Characterizations of Lie Triple Derivations on the Algebra of Operators in Hilbert C^{*}-Modules

Guangyu AN ${ }^{1}$, Jun SHENG ${ }^{1}$, Jun HE ${ }^{2, *}$
1. Department of Mathematics, Shaanxi University of Science and Technology, Shaanxi 710021, P. R. China;
2. Department of Mathematics, Anhui Polytechnic University, Anhui 241000, P. R. China

Abstract

Let \mathcal{A} be a commutative unital C^{*}-algebra with the unit element e and \mathcal{M} be a full Hilbert \mathcal{A}-module. Denote by $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ the algebra of all bounded \mathcal{A}-linear mappings on \mathcal{M} and by \mathcal{M}^{\prime} the set of all bounded \mathcal{A}-linear mappings from \mathcal{M} into \mathcal{A}. In this paper, we prove that if there exists x_{0} in \mathcal{M} and f_{0} in \mathcal{M}^{\prime} such that $f_{0}\left(x_{0}\right)=e$, then every \mathcal{A}-linear Lie triple derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is standard.

Keywords Lie triple derivation; standard; derivation; Hilbert C^{*}-module
MR(2020) Subject Classification 47B48; 47L35; 47C15

1. Introduction

Let \mathcal{A} be an associative algebra over the complex field \mathbb{C} and d be a linear mapping on \mathcal{A}. d is called a derivation if $d(x y)=d(x) y+x d(y)$ for each x, y in \mathcal{A}. And d is called an inner derivation if there exists an element m in \mathcal{A} such that $d(x)=m x-x m$. Clearly, every inner derivation is a derivation.

One of the interesting problems in the theory of derivations is to identify those algebras on which every derivation is inner. The following two results are classical. In [1], Sakai proved that every derivation on a W^{*}-algebra is an inner derivation; and in [2], Christensen showed that every derivation on a nest algebra is an inner derivation.

A linear mapping d on \mathcal{A} is called a Lie derivation if $d([x, y])=[d(x), y]+[x, d(y)]$ for each x, y in \mathcal{A}, where $[x, y]=x y-y x$ is the usual Lie product on \mathcal{A}. A Lie derivation d on \mathcal{A} is said to be standard if it can be decomposed as $d=\delta+\tau$, where δ is a derivation on \mathcal{A} and τ is a linear mapping from \mathcal{A} into $\mathcal{Z}(\mathcal{A})$ with $\tau([x, y])=0$ for each x, y in \mathcal{A}, where $\mathcal{Z}(\mathcal{A})=\{z \in \mathcal{A}: x z=z x$ for every x in $\mathcal{A}\}$ is the center of \mathcal{A}.

Another interesting problem is to identify those algebras on which every Lie derivation is standard. In [3], Mathieu and Villena proved that every Lie derivation on a C^{*}-algebra is standard; in [4], Cheung characterized Lie derivations on triangular algebras; in [5], Lu proved

[^0]that every Lie derivation on a completely distributed commutative subspace lattice algebra is standard; and in [6], Benkovič proved that every Lie derivation on a matrix algebra $M_{n}(\mathcal{A})$ is standard, where $n \geq 2$ and \mathcal{A} is a unital algebra.

A linear mapping d on \mathcal{A} is called a Lie triple derivation if $d([[x, y], z])=[[d(x), y], z]+$ $[[x, d(y)], z]+[[x, y], d(z)]$ for each x, y and z in \mathcal{A}. It is clear that every Lie derivation is a Lie triple derivation. A Lie triple derivation d on \mathcal{A} is said to be standard if it can be decomposed as $d=\delta+\tau$, where δ is a derivation on \mathcal{A} and τ is a linear mapping from \mathcal{A} into $\mathcal{Z}(\mathcal{A})$ with $\tau([[x, y], z])=0$ for each x, y and z in \mathcal{A}.

Similar to Lie derivations, the authors always consider the problem that is to identify those algebras on which every Lie triple derivation is standard. In [7], Miers proved that if \mathcal{A} is a von Neumann algebra with no central abelian summands, then every Lie triple derivation on \mathcal{A} is standard; in [8], Ji and Wang proved that every continuous Lie triple derivation on the TUHF algebras is standard; in [9], Zhang, Wu and Cao proved that if \mathcal{N} is a nest on a complex separable Hilbert space \mathcal{H}, then every Lie triple derivation on the associated nest algebra $\operatorname{Alg} \mathcal{N}$ is standard; in [10], Yu and Zhang studied the Lie triple derivations on commutative subspace lattice algebras. In [6], Benkovič showed that if \mathcal{A} is a unital algebra with a nontrivial idempotent, then under suitable assumptions, every Lie triple derivation d on \mathcal{A} is of the form $d=\Delta+\delta+\tau$, where Δ is a derivation on \mathcal{A}, δ is a Jordan derivation on \mathcal{A} and τ is a linear mapping from \mathcal{A} into its center $\mathcal{Z}(\mathcal{A})$ that vanished on $[[\mathcal{A}, \mathcal{A}], \mathcal{A}]$.

In 1953, Kaplansky introduced the concepts of Hilbert C^{*}-modules for studying the derivations on $A W^{*}$-algebras of type I. Hilbert C^{*}-modules provide a natural generalization of Hilbert spaces by replacing the complex field \mathbb{C} with a C^{*}-algebra. The theory of Hilbert C^{*}-modules plays an important role in the theory of operator algebras, as it can be applied in many fields, such as index theory of elliptic operators, K - and $K K$-theory, noncommutative geometry, and so on.

There are few results about derivations, Lie derivations and Lie triple derivations in this topic. In [11], Li, Han and Tang proved that every derivation on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ is inner, where \mathcal{M} is a full Hilbert C^{*}-module over a commutative unital C^{*}-algebra \mathcal{A}; and in [12], Moghadam, Miri and Janfada proved that every \mathcal{A}-linear derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is inner, where \mathcal{M} is a full Hilbert C^{*}-module over a commutative unital C^{*}-algebra \mathcal{A} with the property that there exists x_{0} in \mathcal{M} and f_{0} in \mathcal{M}^{\prime} such that $f_{0}\left(x_{0}\right)=e$.

