and \mathcal{M} be a left \mathcal{A} -module. \mathcal{M} is called a *Pre-Hilbert* \mathcal{A} -module if there exists a mapping $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{A}$ such that

Characterizations of Lie triple derivations on the algebra of operators in Hilbert C^* -modules

389

- (1) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ if and only if x = 0;
- (2) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle;$
- (3) $\langle ax, y \rangle = a \langle x, y \rangle;$
- (4) $\langle x, y \rangle = \langle y, x \rangle^*,$

where $\lambda \in \mathbb{C}, a \in \mathcal{A}, x, y, z \in \mathcal{M}$. The mapping $\langle \cdot, \cdot \rangle$ is called an \mathcal{A} -valued inner product. The \mathcal{A} -valued inner product also induces a norm on \mathcal{M} : $||x|| = ||\langle x, x \rangle||^{1/2}$. \mathcal{M} is called a Hilbert \mathcal{A} -module (or more exactly, a Hilbert C^* -module over \mathcal{A}), if \mathcal{M} is complete with respect to this norm.

We denote by $\langle \mathcal{M}, \mathcal{M} \rangle$ the closure of the linear span of the set $\{\langle x, y \rangle : x, y \in \mathcal{M}\}$, and \mathcal{M} is called a full Hilbert \mathcal{A} -module if $\langle \mathcal{M}, \mathcal{M} \rangle = \mathcal{A}$.

A linear mapping T on \mathcal{M} is said to be \mathcal{A} -linear if T(ax) = aT(x) for each a in \mathcal{A} and x in \mathcal{M} . A bounded \mathcal{A} -linear mapping on \mathcal{M} is called an operator. Let $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ be the set of all operators on \mathcal{M} , and by [13] we know that $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is a Banach algebra.

Let \mathcal{A} be a commutative C^* -algebra and a be in \mathcal{A} . Define an \mathcal{A} -linear mapping T_a from \mathcal{M} into itself by $T_a x = ax$ for every x in \mathcal{M} . It is clear that T_a belongs to $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ and we should notice that if \mathcal{A} is not commutative, then T_a is not \mathcal{A} -linear and not in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$.

Lemma 2.1 ([14, Lemma 1.4]) Let \mathcal{A} be a commutative unital C^* -algebra and \mathcal{M} be a full Hilbert \mathcal{A} -module. Then the center of $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is $\mathcal{Z}(\operatorname{End}_{\mathcal{A}}(\mathcal{M})) = \{T_a : a \in \mathcal{A}\} = \{aI : a \in \mathcal{A}\},$ where I is the unit of $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$.

A linear mapping f from \mathcal{M} into \mathcal{A} is said to be \mathcal{A} -linear if f(ax) = af(x) for each $a \in \mathcal{A}$ and $x \in \mathcal{M}$. The set of all bounded \mathcal{A} -linear mappings from \mathcal{M} to \mathcal{A} is denoted by \mathcal{M}' . For each x in \mathcal{M} and f in \mathcal{M}' , we can define a mapping $\theta_{x,f}$ on \mathcal{M} by $\theta_{x,f}y = f(y)x$ for every y in \mathcal{M} . Obviously, $\theta_{x,f} \in \operatorname{End}_{\mathcal{A}}(\mathcal{M})$.

Lemma 2.2 ([13]) Let \mathcal{M} be a Hilbert C^* -module over a C^* -algebra \mathcal{A} . For each a in \mathcal{A} , x, y in \mathcal{M} , f, g in \mathcal{M}' and A in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$, we have that

- (1) $\theta_{x,f}A = \theta_{x,f\circ A};$
- (2) $A\theta_{x,f} = \theta_{Ax,f};$
- (3) if \mathcal{A} is commutative, then $\theta_{x,f}\theta_{y,g} = f(y)\theta_{x,g}$, $\theta_{ax,f} = a\theta_{x,f}$.

3. Main results

In this section, we suppose that \mathcal{A} is a commutative unital C^* -algebra with the unit element e, \mathcal{M} is a full Hilbert \mathcal{A} -module, and there exists x_0 in \mathcal{M} and f_0 in \mathcal{M}' such that $f_0(x_0) = e$.

