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Abstract In this paper, we mainly study fuzzy (quasi-)pseudo-b-metrics on algebraic structures.

We mainly establish the following results: (1) If a group G with a topology τ , which is induced

by a left invariant fuzzy quasi-pseudo-b-metric (resp., pseudo-b-metric) on the G, is a right

topological group, then G with the topology τ is a paratopological group (resp., a topological

group) and (2) If a semigroup S with a topology τ is induced by an invariant fuzzy quasi-pseudo-

b-metric, then S with the topology τ is a topological semigroup.
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1. Introduction

In 1906, Maurice Fréchet extracted the commonalities of real number space, complex number

space, vector space, function space and other basic spaces, and gave the definition of metric [1].

Definition 1.1 ([1]) Let X be a nonempty set. A function d : X ×X → [0,+∞) is a metric on

X if, for all x, y, z ∈ X , the following conditions hold:

(M1) d(x, y) = 0 if and only if x = y;

(M2) d(x, y) = d(y, x);

(M3) d(x, z) ≤ d(x, y) + d(y, z).

Then (X, d) will be called metric space, which has a wide range of applications in analytics.

In addition to compact spaces, metric spaces can be regarded as another important topological

spaces. Metric spaces can give many topological concepts a proper visual description.

Metrics have been generalized in many ways. Czerwik in [2] introduced b-metric. Basically

the triangularity condition of metrics is relaxed as follows:

Definition 1.2 ([2]) Let X be a nonempty set and k ≥ 1 be a given real number. A function

d : X ×X → [0,+∞) is a b-metric on X , if for all x, y, z ∈ X , the following conditions hold:
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(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ k[d(x, y) + d(y, z)].

The tripe (X, d, k) is said to be a b-metric space. Some examples of b-metric spaces and some

fixed point theorems in b-metric spaces can be found in [3–5]. We also note that the class of

b-metric spaces is larger than that of metric spaces, since every b-metric is a metric when k = 1.

An example of a b-metric space that is not a metric space was given in [6].

On the other hand, after Zadeh has introduced in his famous paper [7] the concept of a fuzzy

set, one of the important problems is to obtain an adequate notion of a fuzzy metric space.

Kramosil and Michálek [8] reformulated successfully the notion of probabilistic metric space,

introduced by Menger in 1942, in fuzzy context.

Definition 1.3 ( [9]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called triangular norm

(t-norm) if it satisfies the following conditions:

(1) a ∗ b = b ∗ a, ∀ a, b ∈ [0, 1];

(2) a ∗ 1 = a, ∀ a ∈ [0, 1];

(3) (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c ∈ [0, 1];

(4) If a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1] then a ∗ b ≤ c ∗ d.

Three paradigmatic examples of continuous t-norms are ∧, · and ∗L (the Lukasiewicz t-norm),

which are defined by a ∧ b = min{a, b}, a · b = ab and a ∗L b = max{a+ b − 1, 0}, respectively.

One can easily show that ∗ ≤ ∧ for every continuous t-norm ∗.

Definition 1.4 ([10, Definition 2.4]) Let X be an arbitrary set and ∗ be a continuous t-norm.

A fuzzy set M in X ×X × [0,∞) is called fuzzy metric (in the sense of Kramosil and Michalek),

if, for all x, y, z ∈ X , the following conditions hold:

(M1) M(x, y, 0) = 0;

(M2) M(x, y, t) = 1, ∀ t > 0 if and only if x = y;

(M3) M(x, y, t) = M(y, x, t), ∀ t ≥ 0;

(M4) M(x, y, ·) : [0,∞) → [0, 1] is left continuous and limt→∞ M(x, y, t) = 1;

(M5) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s), ∀ t, s ≥ 0.

Then the triple (X,M, ∗) is said to be a fuzzy metric space. If in Definition 1.4, (M2) is

relaxed as follows:

(M2′) M(x, y, t) = 1, ∀ t > 0 if x = y.

Then the M is called a fuzzy pseudo-metric on X . If M only satisfies (M1), (M2), (M4) and

(M5), then the M is called a fuzzy quasi-metric on X . If M only satisfies (M1), (M2′) (M4) and

(M5), then the M is a fuzzy quasi-pseudo-metric [11].