In this paper, we study Lie triple derivations on the algebra of operators in Hilbert C^{*} modules. We prove that if \mathcal{M} is a full Hilbert C^{*}-module over a commutative unital C^{*}-algebra \mathcal{A} containing unit e with the property that there exists x_{0} in \mathcal{M} and f_{0} in \mathcal{M}^{\prime} such that $f_{0}\left(x_{0}\right)=e$, then every \mathcal{A}-linear Lie triple derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is standard.

2. Preliminaries

Let \mathcal{A} be a C^{*}-algebra and \mathcal{M} be a left \mathcal{A}-module. \mathcal{M} is called a Pre-Hilbert \mathcal{A}-module if there exists a mapping $\langle\cdot, \cdot\rangle: \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{A}$ such that
(1) $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ if and only if $x=0$;
(2) $\langle\lambda x+y, z\rangle=\lambda\langle x, z\rangle+\langle y, z\rangle$;
(3) $\langle a x, y\rangle=a\langle x, y\rangle$;
(4) $\langle x, y\rangle=\langle y, x\rangle^{*}$,
where $\lambda \in \mathbb{C}, a \in \mathcal{A}, x, y, z \in \mathcal{M}$. The mapping $\langle\cdot, \cdot\rangle$ is called an \mathcal{A}-valued inner product. The \mathcal{A}-valued inner product also induces a norm on $\mathcal{M}:\|x\|=\|\langle x, x\rangle\|^{1 / 2}$. \mathcal{M} is called a Hilbert \mathcal{A}-module (or more exactly, a Hilbert C^{*}-module over \mathcal{A}), if \mathcal{M} is complete with respect to this norm.

We denote by $\langle\mathcal{M}, \mathcal{M}\rangle$ the closure of the linear span of the set $\{\langle x, y\rangle: x, y \in \mathcal{M}\}$, and \mathcal{M} is called a full Hilbert \mathcal{A}-module if $\langle\mathcal{M}, \mathcal{M}\rangle=\mathcal{A}$.

A linear mapping T on \mathcal{M} is said to be \mathcal{A}-linear if $T(a x)=a T(x)$ for each a in \mathcal{A} and x in \mathcal{M}. A bounded \mathcal{A}-linear mapping on \mathcal{M} is called an operator. Let $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ be the set of all operators on \mathcal{M}, and by [13] we know that $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is a Banach algebra.

Let \mathcal{A} be a commutative C^{*}-algebra and a be in \mathcal{A}. Define an \mathcal{A}-linear mapping T_{a} from \mathcal{M} into itself by $T_{a} x=a x$ for every x in \mathcal{M}. It is clear that T_{a} belongs to $\operatorname{End} \mathcal{A}_{\mathcal{A}}(\mathcal{M})$ and we should notice that if \mathcal{A} is not commutative, then T_{a} is not \mathcal{A}-linear and not in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$.

Lemma 2.1 ([14, Lemma 1.4]) Let \mathcal{A} be a commutative unital C^{*}-algebra and \mathcal{M} be a full Hilbert \mathcal{A}-module. Then the center of $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is $\mathcal{Z}\left(\operatorname{End}_{\mathcal{A}}(\mathcal{M})\right)=\left\{T_{a}: a \in \mathcal{A}\right\}=\{a I: a \in \mathcal{A}\}$, where I is the unit of $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$.

A linear mapping f from \mathcal{M} into \mathcal{A} is said to be \mathcal{A}-linear if $f(a x)=a f(x)$ for each $a \in \mathcal{A}$ and $x \in \mathcal{M}$. The set of all bounded \mathcal{A}-linear mappings from \mathcal{M} to \mathcal{A} is denoted by \mathcal{M}^{\prime}. For each x in \mathcal{M} and f in \mathcal{M}^{\prime}, we can define a mapping $\theta_{x, f}$ on \mathcal{M} by $\theta_{x, f} y=f(y) x$ for every y in \mathcal{M}. Obviously, $\theta_{x, f} \in \operatorname{End}_{\mathcal{A}}(\mathcal{M})$.

Lemma 2.2 ([13]) Let \mathcal{M} be a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A}. For each a in \mathcal{A}, x, y in \mathcal{M}, f, g in \mathcal{M}^{\prime} and A in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$, we have that
(1) $\theta_{x, f} A=\theta_{x, f \circ A}$;
(2) $A \theta_{x, f}=\theta_{A x, f}$;
(3) if \mathcal{A} is commutative, then $\theta_{x, f} \theta_{y, g}=f(y) \theta_{x, g}, \theta_{a x, f}=a \theta_{x, f}$.

3. Main results

In this section, we suppose that \mathcal{A} is a commutative unital C^{*}-algebra with the unit element e, \mathcal{M} is a full Hilbert \mathcal{A}-module, and there exists x_{0} in \mathcal{M} and f_{0} in \mathcal{M}^{\prime} such that $f_{0}\left(x_{0}\right)=e$.

For the convenience of expression, we give some symbols firstly. Denote $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ by \mathcal{X} and denote by I the unit operator in \mathcal{X}. Let $P_{1}=\theta_{x_{0}, f_{0}}$ and $P_{2}=I-P_{1}$, it is easy to see that P_{1} and P_{2} are two idempotents in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$. Denote $P_{i} \mathcal{X} P_{j}$ by $\mathcal{X}_{i j}$ and $P_{i} A P_{j}$ by $A_{i j}$ for every A in \mathcal{X}, where $1 \leq i, j \leq 2$.

The following two lemmas will be used repeatedly.