For the convenience of expression, we give some symbols firstly. Denote $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ by \mathcal{X} and denote by I the unit operator in \mathcal{X} . Let $P_1 = \theta_{x_0, f_0}$ and $P_2 = I - P_1$, it is easy to see that P_1 and P_2 are two idempotents in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$. Denote $P_i \mathcal{X} P_j$ by \mathcal{X}_{ij} and $P_i A P_j$ by A_{ij} for every Ain \mathcal{X} , where $1 \leq i, j \leq 2$.

The following two lemmas will be used repeatedly.

Lemma 3.1 For every A in \mathcal{X} , we have $P_1AP_1 = f_0(Ax_0)P_1 = f_0(P_1AP_1x_0)P_1$. Moreover, \mathcal{X}_{11} is commutative.

Proof For every A in \mathcal{X} , by Lemma 2.2, we have that

$$P_1 A P_1 = \theta_{x_0, f_0} A \theta_{x_0, f_0} = f_0(A x_0) \theta_{x_0, f_0} = f_0(A x_0) P_1.$$
(3.1)

Replacing A by P_1AP_1 in (3.1), we get that

$$P_1AP_1 = P_1P_1AP_1P_1 = f_0(P_1AP_1x_0)P_1.$$

Notice that $f_0(Ax_0)$ belongs to \mathcal{A} . It follows that \mathcal{X}_{11} is commutative. \Box

Lemma 3.2 (1) If $BA_{21} = 0$ for every A_{21} in \mathcal{X}_{21} , then $BP_2 = 0$. (2) If $A_{12}B = 0$ for every A_{12} in \mathcal{X}_{12} , then $P_2B = 0$.

Proof (1) Let $A_{21} = P_2 \theta_{x,f_0} P_1$, where x is an arbitrary element in \mathcal{M} . We can obtain that

$$0 = BP_2\theta_{x,f_0}P_1x_0 = f_0(P_1x_0)BP_2x = BP_2x.$$

It follows that $BP_2 = 0$.

(2) Let $A_{12} = P_1 \theta_{x_0, f} P_2$, where f is an arbitrary element in \mathcal{M}' . We can obtain that

$$0 = P_1 \theta_{x_0, f} P_2 B x = f(P_2 B x) P_1 x_0 = f(P_2 B x) x_0.$$

It follows that $f(P_2Bx) = 0$ for every $f \in \mathcal{M}'$. Define a mapping g in \mathcal{M}' by $g(y) = \langle y, P_2Bx \rangle$. Hence $g(P_2Bx) = \langle P_2Bx, P_2Bx \rangle = 0$. It follows that $P_2Bx = 0$, thus $P_2B = 0$. \Box

The following theorem is the main result in this paper.

Theorem 3.3 Let \mathcal{A} be a commutative unital C^* -algebra with the unit element e and \mathcal{M} be a full Hilbert \mathcal{A} -module. If there exists x_0 in \mathcal{M} and f_0 in \mathcal{M}' such that $f_0(x_0) = e$, then every \mathcal{A} -linear Lie triple derivation δ on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is standard.

Before we prove Theorem 3.3, we show some lemmas.

Lemma 3.4 Suppose that δ is the A-linear Lie triple derivation δ that occurs in Theorem 3.3, then $\delta(I) \in \mathcal{Z}(\mathcal{X})$.

Proof Let P be an idempotent in \mathcal{X} . We have that

$$0 = \delta([[I, P], P]) = [[\delta(I), P], P] = [\delta(I)P - P\delta(I), P] = \delta(I)P + P\delta(I) - 2P\delta(I)P$$

Multiplying the above equation by P from the right side, we can obtain that $P\delta(I)P = \delta(I)P$. It means that $(I - P)\delta(I)P = 0$. Thus $P_1\delta(I)P_2 = P_2\delta(I)P_1 = 0$, it follows that $\delta(I) \in \mathcal{X}_{11} + \mathcal{X}_{22}$. By Lemma 3.1, we know that \mathcal{X}_{11} is commutative, so $[\delta(I), A_{11}] = 0$ for every A_{11} in \mathcal{X}_{11} . In the following, we show that

$$[\delta(I), A_{22}] = [\delta(I), A_{12}] = [\delta(I), A_{21}] = 0$$

for every A_{22} in \mathcal{X}_{22} , A_{12} in \mathcal{X}_{12} and A_{21} in \mathcal{X}_{21} .

