Journal of Mathematical Research with Applications May, 2024, Vol. 44, No. 3, pp. 397–407 DOI:10.3770/j.issn:2095-2651.2024.03.010 Http://jmre.dlut.edu.cn

Fuzzy Quasi-Pseudo-b-Metrics on Algebraic Structures

Jiancai WEI¹, Yeqing SHENG¹, Lihong XIE^{1,*}, Piyu LI²

1. School of Mathematics and Computational Science, Wuyi University,

Guangdong 529020, P. R. China;

2. School of Mathematics and Statistics, Xuzhou Institute of Technology, Jiangsu 221018, P. R. China

Abstract In this paper, we mainly study fuzzy (quasi-)pseudo-*b*-metrics on algebraic structures. We mainly establish the following results: (1) If a group G with a topology τ , which is induced by a left invariant fuzzy quasi-pseudo-*b*-metric (resp., pseudo-*b*-metric) on the G, is a right topological group, then G with the topology τ is a paratopological group (resp., a topological group) and (2) If a semigroup S with a topology τ is induced by an invariant fuzzy quasi-pseudo-*b*-metric, then S with the topology τ is a topological semigroup.

Keywords left topological group; right topological group; semitopological group; paratopological group; topological group; topological semigroup; fuzzy quasi-pseudo-*b*-metric; invariant fuzzy (quasi-)pseudo-*b*-metric

MR(2020) Subject Classification 54E99; 54H11; 54H15; 54A40

1. Introduction

In 1906, Maurice Fréchet extracted the commonalities of real number space, complex number space, vector space, function space and other basic spaces, and gave the definition of metric [1].

Definition 1.1 ([1]) Let X be a nonempty set. A function $d: X \times X \to [0, +\infty)$ is a metric on X if, for all $x, y, z \in X$, the following conditions hold:

- (M1) d(x, y) = 0 if and only if x = y;
- $(M2) \ d(x,y) = d(y,x);$
- (M3) $d(x,z) \le d(x,y) + d(y,z).$

Then (X, d) will be called metric space, which has a wide range of applications in analytics. In addition to compact spaces, metric spaces can be regarded as another important topological spaces. Metric spaces can give many topological concepts a proper visual description.

Metrics have been generalized in many ways. Czerwik in [2] introduced *b*-metric. Basically the triangularity condition of metrics is relaxed as follows:

Definition 1.2 ([2]) Let X be a nonempty set and $k \ge 1$ be a given real number. A function $d: X \times X \to [0, +\infty)$ is a b-metric on X, if for all $x, y, z \in X$, the following conditions hold:

Received May 16, 2023; Accepted November 16, 2023

Supported by the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515010381) and the Innovation Project of Department of Education of Guangdong Province (Grant No. 2022KTSCX145). * Corresponding author

E-mail address: m15213729610@163.com (Jiancai WEI); yunli198282@126.com (Lihong XIE)

- (b1) d(x, y) = 0 if and only if x = y;
- (b2) d(x, y) = d(y, x);
- (b3) $d(x,z) \le k[d(x,y) + d(y,z)].$

The tripe (X, d, k) is said to be a *b*-metric space. Some examples of *b*-metric spaces and some fixed point theorems in *b*-metric spaces can be found in [3–5]. We also note that the class of *b*-metric spaces is larger than that of metric spaces, since every *b*-metric is a metric when k = 1. An example of a *b*-metric space that is not a metric space was given in [6].

On the other hand, after Zadeh has introduced in his famous paper [7] the concept of a fuzzy set, one of the important problems is to obtain an adequate notion of a fuzzy metric space. Kramosil and Michálek [8] reformulated successfully the notion of probabilistic metric space, introduced by Menger in 1942, in fuzzy context.

Definition 1.3 ([9]) A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is called triangular norm (t-norm) if it satisfies the following conditions:

- (1) $a * b = b * a, \forall a, b \in [0, 1];$
- (2) $a * 1 = a, \forall a \in [0, 1];$
- (3) $(a * b) * c = a * (b * c), \forall a, b, c \in [0, 1];$
- (4) If $a \leq c$ and $b \leq d$, with $a, b, c, d \in [0, 1]$ then $a * b \leq c * d$.

Three paradigmatic examples of continuous t-norms are \wedge , \cdot and $*_L$ (the Lukasiewicz t-norm), which are defined by $a \wedge b = \min\{a, b\}$, $a \cdot b = ab$ and $a *_L b = \max\{a + b - 1, 0\}$, respectively. One can easily show that $* \leq \wedge$ for every continuous t-norm *.

Definition 1.4 ([10, Definition 2.4]) Let X be an arbitrary set and * be a continuous t-norm. A fuzzy set M in $X \times X \times [0, \infty)$ is called fuzzy metric (in the sense of Kramosil and Michalek), if, for all $x, y, z \in X$, the following conditions hold:

- $(M1) \quad M(x, y, 0) = 0;$
- (M2) $M(x, y, t) = 1, \forall t > 0$ if and only if x = y;
- (M3) $M(x, y, t) = M(y, x, t), \forall t \ge 0;$
- (M4) $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous and $\lim_{t\to\infty} M(x, y, t) = 1$;

(M5) $M(x, z, t+s) \ge M(x, y, t) * M(y, z, s), \forall t, s \ge 0.$

Then the triple (X, M, *) is said to be a fuzzy metric space. If in Definition 1.4, (M2) is relaxed as follows:

(M2') $M(x, y, t) = 1, \forall t > 0 \text{ if } x = y.$

Then the M is called a fuzzy pseudo-metric on X. If M only satisfies (M1), (M2), (M4) and (M5), then the M is called a fuzzy quasi-metric on X. If M only satisfies (M1), (M2') (M4) and (M5), then the M is a fuzzy quasi-pseudo-metric [11].

