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Abstract The task of identifying the quintic PH curve G
0 “closest” to a given planar Bézier

curve with or without prescribed arc length is discussed here using Gauss-Legendre polygon

and Gauss-Lobatto polygon respectively. By expressing the sum of squared differences between

the vertices of Gauss-Legendre or Gauss-Lobatto polygon of a given Bézier and those of a PH

curve, it is shown that this problem can be formulated as a constrained polynomial optimization

problem in certain real variables, subject to two or three quadratic constraints, which can be effi-

ciently solved by Lagrange multiplier method and Newton-Raphson iteration. Several computed

examples are used to illustrate implementations of the optimization methodology. The results

demonstrate that compared with Bézier control polygon, the method with Gauss-Legendre and

Gauss-Lobatto polygon can produce the G0 PH curve closer to the given Bézier curve with close

arc length. Moreover, good approximations with prescribed arc length can also be achieved.
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1. Introduction

Pythagorean-hodograph (PH) curves, introduced by [1], are a special type of polynomial

curves, which have the unique property that their parametric speed functions are also polynomials

of the curve parameter. The PH property enables us to compute the arc length of the curve

exactly without numerical integration. Another important advantage of PH curves is that their

offset curves are rational curves, so we do not need to rely on approximation algorithms for offset

computation. One may consult [2] for more details on PH curves from algebraic frameworks to

practical applications.

Recently, the problem of identifying the planar PH curve that is “closest” to a given Bézier

curve, and has the same end points (or end points and tangents), was considered in [3]. The

“closeness” measure employed in the context is the root-mean-square magnitude of the differ-

ences between pairs of corresponding Bézier control points for the two curves. Using the complex

representation for planar curves, it is shown that this problem can be reduced to the minimiza-

tion of a quartic penalty function in certain real variables subject to two quadratic constraints.
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The results highlight four noteworthy points: (1) the G0 case conforms more closely than G1

case, since it incorporates more free optimization parameters; (2) the closest PH quintic curves

offer better approximations to convex cubic segments than to inflectional segments; (3) closest

approximations of quintic Bézier curves by PH quintics can be achieved for curves without several

curvature variation; (4) invoking the Lagrange multiplier method, the problem can be efficiently

solved to machine precision by a few Newton-Raphson iterations.

Noted that a PH curve has fewer degrees of freedom than a Bézier curve of the same degree

has, since the Bézier control points of a PH curve should satisfy certain algebraic constraints.

In fact, the identification of PH curves from the Bézier polygons is not a trivial task. Recently,

Farouki et al. [4] suggested the method to determine whether a given Bézier curve is in fact a

PH curve, and to compute the parameters of the PH curve. They also presented the method

of local modification of quintic PH spline curve while maintaining the PH property [5]. This

situation suggests that a Bézier control polygon is not appropriate to control a PH curve. As an

alternative to the Bézier polygon, the Gauss-Legendre polygon was recently introduced in [6, 7]

as the representative of PH curves. The Gauss-Legendre polygon with enough number of edges

has the same degrees of freedom as the PH curve, interpolates the end points and has the same

arc length as the PH curve. These properties make it a rectifying control polygon and a nice

tool to control the shape of the PH curve. Moreover, the procedure to compute the PH curves

from a given rectifying control polygon is developed based on the Bernstein-Vandermonde linear

system. However, a crucial limitation of the Gauss-Legendre polygon is the lack of the end

tangent representation, because all the nodes of the Gauss-Legendre quadrature are the interior

ones. As a remedy to this problem, the Gauss-Lobatto polygon, which has the end tangent

interpolation property by nature, was proposed in [8] as an alternative. Moreover, with adequate

number of edges, it still interpolates the end points and has the same arc length as the PH curve.

Our goal in this paper is the development of a novel approach to constructing planar PH

curves with or without prescribed arc length based on identifying, for a given planar Bézier curve,

the “closest” PH curve of related degree based on Gauss-Lobatto polygon and Gauss-Legendre

polygon respectively. As more end constraints are imposed, the number of free parameters avail-

able diminishes and consequently the “closeness” of the PH curve to the given Bézier curve will

generally be reduced, we only discuss the G0 “closeness” case in this context. The methodology

presented herein employs a constrained optimization approach to determine the PH curve whose

Gauss-Legendre or Gauss-Lobatto control points are as close as possible to those of a prescribed

Bézier curve. The results demonstrate that compared with Bézier control polygon, our method

can produce the G0 PH curve closer to the given Bézier curve with close arc length for convex

and inflectional curves. Moreover, good approximations with specified arc length can also be

achieved.