390

Characterizations of Lie triple derivations on the algebra of operators in Hilbert C^* -modules

For each A, B in \mathcal{X} , we have that

$$[[A, B], \delta(I)] = \delta([[A, B], I]) - [[A, \delta(B)], I] - [[\delta(A), B], I] = 0.$$

By $A_{12} = [P_1, A_{12}]$ and $A_{21} = [A_{21}, P_1]$, we have that

$$[\delta(I), A_{12}] = [\delta(I), A_{21}] = 0.$$
(3.2)

391

By (3.2), it follows that

$$0 = [\delta(I), A_{22}B_{21}] = [\delta(I), A_{22}]B_{21} + A_{22}[\delta(I), B_{21}] = [\delta(I), A_{22}]B_{21}$$

for every A_{22} in \mathcal{X}_{22} and B_{21} in \mathcal{X}_{21} . By Lemma 3.2, we have that $[\delta(I), A_{22}]P_2 = 0$. By $\delta(I) \in \mathcal{X}_{11} + \mathcal{X}_{22}$, we can obtain that $[\delta(I), A_{22}] \in \mathcal{X}_{22}$, it follows that $[\delta(I), A_{22}] = 0$. Hence $\delta(I) \in \mathcal{Z}(\mathcal{X})$. \Box

Lemma 3.5 Suppose that δ is the A-linear Lie triple derivation δ that occurs in Theorem 3.3, then $P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2 \in \mathcal{Z}(\mathcal{X})$.

Proof By Lemma 3.1, we know that $P_1\delta(P_1)P_1 = aP_1$, where $a = f_0(P_1\delta(P_1)P_1x_0)$. For every x in \mathcal{M} , denote by $P_2\theta_{x,f_0}P_1 = A_{21}$, we have that

$$-\delta(A_{21}) = \delta([[P_2, A_{21}], P_2]) = [[\delta(P_2), A_{21}], P_2] + [[P_2, \delta(A_{21})], P_2] + [[P_2, A_{21}], \delta(P_2)]$$

= $-A_{21}\delta(P_2)P_2 - P_2\delta(P_2)A_{21} + A_{21}\delta(P_2) + 2P_2\delta(A_{21})P_2 - \delta(A_{21})P_2 - P_2\delta(A_{21}) + A_{21}\delta(P_2) - \delta(P_2)A_{21}.$ (3.3)

Multiplying (3.3) by P_2 from the left side and by P_1 from the right side, we can obtain that

$$P_2\delta(P_2)A_{21} = A_{21}\delta(P_2)P_1.$$

That is

$$P_2\delta(P_2)P_2\theta_{x,f_0}P_1 = P_2\theta_{x,f_0}P_1\delta(P_2)P_1.$$
(3.4)

Both the two sides of (3.4) acting on x_0 in \mathcal{M} , we have that

$$f_0(P_1x_0)P_2\delta(P_2)P_2x = f_0(P_1\delta(P_2)P_1x_0)P_2x.$$

Since $f_0(P_1x_0) = f_0(x_0) = e$, it follows that

$$P_2\delta(P_2)P_2 = f_0(P_1\delta(P_2)P_1x_0)P_2.$$
(3.5)

By Lemma 3.4, we know that $\delta(I) \in \mathcal{Z}(\mathcal{X}) = \mathcal{A}I$. Since f_0 is \mathcal{A} -linear, we have that

$$P_2\delta(I)P_2 = \delta(I)P_2 = \delta(I)f_0(x_0)P_2 = f_0(\delta(I)x_0)P_2 = f_0(P_1\delta(I)P_1x_0)P_2.$$

Now replacing $\delta(P_2)$ by $\delta(I) - \delta(P_1)$ in (3.5), we can obtain that

$$P_2\delta(P_1)P_2 = f_0(P_1\delta(P_1)P_1x_0)P_2 = aP_2.$$

It implies that $P_1\delta(P_1)P_1 + P_2\delta(P_1)P_2 = a(P_1 + P_2) = aI$ belongs to $\mathcal{Z}(\mathcal{X})$.