If in Definition 1.4, (M5) is relaxed as follows:

Definition 1.5 ([12, Definition 6]) A fuzzy-b-metric (in the sense of Kramosil and Michalek) is a triple (M, *, k), where X is an arbitrary set, * is a continuous t-norm, $k \ge 1$ is a given real number and M is a fuzzy set in $X \times X \times [0, \infty)$ such that for all $x, y, z \in X$ we have:

398

(Mb1) M(x, y, 0) = 0;

(Mb2) $M(x, y, t) = 1, \forall t > 0$ if and only if x = y;

(Mb3) $M(x, y, t) = M(y, x, t), \forall t \ge 0;$

 $(Mb4) \ M(x,y,\cdot): [0,\infty) \to [0,1] \ \text{is left continuous and } \lim_{t\to\infty} M(x,y,t) = 1;$

 $(Mb5) \quad M(x,z,k(t+s)) \geqslant M(x,y,t) * M(y,z,s), \, \forall \, t,s \geqslant 0.$

The quadruple (X, M, *, k) is said to be a fuzzy-*b*-metric space.

The class of fuzzy *b*-metric spaces is larger than the class of fuzzy metric spaces, since a fuzzy *b*-metric space is a fuzzy metric space when k = 1.

In Definition 1.5, if (Mb2) is replaced by:

(Mb2') $M(x, y, t) = 1, \forall t > 0 \text{ if } x = y.$

Then the M is called a fuzzy pseudo-*b*-metric. If M only satisfies (Mb1), (Mb2), (Mb4) and (Mb5), then the M is called a fuzzy quasi-*b*-metric.

Definition 1.6 ([12, Definition 25]) A fuzzy-quasi-pseudo-b-metric (in the sense of Kramosil and Michalek) on a set X is a triple (M, *, k), where * is a continuous t-norm, $k \ge 1$ is a given real number and M is a fuzzy set in $X \times X \times [0, \infty)$ such that for all $x, y, z \in X$ we have:

(Mqpb1) M(x, y, 0) = 0;

 $(Mqpb2) \quad M(x,y,t)=1, \forall t>0 \ \text{if} \ x=y;$

(Mqpb3) $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous and $\lim_{t\to\infty} M(x, y, t) = 1$;

(Mqpb4) $M(x, z, k(t+s)) \ge M(x, y, t) * M(y, z, s), \forall t, s \ge 0.$

The quadruple (X, M, *, k) is said to be a fuzzy-quasi-pseudo-b-metric space.

Definition 1.7 A fuzzy quasi-pseudo-b-metric (M, *, k) on a semigroup G is left-invariant (resp., right-invariant) if M(x, y, t) = M(ax, ay, t) (resp., M(x, y, t) = M(xa, ya, t)) whenever $a, x, y \in G$ and t > 0. We say that (M, *, k) is invariant if it is both left-invariant and right-invariant.

Left-invariant, right-invariant and invariant fuzzy quasi-pseudo-metric are defined in a similar way.

Definition 1.8 ([13]) Let G be an algebraic semigroup. Pick $x \in G$. The function $\lambda_x : G \to G$ defined by $\lambda_x(g) = xg$ is called the left translation of G by x. Similarly, $\rho_x : G \to G$ defined as $\rho_x(g) = gx$ is known as the right translation of G by x.

A topological semigroup (G, τ) is an algebraic semigroup G with a topology τ that makes the multiplication in G jointly continuous. A paratopological group G is a topological semigroup such that G is an algebraic group. We say that a paratopological group (G, τ) is a topological group if the inverse is continuous, that is, if g^{-1} stands for the inverse element of $g \in G$, then the function $g \to g^{-1}$ from G onto G is continuous. (G, τ) is said to be a left (resp., right) topological group if the translations λ_x (resp., ρ_x) are continuous in (G, τ) for all $x \in G$.

In [13], Sánchez and Sanchis stated a number of theorems about fuzzy (quasi-)pseudometrizable algebraic structures. They proved that:

Theorem 1.9 ([13, Theorem 3.1]) Suppose that (G, τ) is a left topological group whose topolo-

gy τ is induced by a right invariant fuzzy quasi-pseudo-metric. Then (G, τ) is a paratopological group.

Theorem 1.10 ([13, Theorem 3.2]) Suppose that G is a left topological group whose topology is induced by a right invariant fuzzy pseudo-metric. Then G is a topological group.

In this paper, we consider the following question: Do Theorems 1.9 and 1.10 hold for a group G with a topology τ , which is induced by a left invariant fuzzy (quasi-) pseudo-*b*-metric?

The paper is organized as follows. In Section 2, we study the topological properties of fuzzy quasi-pseudo-*b*-metric spaces. Section 3 is devoted to studying the conditions for a left (right) topological group to become a topological group. In Section 4, we mainly study fuzzy (quasi-)pseudo-*b*-metrics on semigroups.