If in Definition 1.4, (M5) is relaxed as follows:

Definition 1.5 ([12, Definition 6]) A fuzzy-b-metric (in the sense of Kramosil and Michalek)

is a triple (M, ∗, k), where X is an arbitrary set, ∗ is a continuous t-norm, k ≥ 1 is a given real

number and M is a fuzzy set in X ×X × [0,∞) such that for all x, y, z ∈ X we have:
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(Mb1) M(x, y, 0) = 0;

(Mb2) M(x, y, t) = 1, ∀ t > 0 if and only if x = y;

(Mb3) M(x, y, t) = M(y, x, t), ∀ t ≥ 0;

(Mb4) M(x, y, ·) : [0,∞) → [0, 1] is left continuous and limt→∞ M(x, y, t) = 1;

(Mb5) M(x, z, k(t+ s)) > M(x, y, t) ∗M(y, z, s), ∀ t, s > 0.

The quadruple (X,M, ∗, k) is said to be a fuzzy-b-metric space.

The class of fuzzy b-metric spaces is larger than the class of fuzzy metric spaces, since a fuzzy

b-metric space is a fuzzy metric space when k = 1.

In Definition 1.5, if (Mb2) is replaced by:

(Mb2′) M(x, y, t) = 1, ∀ t > 0 if x = y.

Then the M is called a fuzzy pseudo-b-metric. If M only satisfies (Mb1), (Mb2), (Mb4) and

(Mb5), then the M is called a fuzzy quasi-b-metric.

Definition 1.6 ([12, Definition 25]) A fuzzy-quasi-pseudo-b-metric (in the sense of Kramosil

and Michalek) on a set X is a triple (M, ∗, k), where ∗ is a continuous t-norm, k ≥ 1 is a given

real number and M is a fuzzy set in X ×X × [0,∞) such that for all x, y, z ∈ X we have:

(Mqpb1) M(x, y, 0) = 0;

(Mqpb2) M(x, y, t) = 1, ∀t > 0 if x = y;

(Mqpb3) M(x, y, ·) : [0,∞) → [0, 1] is left continuous and limt→∞ M(x, y, t) = 1;

(Mqpb4) M(x, z, k(t+ s)) > M(x, y, t) ∗M(y, z, s), ∀t, s > 0.

The quadruple (X,M, ∗, k) is said to be a fuzzy-quasi-pseudo-b-metric space.

Definition 1.7 A fuzzy quasi-pseudo-b-metric (M, ∗, k) on a semigroup G is left-invariant

(resp., right-invariant) if M(x, y, t) = M(ax, ay, t) (resp., M(x, y, t) = M(xa, ya, t)) whenever

a, x, y ∈ G and t > 0. We say that (M, ∗, k) is invariant if it is both left-invariant and right-

invariant.

Left-invariant, right-invariant and invariant fuzzy quasi-pseudo-metric are defined in a similar

way.

Definition 1.8 ([13]) Let G be an algebraic semigroup. Pick x ∈ G. The function λx : G → G

defined by λx(g) = xg is called the left translation of G by x. Similarly, ρx : G → G defined as

ρx(g) = gx is known as the right translation of G by x.

A topological semigroup (G, τ) is an algebraic semigroup G with a topology τ that makes

the multiplication in G jointly continuous. A paratopological group G is a topological semigroup

such that G is an algebraic group. We say that a paratopological group (G, τ) is a topological

group if the inverse is continuous, that is, if g−1 stands for the inverse element of g ∈ G, then

the function g → g−1 from G onto G is continuous. (G, τ) is said to be a left (resp., right)

topological group if the translations λx (resp., ρx) are continuous in (G, τ) for all x ∈ G.

In [13], Sánchez and Sanchis stated a number of theorems about fuzzy (quasi-)pseudo-

metrizable algebraic structures. They proved that:

Theorem 1.9 ([13, Theorem 3.1]) Suppose that (G, τ) is a left topological group whose topolo-
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gy τ is induced by a right invariant fuzzy quasi-pseudo-metric. Then (G, τ) is a paratopological

group.

Theorem 1.10 ([13, Theorem 3.2]) Suppose that G is a left topological group whose topology

is induced by a right invariant fuzzy pseudo-metric. Then G is a topological group.