Let $G = P_1 \delta(P_1) P_2 - P_2 \delta(P_1) P_1$ and define a mapping Δ on \mathcal{X} by

$$\Delta(A) = \delta(A) - [A, G]$$

for every A in \mathcal{X} . Obviously, Δ is also an \mathcal{A} -linear Lie triple derivation on \mathcal{X} . Moreover,

$$\Delta(P_1) = \delta(P_1) - [P_1, G] = P_1 \delta(P_1) P_1 + P_2 \delta(P_1) P_2$$

and by Lemma 3.5, we know that $\Delta(P_1) \in \mathcal{Z}(\mathcal{X})$. \Box

In Lemmas 3.6–3.8, we show some properties of Δ .

Lemma 3.6 For every A_{ij} in \mathcal{X}_{ij} , we have $\Delta(A_{ij}) \subseteq \mathcal{X}_{ij}$, where $1 \leq i, j \leq 2$ and $i \neq j$.

Proof Since $\Delta(P_1) \in \mathcal{Z}(\mathcal{X})$, for each A_{12} in \mathcal{X}_{12} , we have that

$$\Delta(A_{12}) = \Delta([[A_{12}, P_1], P_1])$$

= $[[\Delta(A_{12}), P_1], P_1] + [[A_{12}, \Delta(P_1)], P_1] + [[A_{12}, P_1], \Delta(P_1)]$
= $[[\Delta(A_{12}), P_1], P_1]$
= $P_1 \Delta(A_{12}) P_2 + P_2 \Delta(A_{12}) P_1.$ (3.6)

In the following, we show that $P_2\Delta(A_{12})P_1 = 0$.

Let B_{12} be in \mathcal{X}_{12} . Then $[A_{12}, B_{12}] = 0$. Thus

$$0 = \Delta(0) = \Delta([[A_{12}, B_{12}], C]) = [[\Delta(A_{12}), B_{12}], C] + [[A_{12}, \Delta(B_{12})], C]$$
$$= [[\Delta(A_{12}), B_{12}] + [A_{12}, \Delta(B_{12})], C]$$

for every C in \mathcal{X} . It means that $J = [\Delta(A_{12}), B_{12}] + [A_{12}, \Delta(B_{12})] \in \mathcal{Z}(\mathcal{X})$. Since $A_{12} = [P_1, A_{12}]$, we have that

$$\begin{split} [\Delta(A_{12}), B_{12}] = &J - [A_{12}, \Delta(B_{12})] = J - [[P_1, A_{12}], \Delta(B_{12})] \\ = &J - (\Delta([[P_1, A_{12}], B_{12}]) - [[\Delta(P_1), A_{12}], B_{12}] - [[P_1, \Delta(A_{12})], B_{12}]) \\ = &J + [[P_1, \Delta(A_{12})], B_{12}]. \end{split}$$

By (3.6), we have that

$$\begin{split} [P_1\Delta(A_{12})P_2 + P_2\Delta(A_{12})P_1, B_{12}] = &J + [[P_1, P_1\Delta(A_{12})P_2 + P_2\Delta(A_{12})P_1], B_{12}] \\ = &J + [P_1\Delta(A_{12})P_2 - P_2\Delta(A_{12})P_1, B_{12}]. \end{split}$$

Hence

$$[P_2\Delta(A_{12})P_1, B_{12}] = \frac{1}{2}J \in \mathcal{Z}(\mathcal{X}).$$

It follows from the Kleinecke-Shirokov Theorem [15, Problem 230], we know that $[P_2\Delta(A_{12})P_1, B_{12}]$ is a quasi-nilpotent element. Since $\mathcal{Z}(\mathcal{X}) = \mathcal{A}I$ is a commutative unital C^* -algebra, it is well known that $[P_2\Delta(A_{12})P_1, B_{12}] = 0$. Thus $P_2\Delta(A_{12})B_{12} = B_{12}\Delta(A_{12})P_1 = 0$ for every B_{12} in \mathcal{X}_{12} . By Lemma 3.2, we know that $P_2\Delta(A_{12})P_1 = 0$. Similarly, we have that $\Delta(\mathcal{A}_{21}) \subseteq \mathcal{X}_{21}$. \Box

Lemma 3.7 For every A_{11} in \mathcal{X}_{11} , we have $\Delta(A_{11}) \subseteq \mathcal{Z}(\mathcal{X})$ for every A_{11} in \mathcal{X}_{11} .