2. Topological properties of fuzzy quasi-pseudo-b-metric spaces

In this section, we show some topological properties of fuzzy quasi-pseudo-b-metric spaces.

Definition 2.1 ([12, Definition 9]) Let $k \ge 1$ be a given real number. A function $f : \mathbb{R} \to \mathbb{R}$ is called k-nondecreasing if for t < s we have $f(t) \le f(ks)$.

We can prove the following three conclusions by using the proof methods in [12, Example 8, Proposition 10 and Theorem 2.1], respectively.

Example 2.2 Let (X, d, k) be a (quasi-pseudo-)b-metric space. Let

$$M_d(x, y, t) = \begin{cases} \frac{t}{t+d(x,y)}, & \text{for all } x, y \in X \text{ and } t > 0; \\ 0, & \text{for all } x, y \in X \text{ and } t = 0. \end{cases}$$

Then $(X, M_d, *, k)$ is a fuzzy (quasi-pseudo-)b-metric space, for any continuous t-norm *, the so-called, the standard fuzzy (quasi-pseudo-)b-metric induced by d on X.

Proposition 2.3 Let (X, M, *, k) be a fuzzy quasi-pseudo-b-metric space. For all $x, y \in X$ the fuzzy quasi-pseudo-b-metric mapping $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is k-nondecreasing.

Proposition 2.4 Let (X, M, *, k) be a fuzzy quasi-pseudo-b-metric space. For $x \in X$, $r \in (0, 1)$, t > 0, we define the ball $B(x, r, t) := \{y \in X : M(x, y, t) > 1 - r\}$. Then

$$\tau_M := \{T \subseteq X : x \in T \text{ iff } \exists t > 0, r \in (0,1) : B(x,r,t) \subseteq T\}$$

$$(2.1)$$

is a topology on X.

For a *b*-metric space (X, b, k) it is well known that the *b*-metric *d* can induce a topology τ_d on *X*, but there is an example [14] shows the ball $B(x, r) = \{y \in X : d(x, y) < r\}$, where r > 0, need not be an open set in τ_d . In fuzzy-*b*-metric spaces, this fact is also true as the following example shows.

Example 2.5 There is a fuzzy-*b*-metric space (X, M, *, k) whose balls need not be open in the topology induced by M.

Proof Consider a fixed number $\varepsilon > 0$. For $X = \{0, 1, 2, ...\}$, let $d : X \times X \to [0, \infty)$ be defined by

$$d(0,1) = 1, \ d(0,m) = 1 + \varepsilon \text{ for } m \ge 2,$$

$$d(1,m) = \frac{1}{m}, \ d(n,m) = \frac{1}{n} + \frac{1}{m} \text{ for } n \ge 2.$$

Then we extend d onto $X \times X$ by puting d(n,n) = 0 for any $n \ge 0$ and d(m,n) = d(n,m) if $0 \le m < n$. Define a fuzzy set M_d in $X \times X \times [0,\infty)$ by:

$$M_d(x, y, t) = \begin{cases} \frac{t}{t+d(x,y)}, & \text{for all } x, y \in X \text{ and } t > 0; \\ 0, & \text{for all } x, y \in X \text{ and } t = 0. \end{cases}$$

Then the ball $B(x, r, t) := \{y \in X : M(x, y, t) > 1 - r\}$ is not open.

According to the example on page 4 of reference [14], d is a b-metric, according to the Remark 2.5, M_d is a fuzzy b-metric. Let $r_1 = 1 - \frac{2t^2 + 2t + t\varepsilon}{2(t+1)(t+1+\varepsilon)}$. Now, note that $B(0, r_1, t) = \{0, 1\}$, while B(1, r', t') contains infinitely many elements, for any $r' \in (0, 1)$ and t' > 0. Hence, none of B(1, r', t') are contained in $B(0, r_1, t)$, which shows that $B(0, r_1, t)$ is not open. \Box

Example 2.5 shows that there is a fuzzy-*b*-metric space (X, M, *, k) whose balls need not be open in the topology induced by M, but we have the following:

Proposition 2.6 Let (X, M, *, k) be a fuzzy quasi-pseudo-b-metric space. Then for $x \in X$, $r \in (0, 1), t > 0$ the ball $B(x, r, t) := \{y \in X : M(x, y, t) > 1 - r\}$ is a neighbourhood of x.

Proof Let $A = \{y \in B(x, r, t) | \exists r' \in (0, 1), t' > 0, B(y, r', t') \subseteq B(x, r, t)\}$. We will show that A is an open set in the topology τ_M .

For each $a \in A$, there are $r_a \in (0,1)$ and $t_a > 0$ such that $B(a, r_a, t_a) \subseteq B(x, r, t)$. Consider the ball $B(a, r_a, \frac{t_a}{k})$. For $y \in B(a, r_a, \frac{t_a}{k})$, we have $M(a, y, \frac{t_a}{k}) > 1 - r_a$. Since $M(a, y, \frac{t_a}{k}) > 1 - r_a$ and $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous, there is $\frac{t_0}{k} \in (0, \frac{t_a}{k})$ such that

$$M(a, y, \frac{t_0}{k}) > 1 - r_a.$$

Let $r_0 = M(a, y, \frac{t_0}{k})$. For $r_0 > 1 - r_a$, there is $s \in (0, 1)$ such that $r_0 > 1 - s > 1 - r_a$. Since the binary operation * is a continuous *t*-norm, there is $r_1 \in (0, 1)$ such that $r_0 * r_1 \ge 1 - s$. Now consider the ball $B(y, 1 - r_1, \frac{t_a - t_0}{k})$. We claim