The plan for the remainder of this paper is as follows. Section 2 briefly reviews the fun-

damental properties of PH curves, the Gauss-Legendre polygon and Gauss-Lobatto polygon.

Identification of the quintic PH curve (with specified arc length) that is closest to a given planar

Bézier curve is then formulated as a constrained optimization problem in Section 3, using the
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Gauss-Legendre and Gauss-Lobatto polygon respectively. Section 4 then illustrates an imple-

mentation of the method through some representative computed examples. Finally, Section 5

concludes the main contributions of this study.

2. Preliminary

In this section, we review some basic knowledges about PH curves and the two types of

polygons, namely the Gauss-Legendre polygon and Gauss-Lobatto polygon.

2.1. Planar Pythagorean-hodograph curves

For the simplicity of the representation, we use the complex notation for planar curves. A

point z = (x, y) in R2 is identified with the complex number z = x + iy in C. Similarly, a

planar parametric curve r(t) = (x(t), y(t)) can be identified with a complex valued function

r(t) = x(t) + iy(t).

A planar polynomial curve r(t) = x(t) + iy(t) is called a PH curve if and only if there exist

real polynomials u(t) and v(t) which satisfy

x′(t) = u2(t)− v2(t), y′(t) = 2u(t)v(t).

This structure is embodied in the complex representation [9], wherein a PH curve r of degree

n = 2m+ 1 is generated from a degree m complex polynomial

w(t) = u(t) + iv(t) =
m
∑

k=0

wk

(

m

k

)

(1− t)m−ktk (2.1)

by integration of the expression r′ = w2.

2.2. Gauss-Legendre polygon

The concept of Gauss-Legendre polygon for PH curves was proposed in [6] based on the

Gauss-Legendre quadrature. The key property of the Gauss-Legendre quadrature

Im =

m−1
∑

k=0

ωm,kf(τm,k)

with m nodes of a polynomial function f on [−1, 1] is that it gives the exact integral if the degree

of f is less than or equal to 2m− 1. Table 1 lists the nodes τm,k and weights ωm,k up to order

5. The following theorem presents the error of Gauss-Legendre quadrature with m nodes for a

polynomial function f defined on [0, 1] (see [11, 13]).

Theorem 2.1 ([13]) Let f(x) ∈ C2m[0, 1]. Then

∫ 1

0

f(t)dt =
m−1
∑

k=0

ωm,k

2
f(

1 + τm,k

2
) + Em(f),

where

Em(f) =
[(m)!]4

(2m+ 1)[(2m)!]3
f (2m)(ξ), ξ ∈ [0, 1].
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Number of nodes (m) Nodes (τm,k) Weights (ωm,k)

1 0 2

2 ±
√

1
3 1

3 0,±
√

3
5

8
9 ,

5
9

4 ±
√

3
7 − 2

7

√

6
5 ,±

√

3
7 + 2

7

√

6
5

18+
√
30

36 , 18−
√
30

36

5 0,± 1
3

√

5− 2
√

10
7 ,± 1

3

√

5 + 2
√

10
7

128
225 ,

332+13
√
70

900 , 332−13
√
70

900

Table 1 Nodes and weights of Gauss-Legendre quadrature up to order 5

Definition 2.2 Let p be a regular curve in Rq defined on [0, 1]. The Gauss-Legendre polygon

of p with m edges is defined by

Gm(p) = [p0 · · ·pm],

where

p0 = p(0),

pk+1 = pk +
ωm,k

2
p′(

1 + τm,k

2
), k = 0, 1, . . . ,m− 1.

It can be easily proved from the definition that the Gauss-Legendre polygon with adequate

number of edges for a polynomial curve has the end point interpolation property, as demonstrated

in the following theorem.

Theorem 2.3 Let p be a polynomial curve of degree l in R
q defined on [0, 1]. If m ≥ l

2 , then the

Gauss-Legendre polygon Gm(p) has the end point interpolation property: that is, pm = p(1).