Lemma 3.1 For every A in \mathcal{X}, we have $P_{1} A P_{1}=f_{0}\left(A x_{0}\right) P_{1}=f_{0}\left(P_{1} A P_{1} x_{0}\right) P_{1}$. Moreover, \mathcal{X}_{11} is commutative.

Proof For every A in \mathcal{X}, by Lemma 2.2, we have that

$$
\begin{equation*}
P_{1} A P_{1}=\theta_{x_{0}, f_{0}} A \theta_{x_{0}, f_{0}}=f_{0}\left(A x_{0}\right) \theta_{x_{0}, f_{0}}=f_{0}\left(A x_{0}\right) P_{1} \tag{3.1}
\end{equation*}
$$

Replacing A by $P_{1} A P_{1}$ in (3.1), we get that

$$
P_{1} A P_{1}=P_{1} P_{1} A P_{1} P_{1}=f_{0}\left(P_{1} A P_{1} x_{0}\right) P_{1}
$$

Notice that $f_{0}\left(A x_{0}\right)$ belongs to \mathcal{A}. It follows that \mathcal{X}_{11} is commutative.
Lemma 3.2 (1) If $B A_{21}=0$ for every A_{21} in \mathcal{X}_{21}, then $B P_{2}=0$. (2) If $A_{12} B=0$ for every A_{12} in \mathcal{X}_{12}, then $P_{2} B=0$.

Proof (1) Let $A_{21}=P_{2} \theta_{x, f_{0}} P_{1}$, where x is an arbitrary element in \mathcal{M}. We can obtain that

$$
0=B P_{2} \theta_{x, f_{0}} P_{1} x_{0}=f_{0}\left(P_{1} x_{0}\right) B P_{2} x=B P_{2} x
$$

It follows that $B P_{2}=0$.
(2) Let $A_{12}=P_{1} \theta_{x_{0}, f} P_{2}$, where f is an arbitrary element in \mathcal{M}^{\prime}. We can obtain that

$$
0=P_{1} \theta_{x_{0}, f} P_{2} B x=f\left(P_{2} B x\right) P_{1} x_{0}=f\left(P_{2} B x\right) x_{0}
$$

It follows that $f\left(P_{2} B x\right)=0$ for every $f \in \mathcal{M}^{\prime}$. Define a mapping g in \mathcal{M}^{\prime} by $g(y)=\left\langle y, P_{2} B x\right\rangle$. Hence $g\left(P_{2} B x\right)=\left\langle P_{2} B x, P_{2} B x\right\rangle=0$. It follows that $P_{2} B x=0$, thus $P_{2} B=0$.

The following theorem is the main result in this paper.
Theorem 3.3 Let \mathcal{A} be a commutative unital C^{*}-algebra with the unit element e and \mathcal{M} be a full Hilbert \mathcal{A}-module. If there exists x_{0} in \mathcal{M} and f_{0} in \mathcal{M}^{\prime} such that $f_{0}\left(x_{0}\right)=e$, then every \mathcal{A}-linear Lie triple derivation δ on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is standard.

Before we prove Theorem 3.3, we show some lemmas.
Lemma 3.4 Suppose that δ is the \mathcal{A}-linear Lie triple derivation δ that occurs in Theorem 3.3, then $\delta(I) \in \mathcal{Z}(\mathcal{X})$.

Proof Let P be an idempotent in \mathcal{X}. We have that

$$
0=\delta([[I, P], P])=[[\delta(I), P], P]=[\delta(I) P-P \delta(I), P]=\delta(I) P+P \delta(I)-2 P \delta(I) P
$$

Multiplying the above equation by P from the right side, we can obtain that $P \delta(I) P=\delta(I) P$. It means that $(I-P) \delta(I) P=0$. Thus $P_{1} \delta(I) P_{2}=P_{2} \delta(I) P_{1}=0$, it follows that $\delta(I) \in \mathcal{X}_{11}+\mathcal{X}_{22}$. By Lemma 3.1, we know that \mathcal{X}_{11} is commutative, so $\left[\delta(I), A_{11}\right]=0$ for every A_{11} in \mathcal{X}_{11}. In the following, we show that

$$
\left[\delta(I), A_{22}\right]=\left[\delta(I), A_{12}\right]=\left[\delta(I), A_{21}\right]=0
$$

for every A_{22} in \mathcal{X}_{22}, A_{12} in \mathcal{X}_{12} and A_{21} in \mathcal{X}_{21}.

For each A, B in \mathcal{X}, we have that

$$
[[A, B], \delta(I)]=\delta([[A, B], I])-[[A, \delta(B)], I]-[[\delta(A), B], I]=0
$$

By $A_{12}=\left[P_{1}, A_{12}\right]$ and $A_{21}=\left[A_{21}, P_{1}\right]$, we have that

$$
\begin{equation*}
\left[\delta(I), A_{12}\right]=\left[\delta(I), A_{21}\right]=0 \tag{3.2}
\end{equation*}
$$

By (3.2), it follows that

$$
0=\left[\delta(I), A_{22} B_{21}\right]=\left[\delta(I), A_{22}\right] B_{21}+A_{22}\left[\delta(I), B_{21}\right]=\left[\delta(I), A_{22}\right] B_{21}
$$

for every A_{22} in \mathcal{X}_{22} and B_{21} in \mathcal{X}_{21}. By Lemma 3.2, we have that $\left[\delta(I), A_{22}\right] P_{2}=0$. By $\delta(I) \in \mathcal{X}_{11}+\mathcal{X}_{22}$, we can obtain that $\left[\delta(I), A_{22}\right] \in \mathcal{X}_{22}$, it follows that $\left[\delta(I), A_{22}\right]=0$. Hence $\delta(I) \in \mathcal{Z}(\mathcal{X})$.

Lemma 3.5 Suppose that δ is the \mathcal{A}-linear Lie triple derivation δ that occurs in Theorem 3.3, then $P_{1} \delta\left(P_{1}\right) P_{1}+P_{2} \delta\left(P_{1}\right) P_{2} \in \mathcal{Z}(\mathcal{X})$.