Proof For every A_{11} in \mathcal{X}_{11} , by Lemma 3.1, we have that

$$\Delta(A_{11}) = \Delta(P_1 A_{11} P_1) = \Delta(f_0(A_{11} x_0) P_1) = f_0(A_{11} x_0) \Delta(P_1).$$

Since $\Delta(P_1) \in \mathcal{Z}(\mathcal{X})$ and $f_0(A_{11}x_0) \in \mathcal{A}$, it follows that $\Delta(A_{11}) \in \mathcal{Z}(\mathcal{X})$. \Box

Lemma 3.8 For every A_{22} in \mathcal{X}_{22} , we have $\Delta(A_{22}) - f_0(\Delta(A_{22})x_0)I \in \mathcal{X}_{22}$. Particularly, $\Delta(P_2) = f_0(\Delta(P_2)x_0)I$.

Proof Through simple calculation, we have that

$$0 = \Delta([[P_1, A_{22}], P_1]) = [[P_1, \Delta(A_{22})], P_1] = -P_1 \Delta(A_{22}) P_2 - P_2 \Delta(A_{22}) P_1.$$

It follows that $\Delta(A_{22}) \in \mathcal{X}_{11} + \mathcal{X}_{22}$. By Lemma 3.1, we can obtain that

$$\Delta(A_{22}) = P_1 \Delta(A_{22}) P_1 + P_2 \Delta(A_{22}) P_2 = f_0 (\Delta(A_{22}) x_0) P_1 + P_2 \Delta(A_{22}) P_2.$$

It menas that

$$\Delta(A_{22}) - f_0(\Delta(A_{22})x_0)I = -f_0(\Delta(A_{22})x_0)P_2 + P_2\Delta(A_{22})P_2 \in \mathcal{X}_{22}.$$

Since $\Delta(P_2) = \Delta(I) - \Delta(P_1) \in \mathcal{Z}(\mathcal{X})$, we have that

$$\Delta(P_2) - f_0(\Delta(P_2)x_0)I \in \mathcal{Z}(\mathcal{X}) \cap \mathcal{X}_{22} = \{0\}.$$

Thus $\Delta(P_2) = f_0(\Delta(P_2)x_0)I.$

In the following, we prove Theorem 3.3.

Proof of Theorem 3.3 Define two mappings τ and D on \mathcal{X} by

$$\tau(A) = f_0(P_1AP_1x_0)\Delta(P_1) + f_0(\Delta(P_2AP_2)x_0)I$$

and

$$D(A) = \Delta(A) - \tau(A)$$

for every A in \mathcal{X} . It is clear that τ is an \mathcal{A} -linear mapping from \mathcal{X} into $\mathcal{Z}(\mathcal{X})$ and D is an \mathcal{A} -linear mapping on \mathcal{X} . Moreover, according to the previous lemmas and the definitions of τ and D, we have that

- (1) $D(A_{ij}) = \Delta(A_{ij}) \in \mathcal{X}_{ij}$ for every A_{ij} in \mathcal{X}_{ij} , where $1 \le i, j \le 2$ and $i \ne j$;
- (2) $D(P_1) = D(P_2) = D(I) = 0;$
- (3) $D(A_{11}) = 0$ for every A_{11} in \mathcal{X}_{11} ;
- (4) $D(A_{22}) \in \mathcal{X}_{22}$ for every A_{22} in \mathcal{X}_{22} .

To prove that Δ is standard, it is sufficient to show that D is a derivation on \mathcal{X} and $\tau([[A, B], C]) = 0$ for each A, B and C in \mathcal{X} .

In the following we show that $D(A_{ij}B_{sk}) = D(A_{ij})B_{sk} + A_{ij}D(B_{sk})$ for every A_{ij} in \mathcal{X}_{ij} and B_{sk} in \mathcal{X}_{sk} , where $1 \leq i, j, s, k \leq 2$.