The arc-length formula of a differentiable curve is motivated by the piecewise linear approx-

imation. For a regular curve p defined on [0, 1], if we choose a partition 0 = t0 < t1 < · · · <
tn+1 = 1 of [0, 1], then the polygon connecting the sequence of points p(t0),p(t1), . . . ,p(tn+1)

approximates the given curve p. The length of this polygon converges to the arc length of p as

the partition size tends to 0. For a PH curve p, by Theorem 2.1, the length of its Gauss-Legendre

polygon with adequate edge is the same as the arc length of p, while for a polynomial curve, the

length of its Gauss-Legendre polygon can be regarded as the approximation of its arc length.

Theorem 2.4 ([6]) Let r be a PH curve of degree 2n + 1 defined on [0, 1]. Then its Gauss-

Legendre polygon [p0p1 · · ·pm] with m ≥ n + 1 is a rectifying polygon of r, which means the

length of the polygon is the same as the arc length of r.

Theorem 2.5 ([6]) For a given polygon [p0p1 · · ·pn+1] of n + 1 segments, there exist 2n PH

curves of degree 2n+ 1 whose rectifying polygon is [p0p1 · · ·pn+1].

2.3. Gauss-Lobatto polygon

Although the Gauss-Legendre polygon is a nice representative of PH curves, a clear draw-

back of it is that it does not determine the end tangent vectors. This is because all the nodes
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of the Gauss-Legendre quadrature are the interior ones. So, the Gauss-Lobatto polygon was

introduced in [8] based on the Gauss-Lobatto quadrature, which utilizes both end parameters

0, 1 as preselected nodes.

For an integrable function f on [0, 1], the Gauss-Lobatto quadrature is

Ī(f ; [0, 1]) =
ω̄m,0

2
f(0) +

ω̄m,m−1

2
f(1) +

m−2
∑

k=1

ω̄m,k

2
f(

1 + τ̄m,k

2
).

Table 2 lists the values of the nodes τ̄m,k and the weights ω̄m,k for small number of nodes. The

following theorem shows the complete formula of Gauss-Lobatto integration rule [10, 12].

Theorem 2.6 ([12]) Let f(x) ∈ C2m−2[0, 1]. Then we have

∫ 1

0

f(t)dt =

m−1
∑

k=0

ω̄m,k

2
f(

1 + τ̄m,k

2
) + Em(f),

where

Em(f) =
−m(m− 1)3[(m− 2)!]4

(2m− 1)[(2m− 2)!]4
f (2m−2)(ξ), ξ ∈ [0, 1].

Based on Theorem 2.6, the Gauss-Lobatto quadrature Īm with m nodes evaluates the exact

integral of polynomial of degree up to 2m−3 and the Gauss-Lobatto polygon with adequate edges

acquires the rectifying property if the given curve p is a PH curve. Moreover, it demonstrates

that the length of the Gauss-Lobatto polygon for a polynomial curve can also be regarded as the

approximation of its arc length.

Number of nodes m Nodes (τ̄m,k) Weights (ω̄m,k)

2 ±1 1

3 ±1, 0 1
3 ,

4
3

4 ±1,±
√

1
5

1
6 ,

5
6

5 ±1,±
√

3
7 , 0

1
10 ,

49
90 ,

32
45

6 ±1,±
√

1
3 + 2

√
7

21 ,±
√

1
3 − 2

√
7

21
1
15 ,

14−
√
7

30 , 14+
√
7

30

7 ±1,±
√

5
11 + 2

11

√

5
3 ,±

√

5
11 − 2

11

√

5
3 , 0

1
21 ,

124−7
√
15

350 , 124+7
√
15

350 , 256
525

Table 2 Nodes and weights of Gauss-Lobatto quadrature up to order 5

Definition 2.7 ([8]) Let p be a regular curve in R
q defined on [0, 1]. The Gauss-Lobatto polygon

of p with m edges is defined by

Ḡm(p) = [p0p1 · · ·pm],

where

p0 = p(0),

pk+1 = pk +
ω̄m,k

2
p′(

1 + τ̄m,k

2
), k = 0, 1, . . . ,m− 1.
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If p is a polynomial curve, then its Gauss-Lobatto polygon with adequate number of edges

has the end point interpolation property and rectifying property.

Theorem 2.8 ([8]) Let p be a polynomial curve of degree l in R
q defined on [0, 1]. If m ≥

l
2 +1, then the Gauss-Lobatto polygon Ḡm(p) has the end point interpolation property: that is,

pm = p(1).

Theorem 2.9 ([8]) Let p be a PH curve of degree 2n+ 1 in either R2 or R3 defined on [0, 1].