In this paper, we consider the following question: Do Theorems 1.9 and 1.10 hold for a group

G with a topology τ , which is induced by a left invariant fuzzy (quasi-) pseudo-b-metric?

The paper is organized as follows. In Section 2, we study the topological properties of

fuzzy quasi-pseudo-b-metric spaces. Section 3 is devoted to studying the conditions for a left

(right) topological group to become a topological group. In Section 4, we mainly study fuzzy

(quasi-)pseudo-b-metrics on semigroups.

2. Topological properties of fuzzy quasi-pseudo-b-metric spaces

In this section, we show some topological properties of fuzzy quasi-pseudo-b-metric spaces.

Definition 2.1 ([12, Definition 9]) Let k ≥ 1 be a given real number. A function f : R → R is

called k-nondecreasing if for t < s we have f(t) ≤ f(ks).

We can prove the following three conclusions by using the proof methods in [12, Example 8,

Proposition 10 and Theorem 2.1], respectively.

Example 2.2 Let (X, d, k) be a (quasi-pseudo-)b-metric space. Let

Md(x, y, t) =

{

t
t+d(x,y) , for all x, y ∈ X and t > 0;

0, for all x, y ∈ X and t = 0.

Then (X,Md, ∗, k) is a fuzzy (quasi-pseudo-)b-metric space, for any continuous t-norm ∗, the

so-called, the standard fuzzy (quasi-pseudo-)b-metric induced by d on X .

Proposition 2.3 Let (X,M, ∗, k) be a fuzzy quasi-pseudo-b-metric space. For all x, y ∈ X the

fuzzy quasi-pseudo-b-metric mapping M(x, y, ·) : [0,∞) → [0, 1] is k-nondecreasing.

Proposition 2.4 Let (X,M, ∗, k) be a fuzzy quasi-pseudo-b-metric space. For x ∈ X , r ∈ (0, 1),

t > 0, we define the ball B(x, r, t) := {y ∈ X : M(x, y, t) > 1− r}. Then

τM := {T ⊆ X : x ∈ T iff ∃ t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T } (2.1)

is a topology on X .

For a b-metric space (X, b, k) it is well known that the b-metric d can induce a topology τd

on X , but there is an example [14] shows the ball B(x, r) = {y ∈ X : d(x, y) < r}, where r > 0,

need not be an open set in τd. In fuzzy-b-metric spaces, this fact is also true as the following

example shows.

Example 2.5 There is a fuzzy-b-metric space (X,M, ∗, k) whose balls need not be open in the

topology induced by M .
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Proof Consider a fixed number ε > 0. For X = {0, 1, 2, . . .}, let d : X ×X → [0,∞) be defined

by

d(0, 1) = 1, d(0,m) = 1 + ε for m ≥ 2,

d(1,m) =
1

m
, d(n,m) =

1

n
+

1

m
for n ≥ 2.

Then we extend d onto X × X by puting d(n, n) = 0 for any n ≥ 0 and d(m,n) = d(n,m) if

0 ≤ m < n. Define a fuzzy set Md in X ×X × [0,∞) by:

Md(x, y, t) =

{

t
t+d(x,y) , for all x, y ∈ X and t > 0;

0, for all x, y ∈ X and t = 0.

Then the ball B(x, r, t) := {y ∈ X : M(x, y, t) > 1− r} is not open.

According to the example on page 4 of reference [14], d is a b-metric, according to the Remark

2.5, Md is a fuzzy b-metric. Let r1 = 1− 2t2+2t+tε
2(t+1)(t+1+ε) . Now, note that B(0, r1, t) = {0, 1}, while

B(1, r′, t′) contains infinitely many elements, for any r′ ∈ (0, 1) and t′ > 0. Hence, none of

B(1, r′, t′) are contained in B(0, r1, t), which shows that B(0, r1, t) is not open. 2

Example 2.5 shows that there is a fuzzy-b-metric space (X,M, ∗, k) whose balls need not be

open in the topology induced by M , but we have the following:

Proposition 2.6 Let (X,M, ∗, k) be a fuzzy quasi-pseudo-b-metric space. Then for x ∈ X ,

r ∈ (0, 1), t > 0 the ball B(x, r, t) := {y ∈ X : M(x, y, t) > 1− r} is a neighbourhood of x.