Since $D(\mathcal{X}_{ij}) \in \mathcal{X}_{ij}$, we have that $D(A_{ij}B_{sk}) = D(A_{ij})B_{sk} + A_{ij}D(B_{sk})$ for $j \neq s$. Thus we only need to prove the following 8 cases:

- (1) $D(A_{11}B_{11}) = D(A_{11})B_{11} + A_{11}D(B_{11});$
- (2) $D(A_{11}B_{12}) = D(A_{11})B_{12} + A_{11}D(B_{12});$
- (3) $D(A_{12}B_{22}) = D(A_{12})B_{22} + A_{12}D(B_{22});$
- (4) $D(A_{21}B_{11}) = D(A_{21})B_{11} + A_{21}D(B_{11});$
- (5) $D(A_{22}B_{21}) = D(A_{22})B_{21} + A_{22}D(B_{21});$
- (6) $D(A_{22}B_{22}) = D(A_{22})B_{22} + A_{22}D(B_{22});$

Guangyu AN, Jun SHENG and Jun HE

(7) $D(A_{12}B_{21}) = D(A_{12})B_{21} + A_{12}D(B_{21});$

(8) $D(A_{21}B_{12}) = D(A_{21})B_{12} + A_{21}D(B_{12}).$

Since $D(A_{11}) = 0$ for every A_{11} in \mathcal{X}_{11} , the case (1) is trivial.

For each A, B in \mathcal{X} , by $\Delta(A) - D(A) = \tau(A) \in \mathcal{Z}(\mathcal{X})$, we have that $[\Delta(A), B] = [D(A), B]$. It follows that

$$D(A_{11}B_{12}) = \Delta(A_{11}B_{12}) = -\Delta([[P_1, B_{12}], A_{11}])$$

= - [[P_1, \Delta(B_{12})], A_{11}] - [[P_1, B_{12}], \Delta(A_{11})]
= - [\Delta(B_{12}), A_{11}] - [B_{12}, \Delta(A_{11})]
= [A_{11}, D(B_{12})] + [D(A_{11}), B_{12}]
= A_{11}D(B_{12}) + D(A_{11})B_{12}

for each A_{11} in \mathcal{X}_{11} and B_{12} in \mathcal{X}_{12} . Thus the case (2) holds. The cases (3), (4) and (5) are similar to the case (2), so we omit the proofs.

For every C_{21} in \mathcal{X}_{21} , according to the case (5), we have the following two equations:

$$D(A_{22}B_{22}C_{21}) = D(A_{22}B_{22})C_{21} + A_{22}B_{22}D(C_{21})$$
(3.7)

and

$$D(A_{22}B_{22}C_{21}) = D(A_{22})B_{22}C_{21} + A_{22}D(B_{22}C_{21})$$

= $D(A_{22})B_{22}C_{21} + A_{22}D(B_{22})C_{21} + A_{22}B_{22}D(C_{21})$ (3.8)

for each A_{22}, B_{22} in \mathcal{X}_{22} . Comparing (3.7) and (3.8), we have that

$$D(A_{22}B_{22})C_{21} = D(A_{22})B_{22}C_{21} + A_{22}D(B_{22})C_{21}.$$

It follows that $(D(A_{22}B_{22}) - D(A_{22})B_{22} - A_{22}D(B_{22}))C_{21} = 0$ for every C_{21} in \mathcal{X}_{21} . By Lemma 3.2 and $D(A_{22}) \in \mathcal{X}_{22}$, we know that

$$D(A_{22}B_{22}) - D(A_{22})B_{22} - A_{22}D(B_{22}) = 0.$$

Finally, we show the cases (7) and (8). Let A_{12} be in \mathcal{X}_{12} and B_{21} be in \mathcal{X}_{21} . Through simple calculation, we can obtain that

$$\begin{split} &\Delta([[A_{12}, P_2], B_{21}]) - D([[A_{12}, P_2,], B_{21}]) \\ &= [[\Delta(A_{12}), P_2], B_{21}] + [[A_{12}, P_2], \Delta(B_{21})] - D([[A_{12}, P_2,], B_{21}]) \\ &= [\Delta(A_{12}), B_{21}] + [A_{12}, \Delta(B_{21})] - D[A_{12}, B_{21}] \\ &= [D(A_{12}), B_{21}] + [A_{12}, D(B_{21})] - D(A_{12}B_{21} - B_{21}A_{12}) \\ &= D(A_{12})B_{21} - B_{21}D(A_{12}) + A_{12}D(B_{21}) - D(B_{21})A_{12} - D(A_{12}B_{21}) + D(B_{21}A_{12}) \\ &= (D(A_{12})B_{21} + A_{12}D(B_{21}) - D(A_{12}B_{21})) + (D(B_{21}A_{12}) - B_{21}D(A_{12}) - D(B_{21})A_{12}). \end{split}$$