If m ≥ n+ 2, then the Gauss-Lobatto polygon Ḡm(p) is a rectifying polygon.

3. Constrained optimization problem

Based on Gauss-Legendre and Gauss-Lobatto polygon, the task of identifying the planar PH

curve p “closest” to a prescribed Bézier curve q is discussed in this section. As shown in [3], the

more end constraints imposed, the less close of the PH curve to the given Bézier curve, therefore,

we only discuss the G0 quintic PH curves “closest” to prescribed planar Bézier curves. The

measure of “closeness” is based on the sum of squared distances between corresponding vertices

of the Gauss-Legendre or Gauss-Lobatto polygon of the two curves. The objective function and

constraints may be expressed in terms of the coefficients of the preimage polynomial (2.1) of p

and constants determined by the control points of q.

To facilitate the analysis, it is convenient to use canonical form, whose initial and final points

coincide with the values 0 and 1 on the real axis. A plane curve can be mapped to canonical

form by a translation/rotation/scaling transformation, and can be mapped back to its original

position by the inverse of that transformation.

Consider a planar cubic Bézier curve q given in canonical form

q(t) =

3
∑

k=0

ck

(

3

k

)

(1− t)3−ktk (3.1)

with c0 = 0 and c3 = 1. We want to identify the quintic PH curve p “closest” to q that has the

same end points. p may be generated by substituting a quadratic complex polynomial

w(t) = w0(1− t)2 + 2w1(1− t)t+w2t
2

into p′ = w2 and integrating. The control points of the Bézier representation

p(t) =

5
∑

k=0

bk

(

5

k

)

(1− t)5−ktk

are then determined [3] from the coefficients w0,w1,w2 as

b1 = b0 +
1

5
w2

0, b2 = b1 +
1

5
w0w1, b3 = b2 +

2w2
1 +w0w2

15
,

b4 = b3 +
1

5
w1w2, b5 = b4 +

1

5
w2

2 (3.2)

with b0 = c0 = 0. The end point interpolation p(1) = q(1) yields the following constraints [3]

2w2
1 + 3(w0 +w2)w1 + 3(w2

0 +w2
2) +w0w2 − 15 = 0. (3.3)
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In the following, discussion of identifying the G0 PH quintic curve p “closest” to a given

Bézier curve q (with prescribed arc length) is treated.

3.1. G0 PH quintic closest to a cubic Bézier curve by Gauss-Legendre polygon

In this section, we identify the PH quintic curve p “closest” to a given planar cubic Bézier

curve q by minimizing the squared distance between their vertices of Gauss-Legendre polygons.

By Theorem 2.3, in order to make sure that the Gauss-Legendre polygons of p and q both have

the end interpolation property, their edge number m must satisfy m ≥ 3. Hence we discuss

m = 3, 4, 5 respectively.

When m = 3, by Definition 2.2, the vertices of the Gauss-Legendre polygons of cubic Bézier

curve q and quintic PH curve p are

q0 = 0, q1 =
(
√
15 + 2)c1 + (

√
15− 2)c2

12
+

4−
√
15

12
,

q2 =
(
√
15− 2)c1 + (

√
15 + 2)c2

12
+

8−
√
15

12
, q3 = 1 (3.4)

and

p0 =0,

p1 =
1

1080
[48

√
15w2

0 + (36
√
15− 45)w0w1 + (16

√
15− 50)w2

1+

(8
√
15− 25)w0w2 + (12

√
15− 45)w1w2 + (465− 120

√
15)],

p2 =
1

1080
[48

√
15w2

0 + (36
√
15 + 45)w0w1 + (16

√
15 + 50)w2

1+

(8
√
15 + 25)w0w2 + (12

√
15 + 45)w1w2 + (615− 120

√
15)],

p3 =1, (3.5)

respectively. We identify the quintic PH curve p by minimizing the quantity

∆ = |p1 − q1|2 + |p2 − q2|2 . (3.6)