Proof Let A = {y ∈ B(x, r, t)|∃ r′ ∈ (0, 1), t′ > 0, B(y, r′, t′) ⊆ B(x, r, t)}. We will show that A

is an open set in the topology τM .

For each a ∈ A, there are ra ∈ (0, 1) and ta > 0 such that B(a, ra, ta) ⊆ B(x, r, t). Consider

the ball B(a, ra,
ta
k
). For y ∈ B(a, ra,

ta
k
), we have M(a, y, ta

k
) > 1− ra. Since M(a, y, ta

k
) >

1− ra and M(x, y, ·) : [0,∞) → [0, 1] is left continuous, there is t0
k
∈ (0, ta

k
) such that

M(a, y,
t0

k
) > 1− ra.

Let r0 = M(a, y, t0
k
). For r0 > 1 − ra, there is s ∈ (0, 1) such that r0 > 1 − s > 1 − ra. Since

the binary operation ∗ is a continuous t-norm, there is r1 ∈ (0, 1) such that r0 ∗ r1 ≥ 1− s. Now

consider the ball B(y, 1− r1,
ta−t0

k
). We claim

B(y, 1− r1,
ta − t0

k
) ⊂ B(x, r, t).

For ∀z ∈ B(y, 1− r1,
ta−t0

k
), we have M(y, z, ta−t0

k
) > 1− (1− r1) = r1. Therefore,

M(a, z, ta) =M(a, z,
k(ta − t0 + t0)

k
) ≥ M(a, y,

t0

k
) ∗M(y, z,

ta − t0

k
)

≥r0 ∗ r1 ≥ 1− s > 1− ra.

Therefore, z ∈ B(x, ra, ta), this implies that B(y, 1 − r1,
ta−t0

k
) ⊆ B(a, ra, ta) ⊆ B(x, r, t).

Thus we have proved that A is an open set in the topology τM . 2

Proposition 2.7 Let (X,M, ∗, k) be a fuzzy quasi-pseudo-b-metric space. For x ∈ X , U =
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{B(x, 1
n
, 1
n
) : n ∈ N+}, where B(x, 1

n
, 1
n
) = {y ∈ X : M(x, y, 1

n
) > 1 − 1

n
}. Then U is a local

neighbourhood base at x.

Proof Let r ∈ (0, 1), t > 0, for any x ∈ X , by Proposition 2.6, B(x, r, t) is a neighbourhood

of x. Pick n1 ∈ N+ such that n1 > 1
r
, pick n2 ∈ N such that n2 > k

t
. Let n = max{n1, n2},

s = t− k
n
, Then t = k( 1

n
+ s

k
). We have that

B(x,
1

n
,
1

n
) ⊂ B(x, r, t). (2.2)

Indeed, for ∀ y ∈ B(x, 1
n
, 1
n
), we have

M(x, y, t) =M(x, y, k(
1

n
+

s

k
)) ≥ M(x, y,

1

n
) ∗M(y, y,

s

k
)

=M(x, y,
1

n
) > 1−

1

n
> 1− r. (2.3)

Hence, y ∈ B(x, r, t), this implies that B(x, 1
n
, 1
n
) ⊂ B(x, r, t). 2

Remark 2.8 Let (X,M, ∗, k) be a fuzzy quasi-pseudo-b-metric space such that (X,M) is a right

topological group. Let e be the identity of X , U = {B(e, 1
n
, 1
n
) : n ∈ N+}, where B(e, 1

n
, 1
n
) =

{y ∈ X : M(x, y, 1
n
) > 1− 1

n
}. Then U is a local neighborhood base at e.

Proposition 2.9 Let (X, d, k) be a quasi-pseudo-b-metric space. Then the topology τd, induced

by d, coincides with the topology τMd
, which is induced by the induced standard fuzzy quasi-

pseudo-b-metric Md.

Proof Let B = {B(x, r, t) : x ∈ X, r ∈ (0, 1), t ∈ (0,∞)},D = {Sǫ(x) : x ∈ X, ǫ ∈ (0,∞)},

where Sǫ(x) = {y : d(x, y) < ǫ}. Obviously, B and D are the base of τMd
and τd, respectively.