$$B(y, 1 - r_1, \frac{t_a - t_0}{k}) \subset B(x, r, t).$$

For $\forall z \in B(y, 1 - r_1, \frac{t_a - t_0}{k})$, we have $M(y, z, \frac{t_a - t_0}{k}) > 1 - (1 - r_1) = r_1$. Therefore,

$$\begin{split} M(a,z,t_a) = & M(a,z,\frac{k(t_a-t_0+t_0)}{k}) \geq M(a,y,\frac{t_0}{k}) * M(y,z,\frac{t_a-t_0}{k}) \\ \geq & r_0 * r_1 \geq 1-s > 1-r_a. \end{split}$$

Therefore, $z \in B(x, r_a, t_a)$, this implies that $B(y, 1 - r_1, \frac{t_a - t_0}{k}) \subseteq B(a, r_a, t_a) \subseteq B(x, r, t)$. Thus we have proved that A is an open set in the topology τ_M . \Box

Proposition 2.7 Let (X, M, *, k) be a fuzzy quasi-pseudo-b-metric space. For $x \in X$, $\mathscr{U} =$

Jiancai WEI, Yeqing SHENG, Lihong XIE and et al.

 $\{B(x,\frac{1}{n},\frac{1}{n}): n \in \mathbb{N}_+\}$, where $B(x,\frac{1}{n},\frac{1}{n}) = \{y \in X: M(x,y,\frac{1}{n}) > 1 - \frac{1}{n}\}$. Then \mathscr{U} is a local neighbourhood base at x.

Proof Let $r \in (0,1)$, t > 0, for any $x \in X$, by Proposition 2.6, B(x,r,t) is a neighbourhood of x. Pick $n_1 \in \mathbb{N}_+$ such that $n_1 > \frac{1}{r}$, pick $n_2 \in \mathbb{N}$ such that $n_2 > \frac{k}{t}$. Let $n = \max\{n_1, n_2\}$, $s = t - \frac{k}{n}$. Then $t = k(\frac{1}{n} + \frac{s}{k})$. We have that

$$B(x, \frac{1}{n}, \frac{1}{n}) \subset B(x, r, t).$$

$$(2.2)$$

Indeed, for $\forall y \in B(x, \frac{1}{n}, \frac{1}{n})$, we have

$$M(x, y, t) = M(x, y, k(\frac{1}{n} + \frac{s}{k})) \ge M(x, y, \frac{1}{n}) * M(y, y, \frac{s}{k})$$
$$= M(x, y, \frac{1}{n}) > 1 - \frac{1}{n} > 1 - r.$$
(2.3)

Hence, $y \in B(x, r, t)$, this implies that $B(x, \frac{1}{n}, \frac{1}{n}) \subset B(x, r, t)$. \Box

Remark 2.8 Let (X, M, *, k) be a fuzzy quasi-pseudo-*b*-metric space such that (X, M) is a right topological group. Let *e* be the identity of $X, \mathscr{U} = \{B(e, \frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}_+\}$, where $B(e, \frac{1}{n}, \frac{1}{n}) = \{y \in X : M(x, y, \frac{1}{n}) > 1 - \frac{1}{n}\}$. Then \mathscr{U} is a local neighborhood base at *e*.

Proposition 2.9 Let (X, d, k) be a quasi-pseudo-b-metric space. Then the topology τ_d , induced by d, coincides with the topology τ_{M_d} , which is induced by the induced standard fuzzy quasi-pseudo-b-metric M_d .

Proof Let $\mathscr{B} = \{B(x,r,t) : x \in X, r \in (0,1), t \in (0,\infty)\}, \mathscr{D} = \{S_{\epsilon}(x) : x \in X, \epsilon \in (0,\infty)\},\$ where $S_{\epsilon}(x) = \{y : d(x,y) < \epsilon\}$. Obviously, \mathscr{B} and \mathscr{D} are the base of τ_{M_d} and τ_d , respectively.

For every $B \in \mathscr{B}$, suppose B = B(x, r, t), let $\epsilon = \frac{t}{1-r} - t$. We have

$$S_{\epsilon}(x) \subset B(x, r, t). \tag{2.4}$$

Indeed, for $\forall y \in S_{\epsilon}(x)$, $M(x, y, t) = \frac{t}{t+d(x,y)} > \frac{t}{t+(\frac{t}{1-r}-t)} = 1-r$. Hence, $y \in B(x, r, t)$, Therefore, $S_{\epsilon}(x) \subset B(x, r, t)$.

On the other hand, for every $S_{\epsilon} \in \mathcal{D}$, suppose $S_{\epsilon}(x) = \{y : d(x, y) < \epsilon, \epsilon > 0\}$. Let $t \in (0, \infty)$, $0 < r_0 < 1 - \frac{t}{t+\epsilon}$. Then $\frac{t}{1-r_0} - t < \epsilon$. We have

$$B(x, r_0, t) \subset S_{\epsilon}(x). \tag{2.5}$$

Indeed, for $\forall y \in B(x, r_0, t)$, $M(x, y, t) = \frac{t}{t+d(x,y)} > 1 - r_0$, then we have $\frac{t}{1-r_0} - t > d(x, y)$, thus $d(x, y) < \epsilon$. Therefore, $y \in S_{\epsilon}(x)$, this implies that $B(x, r_0, t) \subset S_{\epsilon}(x)$. \Box

3. Fuzzy quasi-pseudo-b-metrics on right (left) topological groups

In this section, we are concerned with the continuity of the operation on right fuzzy quasipseudo-*b*-metric topological groups. It provides a sufficient condition to obtain a paratopological group.