Substituting (3.4) and (3.5) into (3.6), simplifying, omitting terms that do not depend on

w0,w1,w2, we obtain the following reduced form

∆ =
1

108
[576w̄2

0(12w
2
0 + 9w0w1 + 4w2

1 + 2w0w2 + 3w1w2)+

(2w̄2
1 + w̄0w̄2)(1152w

2
0 + 1089w0w1 + 634w2

1 + 317w0w2 + 513w1w2)+

9w̄0w̄1(576w
2
0 + 477w0w1 + 242w2

1 + 121w0w2 + 189w1w2)+

27w̄1w̄2(64w
2
0 + 63w0w1 + 38w2

1 + 19w0w2 + 31w1w2)] + Re(T1 − T2 − T3), (3.7)

where

T1 =
1

9
(31

√
15− 120)(12w2

0 + 4w2
1 + 9w0w1 + 2w0w2 + 3w1w2),

T2 =q̄1[48
√
15w2

0 + (36
√
15− 45)w0w1 + (16

√
15− 50)w2

1 + (8
√
15− 25)w0w2+

(12
√
15− 45)w1w2],
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T3 =q̄2[48
√
15w2

0 + (36
√
15 + 45)w0w1 + (16

√
15 + 50)w2

1 + (8
√
15 + 25)w0w2+

(12
√
15 + 45)w1w2].

Writing wk = uk + ivk for k = 0, 1, 2, the reduced objective function ∆ can be expressed as

∆(u0, v0, u1, v1, u2, v2) that are subject to the real and imaginary parts of (3.3), which can be

written as

g(u0, v0, u1, v1, u2, v2) = 0, h(u0, v0, u1, v1, u2, v2) = 0, (3.8)

where

g =2(u2
1 − v21) + 3(u0u1 − v0v1) + 3(u1u2 − v1v2)+

3(u2
0 − v20) + 3(u2

2 − v22) + u0u2 − 15,

h =4u1v1 + 3(u0v1 + u1v0) + 3(u1v2 + u2v1) + 6u0v0+

6u2v2 + u0v2 + v2u0.

The goal is to minimize ∆(u0, v0, u1, v1, u2, v2) subject to the constraints (3.8). By Lagrange

multiplier method, this can be achieved by solving the system of eight polynomial equations:

f1 =
∂∆

∂u0
+ α

∂g

∂u0
+ β

∂h

∂u0
= 0, f2 =

∂∆

∂v0
+ α

∂g

∂v0
+ β

∂h

∂v0
= 0,

f3 =
∂∆

∂u1
+ α

∂g

∂u1
+ β

∂h

∂u1
= 0, f4 =

∂∆

∂v1
+ α

∂g

∂v1
+ β

∂h

∂v1
= 0,

f5 =
∂∆

∂u2
+ α

∂g

∂u2
+ β

∂h

∂u2
= 0, f6 =

∂∆

∂v2
+ α

∂g

∂v2
+ β

∂h

∂v2
= 0,

f7 =g = 0, f8 = h = 0.

The Newton-Raphson iteration offers an accurate and efficient approach to solving this system

of equations [3]. It is defined by the relations

xk+1 = xk + δxk, Mkδxk = −fk,

where

x = (u0, v0, u1, v1, u2, v2, α, β)
T

is the unknown vector, M is the corresponding 8× 8 Jacobian matrix,

f = (f1, f2, f3, f4, f5, f6, f7, f8)
T

and the subscripts on M and f indicate that they are to be evaluated at xk. Note that the

proposed approach for solving the constrained minimization problem should be regarded as a

heuristic, whose success will depend on the starting point for the Newton method. Moreover,

there is no guarantee that this approach will always find a global minimizer.

The cases of m = 4, 5 can be discussed similarly.

3.2. G0 PH quintic closest to a cubic Bézier curve by Gauss-Lobatto polygon

In this section, we identify the PH quintic curve p “closest” to the cubic Bézier curve q

by minimizing the squared distance between their vertices of the Gauss-Lobatto polygons. By
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Theorem 2.8, in order to make sure that the Gauss-Lobatto polygons of p and q both have

the end interpolation property, their edge number m must satisfy m ≥ 4. Here we discuss

m = 4, 5, 6, 7 respectively.