For every B ∈ B, suppose B = B(x, r, t), let ǫ = t
1−r

− t. We have

Sǫ(x) ⊂ B(x, r, t). (2.4)

Indeed, for ∀ y ∈ Sǫ(x), M(x, y, t) = t
t+d(x,y) > t

t+( t

1−r
−t)

= 1 − r. Hence, y ∈ B(x, r, t),

Therefore, Sǫ(x) ⊂ B(x, r, t).

On the other hand, for every Sǫ ∈ D , suppose Sǫ(x) = {y : d(x, y) < ǫ, ǫ > 0}. Let t ∈ (0,∞),

0 < r0 < 1− t
t+ǫ

. Then t
1−r0

− t < ǫ. We have

B(x, r0, t) ⊂ Sǫ(x). (2.5)

Indeed, for ∀ y ∈ B(x, r0, t), M(x, y, t) = t
t+d(x,y) > 1− r0, then we have t

1−r0
− t > d(x, y), thus

d(x, y) < ǫ. Therefore, y ∈ Sǫ(x), this implies that B(x, r0, t) ⊂ Sǫ(x). 2

3. Fuzzy quasi-pseudo-b-metrics on right (left) topological groups

In this section, we are concerned with the continuity of the operation on right fuzzy quasi-

pseudo-b-metric topological groups. It provides a sufficient condition to obtain a paratopological

group.

The following result is a well known internal characterization of a (para-)topological group.
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Lemma 3.1 ([13, Theorem 2.1]) Let G be a group with identity e and U a family of subsets of

G containing e. Consider the following conditions.

(1) For every U, V ∈ U , there exists W ∈ U such that W ⊆ U ∩ V ;

(2) For every U ∈ U and x ∈ U , there is V ∈ U such that V x ⊆ U ;

(3) For every U ∈ U and x ∈ G, we can find V ∈ U satisfying xV x−1 ⊆ U ;

(4) For every U ∈ U , there exists V ∈ U such that V 2 ⊆ U ;

(5) For every U ∈ U , we can find V ∈ U with V −1 ∈ U .

If U satisfies (1)–(4), then the family {Ux : x ∈ G,U ∈ U } is a base for a topology τU on

G. With this topology, G is a paratopological group, and the family {xU : x ∈ G,U ∈ U } is a

base for the same topology on G. In addition, if U satisfies (5), then (G, τU ) is a topological

group.

Theorem 3.2 Suppose that (G, τM ) is a right topological group whose topology τM is induced

by a left invariant fuzzy quasi-pseudo-b-metric (M, ∗, k). Then (G, τM ) is a paratopological

group.

Proof Let e be the identify of G. According to Remark 2.8, U = {B(e, 1
n
, 1
n
) : n ∈ N+} is a

local neighborhood base at e. Let τU be the topology associated to the family U . Now, we will

show U satisfies conditions (1)–(4) in Lemma 3.1, that is, (G, τU ) is a paratopological group.

Item (1) follows from the fact that U is a local neighborhood base at e in (G, τM ). To prove

item (2), take n ∈ N+ and x ∈ B(e, 1
n
, 1
n
). Since the right translation ρx is continuous at e and

ρx(e) = ex = x ∈ B(e, 1
n
, 1
n
), there exists m ∈ N+ such that ρx(B(e, 1

m
, 1
m
)) = B(e, 1

m
, 1
m
)x ⊆

B(e, 1
n
, 1
n
). Thus, item (2) holds.

To show item (3), we first prove that for each n ∈ N+ and x ∈ G there holds:

xB(e,
1

n
,
1

n
) = B(x,

1

n
,
1

n
). (3.1)

Indeed, take y ∈ B(e, 1
n
, 1
n
). Since (M, ∗, k) is left-invariant, we have

M(x, xy,
1

n
) = M(e, y,

1

n
) > 1−

1

n
, (3.2)

so that xB(e, 1
n
, 1
n
) ⊆ B(x, 1

n
, 1
n
).

For the other inclusion, pick z ∈ B(x, 1
n
, 1
n
). Since (M, ∗, k) is left-invariant, we conclude

that

M(e, x−1z,
1

n
) = M(x, z,

1

n
) > 1−

1

n
. (3.3)

This proves that x−1z ∈ B(e, 1
n
, 1
n
). Thus z ∈ xB(x, 1

n
, 1
n
), this implies that B(x, 1

n
, 1
n
) ⊆

xB(e, 1
n
, 1
n
).