Proof By Lemma 3.1, we know that $P_{1} \delta\left(P_{1}\right) P_{1}=a P_{1}$, where $a=f_{0}\left(P_{1} \delta\left(P_{1}\right) P_{1} x_{0}\right)$. For every x in \mathcal{M}, denote by $P_{2} \theta_{x, f_{0}} P_{1}=A_{21}$, we have that

$$
\begin{align*}
-\delta\left(A_{21}\right)= & \delta\left(\left[\left[P_{2}, A_{21}\right], P_{2}\right]\right)=\left[\left[\delta\left(P_{2}\right), A_{21}\right], P_{2}\right]+\left[\left[P_{2}, \delta\left(A_{21}\right)\right], P_{2}\right]+\left[\left[P_{2}, A_{21}\right], \delta\left(P_{2}\right)\right] \\
= & -A_{21} \delta\left(P_{2}\right) P_{2}-P_{2} \delta\left(P_{2}\right) A_{21}+A_{21} \delta\left(P_{2}\right)+2 P_{2} \delta\left(A_{21}\right) P_{2}- \\
& \delta\left(A_{21}\right) P_{2}-P_{2} \delta\left(A_{21}\right)+A_{21} \delta\left(P_{2}\right)-\delta\left(P_{2}\right) A_{21} \tag{3.3}
\end{align*}
$$

Multiplying (3.3) by P_{2} from the left side and by P_{1} from the right side, we can obtain that

$$
P_{2} \delta\left(P_{2}\right) A_{21}=A_{21} \delta\left(P_{2}\right) P_{1}
$$

That is

$$
\begin{equation*}
P_{2} \delta\left(P_{2}\right) P_{2} \theta_{x, f_{0}} P_{1}=P_{2} \theta_{x, f_{0}} P_{1} \delta\left(P_{2}\right) P_{1} \tag{3.4}
\end{equation*}
$$

Both the two sides of (3.4) acting on x_{0} in \mathcal{M}, we have that

$$
f_{0}\left(P_{1} x_{0}\right) P_{2} \delta\left(P_{2}\right) P_{2} x=f_{0}\left(P_{1} \delta\left(P_{2}\right) P_{1} x_{0}\right) P_{2} x
$$

Since $f_{0}\left(P_{1} x_{0}\right)=f_{0}\left(x_{0}\right)=e$, it follows that

$$
\begin{equation*}
P_{2} \delta\left(P_{2}\right) P_{2}=f_{0}\left(P_{1} \delta\left(P_{2}\right) P_{1} x_{0}\right) P_{2} \tag{3.5}
\end{equation*}
$$

By Lemma 3.4, we know that $\delta(I) \in \mathcal{Z}(\mathcal{X})=\mathcal{A} I$. Since f_{0} is \mathcal{A}-linear, we have that

$$
P_{2} \delta(I) P_{2}=\delta(I) P_{2}=\delta(I) f_{0}\left(x_{0}\right) P_{2}=f_{0}\left(\delta(I) x_{0}\right) P_{2}=f_{0}\left(P_{1} \delta(I) P_{1} x_{0}\right) P_{2}
$$

Now replacing $\delta\left(P_{2}\right)$ by $\delta(I)-\delta\left(P_{1}\right)$ in (3.5), we can obtain that

$$
P_{2} \delta\left(P_{1}\right) P_{2}=f_{0}\left(P_{1} \delta\left(P_{1}\right) P_{1} x_{0}\right) P_{2}=a P_{2} .
$$

It implies that $P_{1} \delta\left(P_{1}\right) P_{1}+P_{2} \delta\left(P_{1}\right) P_{2}=a\left(P_{1}+P_{2}\right)=a I$ belongs to $\mathcal{Z}(\mathcal{X})$.
Let $G=P_{1} \delta\left(P_{1}\right) P_{2}-P_{2} \delta\left(P_{1}\right) P_{1}$ and define a mapping Δ on \mathcal{X} by

$$
\Delta(A)=\delta(A)-[A, G]
$$

for every A in \mathcal{X}. Obviously, Δ is also an \mathcal{A}-linear Lie triple derivation on \mathcal{X}. Moreover,

$$
\Delta\left(P_{1}\right)=\delta\left(P_{1}\right)-\left[P_{1}, G\right]=P_{1} \delta\left(P_{1}\right) P_{1}+P_{2} \delta\left(P_{1}\right) P_{2}
$$

and by Lemma 3.5, we know that $\Delta\left(P_{1}\right) \in \mathcal{Z}(\mathcal{X})$.
In Lemmas 3.6-3.8, we show some properties of Δ.
Lemma 3.6 For every $A_{i j}$ in $\mathcal{X}_{i j}$, we have $\Delta\left(A_{i j}\right) \subseteq \mathcal{X}_{i j}$, where $1 \leq i, j \leq 2$ and $i \neq j$.
Proof Since $\Delta\left(P_{1}\right) \in \mathcal{Z}(\mathcal{X})$, for each A_{12} in \mathcal{X}_{12}, we have that

$$
\begin{align*}
\Delta\left(A_{12}\right) & =\Delta\left(\left[\left[A_{12}, P_{1}\right], P_{1}\right]\right) \\
& =\left[\left[\Delta\left(A_{12}\right), P_{1}\right], P_{1}\right]+\left[\left[A_{12}, \Delta\left(P_{1}\right)\right], P_{1}\right]+\left[\left[A_{12}, P_{1}\right], \Delta\left(P_{1}\right)\right] \\
& =\left[\left[\Delta\left(A_{12}\right), P_{1}\right], P_{1}\right] \\
& =P_{1} \Delta\left(A_{12}\right) P_{2}+P_{2} \Delta\left(A_{12}\right) P_{1} . \tag{3.6}
\end{align*}
$$