When m = 4, by Definition 2.7, the vertices of the Gauss-Lobatto polygons of q and p are

q0 =0, q1 =
c1

4
, q2 =

(1 +
√
5)(c1 + c2)

8
+

3−
√
5

8
,

q3 =
3 + c2

4
, q4 = 1 (3.9)

and

p0 =0, p1 =
w0

12
,

p2 =
1

360
[(16

√
5 + 30)w2

0 + (15 + 21
√
5)w0w1 + (10 + 6

√
5)w2

1 + (5 + 3
√
5)w0w2−

(3
√
5− 15)w1w2 + 105− 45

√
5],

p3 =
1

36
(3w2

0 + 2w2
1 + 3w1w2 + 3w0w1 +w0w2 + 21), p4 = 1, (3.10)

respectively. We identify the quintic PH curve p by minimizing the quantity

∆ = |p1 − q1|2 + |p2 − q2|2 + |p3 − q3|2 (3.11)

with constraints (3.8). Substituting (3.9) and (3.10) into (3.11), simplifying, omitting terms that

do not depend on w0,w1,w2, we obtain the following reduced form

∆ =
1

1080
[18w̄2

0[(24 + 6
√
5)w2

0 + (18 + 5
√
5)w0w1 + (4 +

√
5)w0w2 + (8 + 2

√
5)w2

1+

(6 +
√
5)w1w2] + 3w̄0w̄1[6(18 + 5

√
5)w2

0 + 3(37 + 7
√
5)w0w1 + (46 + 10

√
5)w2

1+

(23 + 5
√
5)w0w2 + (27 + 9

√
5)w1w2] + 3w̄1w̄2[(36 + 6

√
5)w2

0 + (27 + 9
√
5)w0w1+

(22 + 2
√
5)w2

1 + (11 +
√
5)w0w2 + (39− 3

√
5)w1w2] + (2w̄2

1 + w̄0w̄2)(18(4 +
√
5)w2

0+

(69 + 15
√
5)w0w1 + (34 + 6

√
5)w2

1 + (17 + 3
√
5)w0w2 + (33 + 3

√
5)w1w2)]+

2Re(T4 − T5 − T6), (3.12)

where

T4 =(q̄1 + 18
√
5− 9)w2

0 + (51
√
5− 84)w0w1 + (4 + 6

√
5)w2

1 + (3
√
5 + 2)w0w2+

(96− 33
√
5)w1w2,

T5 =
1

30
q̄2[(30 + 18

√
5)w2

0 + (15 + 21
√
5)w0w1 + (10 + 6

√
5)w2

1 + (5 + 3
√
5)w0w2+

(15− 3
√
5)w1w2],

T6 =
1

3
q̄3(3w

2
0 + 3w0w1 + 2w2

1 +w0w2 + 3w1 +w2).

By Lagrange multiplier method and Newton-Raphson iteration, this minimization problem

with constraints can be solved.

The cases of m = 5, 6, 7 can be discussed similarly.

3.3. G0 PH quintic closest to a cubic Bézier curve with prescribed arc length
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It may be desirable to guarantee that the PH curve p matches not only the end points, but

also the prescribed arc length L. In this section, we identify the PH quintic curve p which is

G0 closest to the cubic Bézier curve q and has a specified arc length L by Gauss-Lobatto and

Gauss-Legendre polygon respectively.

For a planar quintic PH curve p with specified arc length L, the complex coefficients wi in

(3.2) must [14] satisfy the condition

2 |w1|2 + 3Re((w̄0 + w̄2)w1) + 3 |w0|2 + 3 |w2|2 +Re(w̄0w2) = 15L,

which can be expressed as

s(u0, v0, u1, v1, u2, v2) = 0, (3.13)

where

s = 2(u2
1 + v21) + 3(u0u1 + v0v1 + u2u1 + v1v2 + u2

0 + v20 + u2
2 + v22) + u0u2 + v0v2 − 15L.

To force the quintic PH curve p to have the same arc length L as a given ordinary cubic curve

q, this condition must be introduced as a constraint with an associated Lagrange multiplier γ.

The goal is to minimize the function ∆(u0, v0, u1, v1, u2, v2) as (3.7) and (3.12) corresponding

to Gauss-Legendre and Gauss-Lobatto polygon respectively subject to the constraints (3.8) and

(3.13). By the Lagrange multiplier method, the optimization problem then incurs a system of 9

equations in 9 real unknowns:

f1 =
∂∆

∂u0
+ α

∂g

∂u0
+ β

∂h

∂u0
+ γ

∂s

∂u0
= 0, f2 =

∂∆

∂v0
+ α

∂g

∂v0
+ β

∂h

∂v0
+ γ

∂s

∂v0
= 0,

f3 =
∂∆

∂u1
+ α

∂g

∂u1
+ β

∂h

∂u1
+ γ

∂s

∂u1
= 0, f4 =

∂∆

∂v1
+ α

∂g

∂v1
+ β

∂h

∂v1
+ γ

∂s

∂v1
= 0,

f5 =
∂∆

∂u2
+ α

∂g

∂u2
+ β

∂h

∂u2
+ γ

∂s

∂u2
= 0, f6 =

∂∆

∂v2
+ α

∂g

∂v2
+ β

∂h

∂v2
+ γ

∂s

∂v2
= 0,

f7 =g = 0, f8 = h = 0, f9 = s = 0.