Since $\Delta([A_{12}, B_{21}]) - D([A_{12}, B_{21}])$ belongs to $\mathcal{Z}(\mathcal{X})$, by Lemma 2.1, we may assume that

$$\Delta([A_{12}, B_{21}]) - D([A_{12}, B_{21}]) = \lambda I$$

394

 $Characterizations of Lie triple derivations on the algebra of operators in Hilbert C^*-modules 395$

for some λ in \mathcal{A} . That is,

$$\lambda I = (D(A_{12})B_{21} + A_{12}D(B_{21}) - D(A_{12}B_{21})) + (D(B_{21}A_{12}) - B_{21}D(A_{12}) - D(B_{21})A_{12}).$$
(3.9)

Since $D(\mathcal{X}_{ij}) \in \mathcal{X}_{ij}$, it follows that

$$D(A_{12})B_{21} + A_{12}D(B_{21}) - D(A_{12}B_{21}) \in \mathcal{X}_{11}$$

and

$$D(B_{21}A_{12}) - B_{21}D(A_{12}) - D(B_{21})A_{12} \in \mathcal{X}_{22}.$$

Multiplying (3.9) by P_1 and P_2 , respectively, from the right side, we obtain the following two equations:

$$D(A_{12}B_{21}) = D(A_{12})B_{21} + A_{12}D(B_{21}) - \lambda P_1$$
(3.10)

and

$$D(B_{21}A_{12}) = B_{21}D(A_{12}) + D(B_{21})A_{12} + \lambda P_2.$$
(3.11)

By the case (2) and Eq. (3.10), we can obtain that

$$D(A_{12}B_{21}A_{12}) = D(A_{12}B_{21})A_{12} + A_{12}B_{21}D(A_{12})$$

= $D(A_{12})B_{21}A_{12} + A_{12}D(B_{21})A_{12} - \lambda A_{12} + A_{12}B_{21}D(A_{12}).$ (3.12)

By the case (3) and Eq. (3.11), we can obtain that

$$D(A_{12}B_{21}A_{12}) = D(A_{12})B_{21}A_{12} + A_{12}D(B_{21}A_{12})$$

= $D(A_{12})B_{21}A_{12} + A_{12}D(B_{21})A_{12} + A_{12}B_{21}D(A_{12}) + \lambda A_{12}.$ (3.13)

Comparing (3.12) and (3.13), we have that $\lambda A_{12} = 0$. Noticing that D is \mathcal{A} -linear, we can obtain $\lambda^2 P_1 = \lambda^2 P_2 = 0$ through multiplying (3.10) and (3.11) by λ , respectively. Hence $\lambda^2 = 0$. Since \mathcal{A} is a commutative C^* -algebra, it is well known that $\lambda^2 = 0$ implies $\lambda = 0$. By (3.10) and (3.11), the cases (7) and (8) hold.

By the cases (1)–(8), it implies that D is a derivation immediately. Now we show that $\tau([[A, B], C]) = 0$ for each A, B and C in \mathcal{X} . Indeed,

$$\begin{aligned} \tau([[A, B], C]) =& \Delta([[A, B], C]) - D([[A, B], C]) \\ =& [[\Delta(A), B], C] + [[A, \Delta(B)], C] + [[A, B], \Delta(C)] - D([[A, B], C]) \\ =& [[D(A), B], C] + [[A, D(B)], C] + [[A, B], D(C)] - D([[A, B], C]) \\ =& 0. \end{aligned}$$

It follows that $\Delta(A) = D(A) + \tau(A)$ is a standard Lie triple derivation on \mathcal{X} . Define an \mathcal{A} -linear mapping on \mathcal{X} by d(A) = D(A) + [A, G] for every A in \mathcal{X} . Thus we have that

$$\delta(A) = \Delta(A) + [A, G] = D(A) + \tau(A) + [A, G] = d(A) + \tau(A),$$

where d is a derivation on \mathcal{X} and τ is an \mathcal{A} -linear mapping from \mathcal{X} into $\mathcal{Z}(\mathcal{X})$ such that $\tau([[A, B], C]) = 0$ for each A, B and C in \mathcal{X} . \Box