In the following, we show that $P_{2} \Delta\left(A_{12}\right) P_{1}=0$.
Let B_{12} be in \mathcal{X}_{12}. Then $\left[A_{12}, B_{12}\right]=0$. Thus

$$
\begin{aligned}
0=\Delta(0)=\Delta\left(\left[\left[A_{12}, B_{12}\right], C\right]\right) & =\left[\left[\Delta\left(A_{12}\right), B_{12}\right], C\right]+\left[\left[A_{12}, \Delta\left(B_{12}\right)\right], C\right] \\
& =\left[\left[\Delta\left(A_{12}\right), B_{12}\right]+\left[A_{12}, \Delta\left(B_{12}\right)\right], C\right]
\end{aligned}
$$

for every C in \mathcal{X}. It means that $J=\left[\Delta\left(A_{12}\right), B_{12}\right]+\left[A_{12}, \Delta\left(B_{12}\right)\right] \in \mathcal{Z}(\mathcal{X})$. Since $A_{12}=\left[P_{1}, A_{12}\right]$, we have that

$$
\begin{aligned}
{\left[\Delta\left(A_{12}\right), B_{12}\right] } & =J-\left[A_{12}, \Delta\left(B_{12}\right)\right]=J-\left[\left[P_{1}, A_{12}\right], \Delta\left(B_{12}\right)\right] \\
& =J-\left(\Delta\left(\left[\left[P_{1}, A_{12}\right], B_{12}\right]\right)-\left[\left[\Delta\left(P_{1}\right), A_{12}\right], B_{12}\right]-\left[\left[P_{1}, \Delta\left(A_{12}\right)\right], B_{12}\right]\right) \\
& =J+\left[\left[P_{1}, \Delta\left(A_{12}\right)\right], B_{12}\right] .
\end{aligned}
$$

By (3.6), we have that

$$
\begin{aligned}
{\left[P_{1} \Delta\left(A_{12}\right) P_{2}+P_{2} \Delta\left(A_{12}\right) P_{1}, B_{12}\right] } & =J+\left[\left[P_{1}, P_{1} \Delta\left(A_{12}\right) P_{2}+P_{2} \Delta\left(A_{12}\right) P_{1}\right], B_{12}\right] \\
& =J+\left[P_{1} \Delta\left(A_{12}\right) P_{2}-P_{2} \Delta\left(A_{12}\right) P_{1}, B_{12}\right]
\end{aligned}
$$

Hence

$$
\left[P_{2} \Delta\left(A_{12}\right) P_{1}, B_{12}\right]=\frac{1}{2} J \in \mathcal{Z}(\mathcal{X})
$$

It follows from the Kleinecke-Shirokov Theorem [15, Problem 230], we know that [$P_{2} \Delta\left(A_{12}\right) P_{1}, B_{12}$] is a quasi-nilpotent element. Since $\mathcal{Z}(\mathcal{X})=\mathcal{A} I$ is a commutative unital C^{*}-algebra, it is well known that $\left[P_{2} \Delta\left(A_{12}\right) P_{1}, B_{12}\right]=0$. Thus $P_{2} \Delta\left(A_{12}\right) B_{12}=B_{12} \Delta\left(A_{12}\right) P_{1}=0$ for every B_{12} in \mathcal{X}_{12}. By Lemma 3.2, we know that $P_{2} \Delta\left(A_{12}\right) P_{1}=0$. Similarly, we have that $\Delta\left(\mathcal{A}_{21}\right) \subseteq \mathcal{X}_{21}$.

Lemma 3.7 For every A_{11} in \mathcal{X}_{11}, we have $\Delta\left(A_{11}\right) \subseteq \mathcal{Z}(\mathcal{X})$ for every A_{11} in \mathcal{X}_{11}.
Proof For every A_{11} in \mathcal{X}_{11}, by Lemma 3.1, we have that

$$
\Delta\left(A_{11}\right)=\Delta\left(P_{1} A_{11} P_{1}\right)=\Delta\left(f_{0}\left(A_{11} x_{0}\right) P_{1}\right)=f_{0}\left(A_{11} x_{0}\right) \Delta\left(P_{1}\right) .
$$

Since $\Delta\left(P_{1}\right) \in \mathcal{Z}(\mathcal{X})$ and $f_{0}\left(A_{11} x_{0}\right) \in \mathcal{A}$, it follows that $\Delta\left(A_{11}\right) \in \mathcal{Z}(\mathcal{X})$.

Lemma 3.8 For every A_{22} in \mathcal{X}_{22}, we have $\Delta\left(A_{22}\right)-f_{0}\left(\Delta\left(A_{22}\right) x_{0}\right) I \in \mathcal{X}_{22}$. Particularly, $\Delta\left(P_{2}\right)=f_{0}\left(\Delta\left(P_{2}\right) x_{0}\right) I$.

Proof Through simple calculation, we have that

$$
0=\Delta\left(\left[\left[P_{1}, A_{22}\right], P_{1}\right]\right)=\left[\left[P_{1}, \Delta\left(A_{22}\right)\right], P_{1}\right]=-P_{1} \Delta\left(A_{22}\right) P_{2}-P_{2} \Delta\left(A_{22}\right) P_{1}
$$

It follows that $\Delta\left(A_{22}\right) \in \mathcal{X}_{11}+\mathcal{X}_{22}$. By Lemma 3.1, we can obtain that

$$
\Delta\left(A_{22}\right)=P_{1} \Delta\left(A_{22}\right) P_{1}+P_{2} \Delta\left(A_{22}\right) P_{2}=f_{0}\left(\Delta\left(A_{22}\right) x_{0}\right) P_{1}+P_{2} \Delta\left(A_{22}\right) P_{2}
$$

It menas that

$$
\Delta\left(A_{22}\right)-f_{0}\left(\Delta\left(A_{22}\right) x_{0}\right) I=-f_{0}\left(\Delta\left(A_{22}\right) x_{0}\right) P_{2}+P_{2} \Delta\left(A_{22}\right) P_{2} \in \mathcal{X}_{22} .
$$