The following result is a well known internal characterization of a (para-)topological group.

402

Lemma 3.1 ([13, Theorem 2.1]) Let G be a group with identity e and \mathscr{U} a family of subsets of G containing e. Consider the following conditions.

- (1) For every $U, V \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W \subseteq U \cap V$;
- (2) For every $U \in \mathscr{U}$ and $x \in U$, there is $V \in \mathscr{U}$ such that $Vx \subseteq U$;
- (3) For every $U \in \mathscr{U}$ and $x \in G$, we can find $V \in \mathscr{U}$ satisfying $xVx^{-1} \subseteq U$;
- (4) For every $U \in \mathscr{U}$, there exists $V \in \mathscr{U}$ such that $V^2 \subseteq U$;
- (5) For every $U \in \mathscr{U}$, we can find $V \in \mathscr{U}$ with $V^{-1} \in U$.

If \mathscr{U} satisfies (1)–(4), then the family $\{Ux : x \in G, U \in \mathscr{U}\}$ is a base for a topology $\tau_{\mathscr{U}}$ on G. With this topology, G is a paratopological group, and the family $\{xU : x \in G, U \in \mathscr{U}\}$ is a base for the same topology on G. In addition, if \mathscr{U} satisfies (5), then $(G, \tau_{\mathscr{U}})$ is a topological group.

Theorem 3.2 Suppose that (G, τ_M) is a right topological group whose topology τ_M is induced by a left invariant fuzzy quasi-pseudo-b-metric (M, *, k). Then (G, τ_M) is a paratopological group.

Proof Let *e* be the identify of *G*. According to Remark 2.8, $\mathscr{U} = \{B(e, \frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}_+\}$ is a local neighborhood base at *e*. Let $\tau_{\mathscr{U}}$ be the topology associated to the family \mathscr{U} . Now, we will show \mathscr{U} satisfies conditions (1)–(4) in Lemma 3.1, that is, $(G, \tau_{\mathscr{U}})$ is a paratopological group.

Item (1) follows from the fact that \mathscr{U} is a local neighborhood base at e in (G, τ_M) . To prove item (2), take $n \in \mathbb{N}_+$ and $x \in B(e, \frac{1}{n}, \frac{1}{n})$. Since the right translation ρ_x is continuous at e and $\rho_x(e) = ex = x \in B(e, \frac{1}{n}, \frac{1}{n})$, there exists $m \in \mathbb{N}_+$ such that $\rho_x(B(e, \frac{1}{m}, \frac{1}{m})) = B(e, \frac{1}{m}, \frac{1}{m})x \subseteq B(e, \frac{1}{n}, \frac{1}{n})$. Thus, item (2) holds.

To show item (3), we first prove that for each $n \in \mathbb{N}_+$ and $x \in G$ there holds:

$$xB(e, \frac{1}{n}, \frac{1}{n}) = B(x, \frac{1}{n}, \frac{1}{n}).$$
(3.1)

Indeed, take $y \in B(e, \frac{1}{n}, \frac{1}{n})$. Since (M, *, k) is left-invariant, we have

$$M(x, xy, \frac{1}{n}) = M(e, y, \frac{1}{n}) > 1 - \frac{1}{n},$$
(3.2)

so that $xB(e, \frac{1}{n}, \frac{1}{n}) \subseteq B(x, \frac{1}{n}, \frac{1}{n}).$

For the other inclusion, pick $z \in B(x, \frac{1}{n}, \frac{1}{n})$. Since (M, *, k) is left-invariant, we conclude that

$$M(e, x^{-1}z, \frac{1}{n}) = M(x, z, \frac{1}{n}) > 1 - \frac{1}{n}.$$
(3.3)

This proves that $x^{-1}z \in B(e, \frac{1}{n}, \frac{1}{n})$. Thus $z \in xB(x, \frac{1}{n}, \frac{1}{n})$, this implies that $B(x, \frac{1}{n}, \frac{1}{n}) \subseteq xB(e, \frac{1}{n}, \frac{1}{n})$.

Let us show item (3). Pick $n \in \mathbb{N}_+$ and $x \in G$. Note that every right translation is a homeomorphism. So, $B(e, \frac{1}{n}, \frac{1}{n})x$ is a neighborhood of x. Hence, there is an $m \in \mathbb{N}_+$ such that $B(x, \frac{1}{m}, \frac{1}{m}) \subseteq B(e, \frac{1}{n}, \frac{1}{n})x$. This and (3.1) imply

$$xB(e,\frac{1}{m},\frac{1}{m})x^{-1} = B(x,\frac{1}{m},\frac{1}{m})x^{-1} \subseteq B(e,\frac{1}{n},\frac{1}{n}).$$
(3.4)

This proves item (3).