Remark 3.9 In [6], Benkovic supposed that \mathcal{X} is a unital algebra with a nontrivial idempotent P_1 and $P_2 = I - P_1$, and denoted $P_i \mathcal{X} P_j$ by \mathcal{X}_{ij} and $P_i A P_j$ by A_{ij} for every A in \mathcal{X} , where $1 \leq i, j \leq 2$. He showed that if

$$A_{22}\mathcal{X}_{21} = 0$$
 or $\mathcal{X}_{12}A_{22} = 0$ implies $A_{22} = 0$,

and

$$A_{11}\mathcal{X}_{12} = 0 \text{ or } \mathcal{X}_{21}A_{11} = 0 \text{ implies } A_{11} = 0,$$

then every Lie triple derivation d on \mathcal{X} is of the form $d = \Delta + \delta + \tau$, where Δ is a derivation on \mathcal{X} , δ is a Jordan derivation on \mathcal{X} and τ is a linear mapping from \mathcal{X} into its center $\mathcal{Z}(\mathcal{X})$ that vanishes on $[[\mathcal{X}, \mathcal{X}], \mathcal{X}]$.

In this paper, by Lemma 3.2, we know that

$$A_{22}\mathcal{X}_{21} = 0$$
 or $\mathcal{X}_{12}A_{22} = 0$ implies $A_{22} = 0$.

But it is also a question that whether $A_{11}\mathcal{X}_{12} = 0$ or $\mathcal{X}_{21}A_{11} = 0$ implies that $A_{11} = 0$.

Acknowledgements We thank the referees for their time and comments.

References

- [1] S. SAKAI. Derivations of W*-algebras. Ann. Math., 1966, 83: 273–279.
- [2] E. CHRISTENSEN. Derivations of nest algebras. Math. Ann., 1977, 229(2): 155-161.
- [3] M. MATHIEU, A. VILLENA. The structure of Lie derivations on C*-algebras. J. Funct. Anal., 2003, 202(2): 504-525.
- [4] W. CHEUNG. Lie derivations of triangular algebra. Linear Multilinear Algebra, 2003, 51(3): 299–310.
- [5] Fangyan LU. Lie derivation of certain CSL algebras. Israel J. Math., 2006, 155: 149–156.
- [6] D. BENKOVIČ. Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra, 2015, 63(1): 141–165.
- [7] C. MIERS. Lie triple derivations of von Neumann algebras. Proc. Amer. Math. Soc., 1978, 71(1): 57-61.
- [8] Peisheng JI, Lin WANG. Lie triple derivations of TUHF algebras. Linear Algebra Appl., 2005, 403: 399–408.
- Jianhua ZHANG, Baowei WU, Huaixin CAO. Lie triple derivations of nest algebras. Linear Algebra Appl., 2006, 416(2-3): 559–567.
- [10] Weiyan YU, Jianhua ZHANG. Lie triple derivations of CSL algebras. Internat. J. Theoret. Phys., 2013, 52(6): 2118–2127.
- [11] Pengtong LI, Deguang HAN, Waishing TANG. Derivations on the algebra of operators in Hilbert C*-modules. Acta Math. Sin. (Engl. Ser.), 2012, 28(8): 1615–1622.
- [12] M. MOGHADAM, M. MIRI, A. JANFADA. A note on derivations on the algebra of operators in Hilbert C^{*}-modules. Mediterr. J. Math., 2016, 13(3): 1167–1175.
- [13] V. MANUILOV, E. TROITSKY. Hilbert C*-Modules. American Mathematical Society, Providence, RI, 2005.
- [14] Jun HE, Jiankui LI, Danjun ZHAO. Derivations, local and 2-local derivations on some algebras of operators on Hilbert C^{*}-modules. Mediterr. J. Math., 2017, 14(6): Paper No. 230, 11 pp.
- [15] P. HALMOS. Hilbert Space Problem Book. Springer-Verlag, New York-Berlin, 1982.