Since $\Delta\left(P_{2}\right)=\Delta(I)-\Delta\left(P_{1}\right) \in \mathcal{Z}(\mathcal{X})$, we have that

$$
\Delta\left(P_{2}\right)-f_{0}\left(\Delta\left(P_{2}\right) x_{0}\right) I \in \mathcal{Z}(\mathcal{X}) \cap \mathcal{X}_{22}=\{0\}
$$

Thus $\Delta\left(P_{2}\right)=f_{0}\left(\Delta\left(P_{2}\right) x_{0}\right) I$.
In the following, we prove Theorem 3.3.
Proof of Theorem 3.3 Define two mappings τ and D on \mathcal{X} by

$$
\tau(A)=f_{0}\left(P_{1} A P_{1} x_{0}\right) \Delta\left(P_{1}\right)+f_{0}\left(\Delta\left(P_{2} A P_{2}\right) x_{0}\right) I
$$

and

$$
D(A)=\Delta(A)-\tau(A)
$$

for every A in \mathcal{X}. It is clear that τ is an \mathcal{A}-linear mapping from \mathcal{X} into $\mathcal{Z}(\mathcal{X})$ and D is an \mathcal{A}-linear mapping on \mathcal{X}. Moreover, according to the previous lemmas and the definitions of τ and D, we have that
(1) $D\left(A_{i j}\right)=\Delta\left(A_{i j}\right) \in \mathcal{X}_{i j}$ for every $A_{i j}$ in $\mathcal{X}_{i j}$, where $1 \leq i, j \leq 2$ and $i \neq j$;
(2) $D\left(P_{1}\right)=D\left(P_{2}\right)=D(I)=0$;
(3) $D\left(A_{11}\right)=0$ for every A_{11} in \mathcal{X}_{11};
(4) $D\left(A_{22}\right) \in \mathcal{X}_{22}$ for every A_{22} in \mathcal{X}_{22}.

To prove that Δ is standard, it is sufficient to show that D is a derivation on \mathcal{X} and $\tau([[A, B], C])=$ 0 for each A, B and C in \mathcal{X}.

In the following we show that $D\left(A_{i j} B_{s k}\right)=D\left(A_{i j}\right) B_{s k}+A_{i j} D\left(B_{s k}\right)$ for every $A_{i j}$ in $\mathcal{X}_{i j}$ and $B_{s k}$ in $\mathcal{X}_{s k}$, where $1 \leq i, j, s, k \leq 2$.

Since $D\left(\mathcal{X}_{i j}\right) \in \mathcal{X}_{i j}$, we have that $D\left(A_{i j} B_{s k}\right)=D\left(A_{i j}\right) B_{s k}+A_{i j} D\left(B_{s k}\right)$ for $j \neq s$. Thus we only need to prove the following 8 cases:
(1) $D\left(A_{11} B_{11}\right)=D\left(A_{11}\right) B_{11}+A_{11} D\left(B_{11}\right)$;
(2) $D\left(A_{11} B_{12}\right)=D\left(A_{11}\right) B_{12}+A_{11} D\left(B_{12}\right)$;
(3) $D\left(A_{12} B_{22}\right)=D\left(A_{12}\right) B_{22}+A_{12} D\left(B_{22}\right)$;
(4) $D\left(A_{21} B_{11}\right)=D\left(A_{21}\right) B_{11}+A_{21} D\left(B_{11}\right)$;
(5) $D\left(A_{22} B_{21}\right)=D\left(A_{22}\right) B_{21}+A_{22} D\left(B_{21}\right)$;
(6) $D\left(A_{22} B_{22}\right)=D\left(A_{22}\right) B_{22}+A_{22} D\left(B_{22}\right)$;
(7) $D\left(A_{12} B_{21}\right)=D\left(A_{12}\right) B_{21}+A_{12} D\left(B_{21}\right)$;
(8) $D\left(A_{21} B_{12}\right)=D\left(A_{21}\right) B_{12}+A_{21} D\left(B_{12}\right)$.

Since $D\left(A_{11}\right)=0$ for every A_{11} in \mathcal{X}_{11}, the case (1) is trivial.
For each A, B in \mathcal{X}, by $\Delta(A)-D(A)=\tau(A) \in \mathcal{Z}(\mathcal{X})$, we have that $[\Delta(A), B]=[D(A), B]$. It follows that

$$
\begin{aligned}
D\left(A_{11} B_{12}\right) & =\Delta\left(A_{11} B_{12}\right)=-\Delta\left(\left[\left[P_{1}, B_{12}\right], A_{11}\right]\right) \\
& =-\left[\left[P_{1}, \Delta\left(B_{12}\right)\right], A_{11}\right]-\left[\left[P_{1}, B_{12}\right], \Delta\left(A_{11}\right)\right] \\
& =-\left[\Delta\left(B_{12}\right), A_{11}\right]-\left[B_{12}, \Delta\left(A_{11}\right)\right] \\
& =\left[A_{11}, D\left(B_{12}\right)\right]+\left[D\left(A_{11}\right), B_{12}\right] \\
& =A_{11} D\left(B_{12}\right)+D\left(A_{11}\right) B_{12}
\end{aligned}
$$

for each A_{11} in \mathcal{X}_{11} and B_{12} in \mathcal{X}_{12}. Thus the case (2) holds. The cases (3), (4) and (5) are similar to the case (2), so we omit the proofs.