Let us show item (3). Pick n ∈ N+ and x ∈ G. Note that every right translation is a

homeomorphism. So, B(e, 1
n
, 1
n
)x is a neighborhood of x. Hence, there is an m ∈ N+ such that

B(x, 1
m
, 1
m
) ⊆ B(e, 1

n
, 1
n
)x. This and (3.1) imply

xB(e,
1

m
,
1

m
)x−1 = B(x,

1

m
,
1

m
)x−1 ⊆ B(e,

1

n
,
1

n
). (3.4)
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This proves item (3).

Finally, we show item (4). Choose n ∈ N+. Since the t-norm ∗ is continuous, there is p ∈ N+

such that for each q ≥ p we have (1 − 1
qk
) ∗ (1 − 1

qk
) > 1− 1

n
. Put m = max{p, 2nk + 1}. Since

M(x, y, ·) : [0,∞) → [0, 1] is k-nondecreasing and 1
nk

> 2
m
, we have:

M(e, yz,
1

n
) = M(e, yz,

k

nk
) ≥ M(e, yz,

2

m
). (3.5)

For each y, z ∈ B(e, 1
mk

, 1
mk

), the following inequalities hold.

M(e, yz,
2

m
) = M(e, yz,

k(1 + 1)

mk
) ≥ M(e, y,

1

mk
) ∗M(y, yz,

1

mk
)

= M(e, y,
1

mk
) ∗M(e, z,

1

mk
) > (1−

1

mk
) ∗ (1 −

1

mk
)

> 1−
1

n
. (3.6)

(3.5) and (3.6) imply that B(e, 1
mk

, 1
mk

)B(e, 1
mk

, 1
mk

) ⊆ B(e, 1
n
, 1
n
). For U is a local neighbor-

hood base at e, there is an m1 ∈ N+, such that B(e, 1
m1

, 1
m1

) ⊆ B(e, 1
mk

, 1
mk

). Then we have

B(e, 1
m1

, 1
m1

)B(e, 1
m1

, 1
m1

) ⊆ B(e, 1
n
, 1
n
), this proves item (4).

By Lemma 3.1, (G, τU ) is a paratopological group and {xB(e, 1
n
, 1
n
) : x ∈ G,n ∈ N} is a base

for τU . Notice that Eq. (3.1) implies that {xB(e, 1
n
, 1
n
) : x ∈ G,n ∈ N} also is a base for τM so

that τM = τU . This shows that (G, τM ) is a paratopological group. 2

If we replace fuzzy quasi-pseudo-b-metrics by fuzzy pseudo-b-metrics in Theorem 3.2, we

obtain a symmetric structure.

Theorem 3.3 Suppose that (G, τM ) is a right topological group whose topology τM is induced

by a left invariant fuzzy pseudo-b-metric (M, ∗, k). Then (G, τM ) is a topological group.

Proof It is obvious that every left invariant fuzzy pseudo-b-metric is a left invariant fuzzy quasi-

pseudo-b-metric. By Theorem 3.2, (G, τM ) is a paratopological group. We only need to prove

that the family U = {B(e, 1
n
, 1
n
) : n ∈ N+} satisfies item (5) of Lemma 3.1. Choose n ∈ N+. If

we take x ∈ B(e, 1
n
, 1
n
), then

M(e, x−1,
1

n
) = M(x, e,

1

n
) = M(e, x,

1

n
) > 1−

1

n
. (3.7)

We conclude that x−1 ∈ B(e, 1
n
, 1
n
). So B(e, 1

n
, 1
n
) = B−1(e, 1

n
, 1
n
) for every n ∈ N+. Let’s

take any neighborhood U of y−1, there is an m ∈ N+, such that y−1B(e, 1
m
, 1
m
) ⊆ U . Then

B(e, 1
m
, 1
m
)y is a neighborhood of y.

(B(e,
1

m
,
1

m
)y)−1 = y−1B−1(e,

1

m
,
1

m
) = y−1B(e,

1

m
,
1

m
) ⊆ U.