Finally, we show item (4). Choose $n \in \mathbb{N}_+$. Since the *t*-norm * is continuous, there is $p \in \mathbb{N}_+$ such that for each $q \ge p$ we have $(1 - \frac{1}{qk}) * (1 - \frac{1}{qk}) > 1 - \frac{1}{n}$. Put $m = \max\{p, 2nk + 1\}$. Since $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is *k*-nondecreasing and $\frac{1}{nk} > \frac{2}{m}$, we have:

$$M(e, yz, \frac{1}{n}) = M(e, yz, \frac{k}{nk}) \ge M(e, yz, \frac{2}{m}).$$

$$(3.5)$$

For each $y, z \in B(e, \frac{1}{mk}, \frac{1}{mk})$, the following inequalities hold.

$$M(e, yz, \frac{2}{m}) = M(e, yz, \frac{k(1+1)}{mk}) \ge M(e, y, \frac{1}{mk}) * M(y, yz, \frac{1}{mk})$$

= $M(e, y, \frac{1}{mk}) * M(e, z, \frac{1}{mk}) > (1 - \frac{1}{mk}) * (1 - \frac{1}{mk})$
> $1 - \frac{1}{n}.$ (3.6)

(3.5) and (3.6) imply that $B(e, \frac{1}{mk}, \frac{1}{mk})B(e, \frac{1}{mk}, \frac{1}{mk}) \subseteq B(e, \frac{1}{n}, \frac{1}{n})$. For \mathscr{U} is a local neighborhood base at e, there is an $m_1 \in \mathbb{N}_+$, such that $B(e, \frac{1}{m_1}, \frac{1}{m_1}) \subseteq B(e, \frac{1}{mk}, \frac{1}{mk})$. Then we have $B(e, \frac{1}{m_1}, \frac{1}{m_1})B(e, \frac{1}{m_1}, \frac{1}{m_1}) \subseteq B(e, \frac{1}{n}, \frac{1}{n})$, this proves item (4).

By Lemma 3.1, $(G, \tau_{\mathscr{U}})$ is a paratopological group and $\{xB(e, \frac{1}{n}, \frac{1}{n}) : x \in G, n \in \mathbb{N}\}$ is a base for $\tau_{\mathscr{U}}$. Notice that Eq. (3.1) implies that $\{xB(e, \frac{1}{n}, \frac{1}{n}) : x \in G, n \in \mathbb{N}\}$ also is a base for τ_M so that $\tau_M = \tau_{\mathscr{U}}$. This shows that (G, τ_M) is a paratopological group. \Box

If we replace fuzzy quasi-pseudo-*b*-metrics by fuzzy pseudo-*b*-metrics in Theorem 3.2, we obtain a symmetric structure.

Theorem 3.3 Suppose that (G, τ_M) is a right topological group whose topology τ_M is induced by a left invariant fuzzy pseudo-b-metric (M, *, k). Then (G, τ_M) is a topological group.

Proof It is obvious that every left invariant fuzzy pseudo-*b*-metric is a left invariant fuzzy quasipseudo-*b*-metric. By Theorem 3.2, (G, τ_M) is a paratopological group. We only need to prove that the family $\mathscr{U} = \{B(e, \frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}_+\}$ satisfies item (5) of Lemma 3.1. Choose $n \in \mathbb{N}_+$. If we take $x \in B(e, \frac{1}{n}, \frac{1}{n})$, then

$$M(e, x^{-1}, \frac{1}{n}) = M(x, e, \frac{1}{n}) = M(e, x, \frac{1}{n}) > 1 - \frac{1}{n}.$$
(3.7)

We conclude that $x^{-1} \in B(e, \frac{1}{n}, \frac{1}{n})$. So $B(e, \frac{1}{n}, \frac{1}{n}) = B^{-1}(e, \frac{1}{n}, \frac{1}{n})$ for every $n \in \mathbb{N}_+$. Let's take any neighborhood U of y^{-1} , there is an $m \in \mathbb{N}_+$, such that $y^{-1}B(e, \frac{1}{m}, \frac{1}{m}) \subseteq U$. Then $B(e, \frac{1}{m}, \frac{1}{m})y$ is a neighborhood of y.

$$(B(e, \frac{1}{m}, \frac{1}{m})y)^{-1} = y^{-1}B^{-1}(e, \frac{1}{m}, \frac{1}{m}) = y^{-1}B(e, \frac{1}{m}, \frac{1}{m}) \subseteq U.$$

It follows that (G, τ_M) is a topological group. \Box

Corollary 3.4 ([13, Theorems 3.1 and 3.2]) Suppose that (G, τ) is a right topological group whose topology τ is induced by a left invariant fuzzy (quasi-)pseudo-metric. Then (G, τ) is a (para-)topological group.

Since one can easily show that the standard fuzzy quasi-pseudo-b-metric induced by a right

(left) invariant quasi-pseudo-*b*-metric is right (left) invariant, by Proposition 2.9 and Theorems 3.2 and 3.3 we can obtain:

Corollary 3.5 Suppose that (G, τ) is a left topological group whose topology τ is induced by a right invariant (quasi-)pseudo-b-metric. Then (G, τ) is a (para-)topological group.

Arguing as in Theorems 3.2 and 3.3 we can obtain:

Theorem 3.6 Suppose that G is a left topological group whose topology is induced by a right invariant fuzzy quasi-pseudo-b-metric (M, *, k). Then G is a paratopological group. If in addition, (M, *, k) is a right invariant fuzzy pseudo-b-metric then G is a topological group.