For every C_{21} in \mathcal{X}_{21}, according to the case (5), we have the following two equations:

$$
\begin{equation*}
D\left(A_{22} B_{22} C_{21}\right)=D\left(A_{22} B_{22}\right) C_{21}+A_{22} B_{22} D\left(C_{21}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{align*}
D\left(A_{22} B_{22} C_{21}\right) & =D\left(A_{22}\right) B_{22} C_{21}+A_{22} D\left(B_{22} C_{21}\right) \\
& =D\left(A_{22}\right) B_{22} C_{21}+A_{22} D\left(B_{22}\right) C_{21}+A_{22} B_{22} D\left(C_{21}\right) \tag{3.8}
\end{align*}
$$

for each A_{22}, B_{22} in \mathcal{X}_{22}. Comparing (3.7) and (3.8), we have that

$$
D\left(A_{22} B_{22}\right) C_{21}=D\left(A_{22}\right) B_{22} C_{21}+A_{22} D\left(B_{22}\right) C_{21}
$$

It follows that $\left(D\left(A_{22} B_{22}\right)-D\left(A_{22}\right) B_{22}-A_{22} D\left(B_{22}\right)\right) C_{21}=0$ for every C_{21} in \mathcal{X}_{21}. By Lemma 3.2 and $D\left(A_{22}\right) \in \mathcal{X}_{22}$, we know that

$$
D\left(A_{22} B_{22}\right)-D\left(A_{22}\right) B_{22}-A_{22} D\left(B_{22}\right)=0 .
$$

Finally, we show the cases (7) and (8). Let A_{12} be in \mathcal{X}_{12} and B_{21} be in \mathcal{X}_{21}. Through simple calculation, we can obtain that

$$
\begin{aligned}
\Delta & \left(\left[\left[A_{12}, P_{2}\right], B_{21}\right]\right)-D\left(\left[\left[A_{12}, P_{2},\right], B_{21}\right]\right) \\
& =\left[\left[\Delta\left(A_{12}\right), P_{2}\right], B_{21}\right]+\left[\left[A_{12}, P_{2}\right], \Delta\left(B_{21}\right)\right]-D\left(\left[\left[A_{12}, P_{2},\right], B_{21}\right]\right) \\
& =\left[\Delta\left(A_{12}\right), B_{21}\right]+\left[A_{12}, \Delta\left(B_{21}\right)\right]-D\left[A_{12}, B_{21}\right] \\
& =\left[D\left(A_{12}\right), B_{21}\right]+\left[A_{12}, D\left(B_{21}\right)\right]-D\left(A_{12} B_{21}-B_{21} A_{12}\right) \\
& =D\left(A_{12}\right) B_{21}-B_{21} D\left(A_{12}\right)+A_{12} D\left(B_{21}\right)-D\left(B_{21}\right) A_{12}-D\left(A_{12} B_{21}\right)+D\left(B_{21} A_{12}\right) \\
& =\left(D\left(A_{12}\right) B_{21}+A_{12} D\left(B_{21}\right)-D\left(A_{12} B_{21}\right)\right)+\left(D\left(B_{21} A_{12}\right)-B_{21} D\left(A_{12}\right)-D\left(B_{21}\right) A_{12}\right) .
\end{aligned}
$$

Since $\Delta\left(\left[A_{12}, B_{21}\right]\right)-D\left(\left[A_{12}, B_{21}\right]\right)$ belongs to $\mathcal{Z}(\mathcal{X})$, by Lemma 2.1, we may assume that

$$
\Delta\left(\left[A_{12}, B_{21}\right]\right)-D\left(\left[A_{12}, B_{21}\right]\right)=\lambda I
$$

for some λ in \mathcal{A}. That is,

$$
\begin{align*}
\lambda I= & \left(D\left(A_{12}\right) B_{21}+A_{12} D\left(B_{21}\right)-D\left(A_{12} B_{21}\right)\right)+ \\
& \left(D\left(B_{21} A_{12}\right)-B_{21} D\left(A_{12}\right)-D\left(B_{21}\right) A_{12}\right) . \tag{3.9}
\end{align*}
$$

Since $D\left(\mathcal{X}_{i j}\right) \in \mathcal{X}_{i j}$, it follows that

$$
D\left(A_{12}\right) B_{21}+A_{12} D\left(B_{21}\right)-D\left(A_{12} B_{21}\right) \in \mathcal{X}_{11}
$$

and

$$
D\left(B_{21} A_{12}\right)-B_{21} D\left(A_{12}\right)-D\left(B_{21}\right) A_{12} \in \mathcal{X}_{22}
$$

Multiplying (3.9) by P_{1} and P_{2}, respectively, from the right side, we obtain the following two equations:

$$
\begin{equation*}
D\left(A_{12} B_{21}\right)=D\left(A_{12}\right) B_{21}+A_{12} D\left(B_{21}\right)-\lambda P_{1} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left(B_{21} A_{12}\right)=B_{21} D\left(A_{12}\right)+D\left(B_{21}\right) A_{12}+\lambda P_{2} \tag{3.11}
\end{equation*}
$$

By the case (2) and Eq. (3.10), we can obtain that

$$
\begin{align*}
D\left(A_{12} B_{21} A_{12}\right) & =D\left(A_{12} B_{21}\right) A_{12}+A_{12} B_{21} D\left(A_{12}\right) \\
& =D\left(A_{12}\right) B_{21} A_{12}+A_{12} D\left(B_{21}\right) A_{12}-\lambda A_{12}+A_{12} B_{21} D\left(A_{12}\right) \tag{3.12}
\end{align*}
$$

By the case (3) and Eq. (3.11), we can obtain that

$$
\begin{align*}
D\left(A_{12} B_{21} A_{12}\right) & =D\left(A_{12}\right) B_{21} A_{12}+A_{12} D\left(B_{21} A_{12}\right) \\
& =D\left(A_{12}\right) B_{21} A_{12}+A_{12} D\left(B_{21}\right) A_{12}+A_{12} B_{21} D\left(A_{12}\right)+\lambda A_{12} \tag{3.13}
\end{align*}
$$

Comparing (3.12) and (3.13), we have that $\lambda A_{12}=0$. Noticing that D is \mathcal{A}-linear, we can obtain $\lambda^{2} P_{1}=\lambda^{2} P_{2}=0$ through multiplying (3.10) and (3.11) by λ, respectively. Hence $\lambda^{2}=0$. Since \mathcal{A} is a commutative C^{*}-algebra, it is well known that $\lambda^{2}=0$ implies $\lambda=0$. By (3.10) and (3.11), the cases (7) and (8) hold.