It follows that (G, τM ) is a topological group. 2

Corollary 3.4 ([13, Theorems 3.1 and 3.2]) Suppose that (G, τ) is a right topological group

whose topology τ is induced by a left invariant fuzzy (quasi-)pseudo-metric. Then (G, τ) is a

(para-)topological group.

Since one can easily show that the standard fuzzy quasi-pseudo-b-metric induced by a right
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(left) invariant quasi-pseudo-b-metric is right (left) invariant, by Proposition 2.9 and Theorems

3.2 and 3.3 we can obtain:

Corollary 3.5 Suppose that (G, τ) is a left topological group whose topology τ is induced by

a right invariant (quasi-)pseudo-b-metric. Then (G, τ) is a (para-)topological group.

Arguing as in Theorems 3.2 and 3.3 we can obtain:

Theorem 3.6 Suppose that G is a left topological group whose topology is induced by a right

invariant fuzzy quasi-pseudo-b-metric (M, ∗, k). Then G is a paratopological group. If in addi-

tion, (M, ∗, k) is a right invariant fuzzy pseudo-b-metric then G is a topological group.

Corollary 3.7 ([13, Theorems 3.3]) Suppose that (G, τ) is a left topological group whose topolo-

gy τ is induced by a right invariant fuzzy (quasi-)pseudo-metric. Then (G, τ) is a (para-)topological

group.

Recall that a semitopological group G is a group G with a topology that makes the mul-

tiplication separately continuous. Note that a semitopological group is both a left and right

topological group. Thus from Theorems 3.2 and 3.3 it follows that:

Corollary 3.8 Suppose that G is a semitopological group whose topology is induced by a left

invariant fuzzy (quasi-)pseudo-b-metric. Then G is a (para-)topological group.

It is easy to verify that the same conclusion holds if the left invariant fuzzy (quasi-)pseudo-

b-metric is replaced by the right invariant fuzzy (quasi-)pseudo-b-metric in Corollary 3.8.

4. Fuzzy quasi-pseudo-b-metrics on semigroups

In this section, we mainly study fuzzy (quasi-)pseudo-b-metrics on semigroups.

Theorem 4.1 Suppose that (M, ∗, k) is an invariant fuzzy quasi-pseudo-b-metric on a semigroup

S. Then (S, τM ) is a topological semigroup, where τM is the topology induced by (M, ∗, k).

Proof Take y, z ∈ S, n ∈ N+. Since the t-norm ∗ is continuous, there is p ∈ N+ such that for

each q ≥ p we have:

(1 −
1

qk
) ∗ (1−

1

qk
) > 1−

1

n
. (4.1)

Put m = max{p, 2nk+1}. Since M(x, y, ·) : [0,∞) → [0, 1] is k-nondecreasing and 1
nk

> 2
m
. For

∀ a ∈ B(y, 1
mk

, 1
mk

) and ∀ b ∈ B(z, 1
mk

, 1
mk

), we have

M(yz, ab,
1

n
) = M(yz, ab,

k

nk
) > M(yz, ab,

2

m
) = M(yz, ab, k(

1

mk
+

1

mk
))

≥ M(yz, yb,
1

mk
) ∗M(yb, ab,

1

mk
) = M(z, b,

1

mk
) ∗M(y, a,

1

mk
)

> (1 −
1

mk
) ∗ (1−

1

mk
) > 1−

1

n
. (4.2)

Therefore, B(y, 1
mk

, 1
mk

)B(z, 1
mk

, 1
mk

) ⊆ B(yz, 1
n
, 1
n
). We have proved that multiplication is

continuous in (S, τM ), i.e., (S, τM ) is a topological semigroup. 2
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Corollary 4.2 Suppose that d is an invariant quasi-pseudo-b-metric on a semigroup S. Then

(S, τd) is a topological semigroup, where τd is the topology induced by d.

Corollary 4.3 ([13, Theorem 3.10]) Suppose that (M, ∗) is an invariant fuzzy quasi-pseudo-

metric on a semigroup S. Then (S, τM ) is a topological semigroup, where τM is the topology

induced by (M, ∗).

Let us recall that a monoid is a semigroup with a neutral element.