Corollary 3.7 ([13, Theorems 3.3]) Suppose that (G, τ) is a left topological group whose topology τ is induced by a right invariant fuzzy (quasi-)pseudo-metric. Then (G, τ) is a (para-)topological group.

Recall that a semitopological group G is a group G with a topology that makes the multiplication separately continuous. Note that a semitopological group is both a left and right topological group. Thus from Theorems 3.2 and 3.3 it follows that:

Corollary 3.8 Suppose that G is a semitopological group whose topology is induced by a left invariant fuzzy (quasi-)pseudo-b-metric. Then G is a (para-)topological group.

It is easy to verify that the same conclusion holds if the left invariant fuzzy (quasi-)pseudob-metric is replaced by the right invariant fuzzy (quasi-)pseudo-b-metric in Corollary 3.8.

4. Fuzzy quasi-pseudo-*b*-metrics on semigroups

In this section, we mainly study fuzzy (quasi-)pseudo-b-metrics on semigroups.

Theorem 4.1 Suppose that (M, *, k) is an invariant fuzzy quasi-pseudo-b-metric on a semigroup S. Then (S, τ_M) is a topological semigroup, where τ_M is the topology induced by (M, *, k).

Proof Take $y, z \in S$, $n \in \mathbb{N}_+$. Since the *t*-norm * is continuous, there is $p \in \mathbb{N}_+$ such that for each $q \ge p$ we have:

$$(1 - \frac{1}{qk}) * (1 - \frac{1}{qk}) > 1 - \frac{1}{n}.$$
(4.1)

Put $m = \max\{p, 2nk+1\}$. Since $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is k-nondecreasing and $\frac{1}{nk} > \frac{2}{m}$. For $\forall a \in B(y, \frac{1}{mk}, \frac{1}{mk})$ and $\forall b \in B(z, \frac{1}{mk}, \frac{1}{mk})$, we have

$$M(yz, ab, \frac{1}{n}) = M(yz, ab, \frac{k}{nk}) > M(yz, ab, \frac{2}{m}) = M(yz, ab, k(\frac{1}{mk} + \frac{1}{mk}))$$

$$\geq M(yz, yb, \frac{1}{mk}) * M(yb, ab, \frac{1}{mk}) = M(z, b, \frac{1}{mk}) * M(y, a, \frac{1}{mk})$$

$$> (1 - \frac{1}{mk}) * (1 - \frac{1}{mk}) > 1 - \frac{1}{n}.$$
(4.2)

Therefore, $B(y, \frac{1}{mk}, \frac{1}{mk})B(z, \frac{1}{mk}, \frac{1}{mk}) \subseteq B(yz, \frac{1}{n}, \frac{1}{n})$. We have proved that multiplication is continuous in (S, τ_M) , i.e., (S, τ_M) is a topological semigroup. \Box

Corollary 4.2 Suppose that d is an invariant quasi-pseudo-b-metric on a semigroup S. Then (S, τ_d) is a topological semigroup, where τ_d is the topology induced by d.

Corollary 4.3 ([13, Theorem 3.10]) Suppose that (M, *) is an invariant fuzzy quasi-pseudometric on a semigroup S. Then (S, τ_M) is a topological semigroup, where τ_M is the topology induced by (M, *).

Let us recall that a monoid is a semigroup with a neutral element.

Theorem 4.4 Suppose (M, *, k) is a left-invariant fuzzy quasi-pseudo-b-metric on a monoid G such that for each $x \in G$, the left translation λ_x is open and the right translation ρ_x is continuous at the identity e of G. Then (G, τ_M) is a topological semigroup, where τ_M is the topology induced by (M, *, k).

Proof We claim that for each $n \in \mathbb{N}_+$ and $x \in G$ we have:

$$xB(e,\frac{1}{n},\frac{1}{n}) \subseteq B(x,\frac{1}{n},\frac{1}{n}).$$

$$(4.3)$$

Indeed, take $y \in B(e, \frac{1}{n}, \frac{1}{n})$. Since (M, *, k) is left invariant, we have:

$$M(x, xy, \frac{1}{n}) = M(e, y, \frac{1}{n}) > 1 - \frac{1}{n}.$$
(4.4)

This proves (4.3). As a consequence of (4.3), we have that left translations are continuous at e. Now, we will show that for every $n \in \mathbb{N}_+$, there is $m \in \mathbb{N}_+$ satisfying

$$B(e, \frac{1}{mk}, \frac{1}{mk})B(e, \frac{1}{mk}, \frac{1}{mk}) \subseteq B(e, \frac{1}{n}, \frac{1}{n}).$$
 (4.5)

Since the *t*-norm is continuous, there is $j \in \mathbb{N}_+$ such that for each $q \geq j$ we have that $(1 - \frac{1}{qk}) * (1 - \frac{1}{qk}) > 1 - \frac{1}{n}$. Put $m = \max\{j, 2nk + 1\}$. $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is *k*-nondecreasing and $\frac{1}{nk} > \frac{2}{m}$. Then for each $y, z \in B(e, \frac{1}{mk}, \frac{1}{mk})$, the following inequalities hold:

$$M(e, yz, \frac{1}{n}) > M(e, yz, \frac{2}{m}) = M(e, yz, \frac{2k}{mk}) \ge M(e, y, \frac{1}{mk}) * M(y, yz, \frac{1}{mk}) = M(e, y, \frac{1}{mk}) * M(e, z, \frac{1}{mk}) > (1 - \frac{1}{mk}) * (1 - \frac{1}{mk}) > 1 - \frac{1}{n}.$$
 (4.6)