By the cases (1)-(8), it implies that D is a derivation immediately. Now we show that $\tau([[A, B], C])=0$ for each A, B and C in \mathcal{X}. Indeed,

$$
\begin{aligned}
\tau([[A, B], C]) & =\Delta([[A, B], C])-D([[A, B], C]) \\
& =[[\Delta(A), B], C]+[[A, \Delta(B)], C]+[[A, B], \Delta(C)]-D([[A, B], C]) \\
& =[[D(A), B], C]+[[A, D(B)], C]+[[A, B], D(C)]-D([[A, B], C]) \\
& =0
\end{aligned}
$$

It follows that $\Delta(A)=D(A)+\tau(A)$ is a standard Lie triple derivation on \mathcal{X}. Define an \mathcal{A}-linear mapping on \mathcal{X} by $d(A)=D(A)+[A, G]$ for every A in \mathcal{X}. Thus we have that

$$
\delta(A)=\Delta(A)+[A, G]=D(A)+\tau(A)+[A, G]=d(A)+\tau(A)
$$

where d is a derivation on \mathcal{X} and τ is an \mathcal{A}-linear mapping from \mathcal{X} into $\mathcal{Z}(\mathcal{X})$ such that $\tau([[A, B], C])=0$ for each A, B and C in \mathcal{X}.

Remark 3.9 In [6], Benkovic supposed that \mathcal{X} is a unital algebra with a nontrivial idempotent P_{1} and $P_{2}=I-P_{1}$, and denoted $P_{i} \mathcal{X} P_{j}$ by $\mathcal{X}_{i j}$ and $P_{i} A P_{j}$ by $A_{i j}$ for every A in \mathcal{X}, where $1 \leq i, j \leq 2$. He showed that if

$$
A_{22} \mathcal{X}_{21}=0 \text { or } \mathcal{X}_{12} A_{22}=0 \text { implies } A_{22}=0
$$

and

$$
A_{11} \mathcal{X}_{12}=0 \text { or } \mathcal{X}_{21} A_{11}=0 \text { implies } A_{11}=0
$$

then every Lie triple derivation d on \mathcal{X} is of the form $d=\Delta+\delta+\tau$, where Δ is a derivation on \mathcal{X}, δ is a Jordan derivation on \mathcal{X} and τ is a linear mapping from \mathcal{X} into its center $\mathcal{Z}(\mathcal{X})$ that vanishes on $[[\mathcal{X}, \mathcal{X}], \mathcal{X}]$.

In this paper, by Lemma 3.2, we know that

$$
A_{22} \mathcal{X}_{21}=0 \text { or } \mathcal{X}_{12} A_{22}=0 \text { implies } A_{22}=0
$$

But it is also a question that whether $A_{11} \mathcal{X}_{12}=0$ or $\mathcal{X}_{21} A_{11}=0$ implies that $A_{11}=0$.
Acknowledgements We thank the referees for their time and comments.

References

[1] S. SAKAI. Derivations of W^{*}-algebras. Ann. Math., 1966, 83: 273-279.
[2] E. CHRISTENSEN. Derivations of nest algebras. Math. Ann., 1977, 229(2): 155-161.
[3] M. MATHIEU, A. VILLENA. The structure of Lie derivations on C^{*}-algebras. J. Funct. Anal., 2003, 202(2): 504-525.
[4] W. CHEUNG. Lie derivations of triangular algebra. Linear Multilinear Algebra, 2003, 51(3): 299-310.
[5] Fangyan LU. Lie derivation of certain CSL algebras. Israel J. Math., 2006, 155: 149-156.
[6] D. BENKOVIČ. Lie triple derivations of unital algebras with idempotents. Linear Multilinear Algebra, 2015, 63(1): 141-165.
[7] C. MIERS. Lie triple derivations of von Neumann algebras. Proc. Amer. Math. Soc., 1978, 71(1): 57-61.
[8] Peisheng JI, Lin WANG. Lie triple derivations of TUHF algebras. Linear Algebra Appl., 2005, 403: 399-408.
[9] Jianhua ZHANG, Baowei WU, Huaixin CAO. Lie triple derivations of nest algebras. Linear Algebra Appl., 2006, 416(2-3): 559-567.
[10] Weiyan YU, Jianhua ZHANG. Lie triple derivations of CSL algebras. Internat. J. Theoret. Phys., 2013, 52(6): 2118-2127.
[11] Pengtong LI, Deguang HAN, Waishing TANG. Derivations on the algebra of operators in Hilbert C^{*}-modules. Acta Math. Sin. (Engl. Ser.), 2012, 28(8): 1615-1622.
[12] M. MOGHADAM, M. MIRI, A. JANFADA. A note on derivations on the algebra of operators in Hilbert C^{*}-modules. Mediterr. J. Math., 2016, 13(3): 1167-1175.
[13] V. MANUILOV, E. TROITSKY. Hilbert C^{*}-Modules. American Mathematical Society, Providence, RI, 2005.
[14] Jun HE, Jiankui LI, Danjun ZHAO. Derivations, local and 2-local derivations on some algebras of operators on Hilbert C^{*}-modules. Mediterr. J. Math., 2017, 14(6): Paper No. 230, 11 pp.
[15] P. HALMOS. Hilbert Space Problem Book. Springer-Verlag, New York-Berlin, 1982.

[^0]: Received June 24, 2023; Accepted September 23, 2023
 Supported by the Shaanxi College Students Innovation and Entrepreneurship Training Program (Grant No. S202110708069).

 * Corresponding author

 E-mail address: anguangyu@sust.edu.cn (Guangyu AN); 876821092@qq.com (Jun SHENG); hejun_12@163.com (Jun HE)