Theorem 4.4 Suppose (M, ∗, k) is a left-invariant fuzzy quasi-pseudo-b-metric on a monoid G

such that for each x ∈ G, the left translation λx is open and the right translation ρx is continuous

at the identity e of G. Then (G, τM ) is a topological semigroup, where τM is the topology induced

by (M, ∗, k).

Proof We claim that for each n ∈ N+ and x ∈ G we have:

xB(e,
1

n
,
1

n
) ⊆ B(x,

1

n
,
1

n
). (4.3)

Indeed, take y ∈ B(e, 1
n
, 1
n
). Since (M, ∗, k) is left invariant, we have:

M(x, xy,
1

n
) = M(e, y,

1

n
) > 1−

1

n
. (4.4)

This proves (4.3). As a consequence of (4.3), we have that left translations are continuous at e.

Now, we will show that for every n ∈ N+, there is m ∈ N+ satisfying

B(e,
1

mk
,

1

mk
)B(e,

1

mk
,

1

mk
) ⊆ B(e,

1

n
,
1

n
). (4.5)

Since the t-norm is continuous, there is j ∈ N+ such that for each q ≥ j we have that

(1 − 1
qk
) ∗ (1 − 1

qk
) > 1 − 1

n
. Put m = max{j, 2nk + 1}. M(x, y, ·) : [0,∞) → [0, 1] is k-

nondecreasing and 1
nk

> 2
m
. Then for each y, z ∈ B(e, 1

mk
, 1
mk

), the following inequalities hold:

M(e, yz,
1

n
) > M(e, yz,

2

m
) = M(e, yz,

2k

mk
) ≥ M(e, y,

1

mk
) ∗M(y, yz,

1

mk
)

= M(e, y,
1

mk
) ∗M(e, z,

1

mk
) > (1−

1

mk
) ∗ (1 −

1

mk
) > 1−

1

n
. (4.6)

Therefore,

B(e,
1

mk
,

1

mk
)B(e,

1

mk
,

1

mk
) ⊆ B(yz,

1

n
,
1

n
).

Now, we will prove that the multiplication is continuous in (G, τM ). Take x, y ∈ G and

n ∈ N+. By (4.3), we have xyB(e, 1
n
, 1
n
) ⊆ B(xy, 1

n
, 1
n
). For some m ∈ N+, it follows from (4.5)

that

B(e,
1

mk
,

1

mk
)B(e,

1

mk
,

1

mk
) ⊆ B(e,

1

n
,
1

n
).

Hence

xyB(e,
1

mk
,

1

mk
)B(e,

1

mk
,

1

mk
) ⊆ xyB(e,

1

n
,
1

n
) ⊆ B(xy,

1

n
,
1

n
). (4.7)

By hypothesis, left translations are open. So, yB(e, 1
mk

, 1
mk

) is a neighborhood of y. Also by

hypothesis, ρy is continuous at e. Hence, there is i ∈ N satisfying

ρy(B(e,
1

i
,
1

i
)) = B(e,

1

i
,
1

i
)y ⊆ yB(e,

1

mk
,

1

mk
). (4.8)
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Therefore, (4.7) and (4.8) imply

xB(e,
1

i
,
1

i
)yB(e,

1

mk
,

1

mk
) ⊆ xyB(e,

1

mk
,

1

mk
)B(e,

1

mk
,

1

mk
)

⊆ xyB(e,
1

n
,
1

n
) ⊆ B(xy,

1

n
,
1

n
). (4.9)

Since left translations are open, xB(e, 1
i
, 1
i
) and yB(e, 1

mk
, 1
mk

) are neighborhoods of x and

y, respectively. Therefore, multiplication in (G, τM ) is continuous. This completes the proof. 2

Corollary 4.5 Suppose d is a left-invariant quasi-pseudo-b-metric on a monoid G such that for

each x ∈ G, λx is open and ρx is continuous at the identity e of G. Then (G, τd) is a topological

semigroup, where τd is the topology induced by d.

Corollary 4.6 ([13, Theorem 3.11]) Suppose (M, ∗) is a left-invariant fuzzy quasi-pseudo-metric

on a monoid G such that for each x ∈ G, λx is open and ρx is continuous at the identity e of G.

Then (G, τM ) is a topological semigroup, where τM is the topology induced by (M, ∗).
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