Therefore,

$$B(e, \frac{1}{mk}, \frac{1}{mk})B(e, \frac{1}{mk}, \frac{1}{mk}) \subseteq B(yz, \frac{1}{n}, \frac{1}{n}).$$

Now, we will prove that the multiplication is continuous in (G, τ_M) . Take $x, y \in G$ and $n \in \mathbb{N}_+$. By (4.3), we have $xyB(e, \frac{1}{n}, \frac{1}{n}) \subseteq B(xy, \frac{1}{n}, \frac{1}{n})$. For some $m \in \mathbb{N}_+$, it follows from (4.5) that

$$B(e, \frac{1}{mk}, \frac{1}{mk})B(e, \frac{1}{mk}, \frac{1}{mk}) \subseteq B(e, \frac{1}{n}, \frac{1}{n}).$$

Hence

$$xyB(e, \frac{1}{mk}, \frac{1}{mk})B(e, \frac{1}{mk}, \frac{1}{mk}) \subseteq xyB(e, \frac{1}{n}, \frac{1}{n}) \subseteq B(xy, \frac{1}{n}, \frac{1}{n}).$$
(4.7)

By hypothesis, left translations are open. So, $yB(e, \frac{1}{mk}, \frac{1}{mk})$ is a neighborhood of y. Also by hypothesis, ρ_y is continuous at e. Hence, there is $i \in \mathbb{N}$ satisfying

$$\rho_y(B(e, \frac{1}{i}, \frac{1}{i})) = B(e, \frac{1}{i}, \frac{1}{i})y \subseteq yB(e, \frac{1}{mk}, \frac{1}{mk}).$$
(4.8)

Therefore, (4.7) and (4.8) imply

$$xB(e,\frac{1}{i},\frac{1}{i})yB(e,\frac{1}{mk},\frac{1}{mk}) \subseteq xyB(e,\frac{1}{mk},\frac{1}{mk})B(e,\frac{1}{mk},\frac{1}{mk}) \\ \subseteq xyB(e,\frac{1}{n},\frac{1}{n}) \subseteq B(xy,\frac{1}{n},\frac{1}{n}).$$

$$(4.9)$$

Since left translations are open, $xB(e, \frac{1}{i}, \frac{1}{i})$ and $yB(e, \frac{1}{mk}, \frac{1}{mk})$ are neighborhoods of x and y, respectively. Therefore, multiplication in (G, τ_M) is continuous. This completes the proof. \Box

Corollary 4.5 Suppose d is a left-invariant quasi-pseudo-b-metric on a monoid G such that for each $x \in G$, λ_x is open and ρ_x is continuous at the identity e of G. Then (G, τ_d) is a topological semigroup, where τ_d is the topology induced by d.

Corollary 4.6 ([13, Theorem 3.11]) Suppose (M, *) is a left-invariant fuzzy quasi-pseudo-metric on a monoid G such that for each $x \in G$, λ_x is open and ρ_x is continuous at the identity e of G. Then (G, τ_M) is a topological semigroup, where τ_M is the topology induced by (M, *).

Acknowledgements We thank the referees for their time and comments.

References

- [1] M. M. FRÉCHET. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palerm., 1906, 22(1): 1–72.
- [2] S. CZERWIK. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra., 1993, 1: 5–11.
- [3] M. BORICEANU, A. PETRUSEL, I. A. RUS. Fixed point theorems for some multivalued generalized contractions in b metric spaces. Int. J. Math. Stat., 2010, 6: 65–76.
- [4] M. BORICEANU, M. BOTA, A. PETRUSEL. Multivalued fractals in b-metric spaces. Cent. Eur. J. Math., 2010, 8(2): 367–377.
- [5] M. BORICEANU. Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math., 2009, 4: 285–301.
- [6] S. L. SINGH, B. PRASAD. Some coincidence theorems and stability of iterative procedures. Comput. Math. Appl., 2008, 55: 2512–2520.
- [7] L. A. ZADEH. Fuzzy Sets. Inf. Contr., 1965, 8: 338–353.
- [8] I. KRAMOSIL, J. MICHÁLEK. Fuzzy metrics and statistical metric spaces. Kybernetika, 1975, 11: 336–344.
- [9] B. SCHWEIZER, A. SKLAR. Statistical metric spaces. Pacific J. Math., 1960, 10: 313–334.
- [10] A. GEORGE, P. VEERAMANI. On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst., 1997, 90(3): 365–368.
- [11] V. GREGORI, S. ROMAGUERA. Fuzzy quasi-metric spaces. Appl. Gen. Topol., 2004, 5(1): 129-136.
- [12] S. NÅdÅBAN. Fuzzy b-metric spaces. Int. J. Comput. Commun., 2016, 11: 273-281.
- [13] I. SÁNCHEZ, M. SANCHIS. Fuzzy quasi-pseudometrics on algebraic structures. Fuzzy Sets Syst., 2018, 330: 79–86.
- [14] M. PALUSZYŃSKI, K. STEMPAK. On quasi-metric and metric spaces. P. Am. Math. Soc., 2009, 137(12): 4307–4312.