Remark 3.1 The principles described in Sections 3.1–3.3 for determining the quintic PH curve

closest to a given cubic Bézier curve (with prescribed arc length) can be readily generalized to

quintic Bézier curves.

4. Computed examples

The following examples serve to illustrate the above algorithm in operation. The complicated

nature of the objective functions ∆(u0, v0, u1, v1, u2, v2) and constraints (3.8) and (3.13) precludes

a rigorous analysis of the number and nature of the extrema that the optimization problem

admits. Consequently, in the following, this issue is investigated empirically for all the examples

in [3] using the Newton-Raphson iterations. For the case without arc length constraint, choose

the initial vector x0 of the unknown vector x = (u0, v0, u1, v1, u2, v2, α, β)
T as setting

α = β = 1, w0 = u0 + iv0 =
√

λ0 exp(i
1

2
θ0), w2 = u2 + iv2 =

√

λ1 exp(i
1

2
θ1)
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with w1 the complex root of (3.3) that yields the smaller value of △, where λ0, λ1 and θ0, θ1 are

the magnitudes and arguments of the end derivatives q′(0) and q′(1); for the case with arc length

constraint, choose the initial value α = β = γ = 1 together with w0 = λ0 exp(i
1
2θ0) and w1,w2

the complex root of (3.3) and (3.13) that yields the smaller value of △. The choice of w0,w1 and

w2 values defines end derivatives identical to those of the curve being approximated, and ensures

satisfaction of the end-point condition. To check if the convergence efficiency and consistency

depends on the choice (α, β) = (1, 1), the examples below were repeated with (α, β) = (0, 0)

and (−1,−1). In all of these cases, the same converged solution was obtained, with a number of

iterations differing by no more than one. The iterations stop when ‖δxk‖ ≤ 10−15.
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Figure 1 The quintic PH curve p (red curves and red control polygons) closest to q (blue curves and

blue control polygons) in Example 4.1

To assess the closeness of the PH quintic p with a prescribed cubic or quintic Bézier curve

q, several measures are used:

e0 =
(1

6

5
∑

k=0

|bk − dk|
)

1

2

, e1 =
( 1

m

m−1
∑

k=0

|pk − qk|
)

1

2

,

e2 =
(

∫ 1

0

|p(t)− q(t)|2dt
)

1

2

, e3 = |L− l|,
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where {dk} are the Bézier control points of q after degree elevation and L, l denote the arc

lengths of the curves p and q, respectively.

Number of nodes ∆ e0 e1 e2 e3 Number of iterations

Ld (m = 3) 0 2.65×10−2 0 6.39×10−3 3.62×10−4 5

Ld (m = 4) 2.80×10−4 2.46×10−2 7.48×10−3 6.05×10−3 4.12×10−4 5

Ld (m = 5) 2.31×10−4 2.52×10−2 6.21×10−3 7.05×10−3 2.24×10−3 5

Lb (m = 4) 4.57×10−4 2.37×10−2 9.56×10−3 7.66×10−3 2.50×10−3 5

Lb (m = 5) 1.48×10−4 2.53×10−2 4.97×10−3 5.91×10−3 1.50×10−3 5

Lb (m = 6) 2.17×10−4 2.50×10−2 5.56×10−3 5.94×10−3 9.07×10−4 5

Lb (m = 7) 2.41×10−4 2.50×10−2 5.50×10−3 5.95×10−3 7.83×10−4 5

G0 method in [3] 3.32×10−3 2.35×10−2 7.43×10−3 1.05×10−3 5

Ld
−
Arc (m = 3) 6.96×10−8 2.65×10−2 1.32×10−4 6.40×10−3 0 5

Ld
−
Arc (m = 4) 2.80×10−4 2.46×10−2 7.48×10−3 6.07×10−3 0 5

Ld
−
Arc (m = 5) 2.34×10−4 2.53×10−2 6.25×10−3 6.86×10−3 0 5

Lb
−
Arc (m = 4) 4.60×10−4 2.37×10−2 9.59×10−3 7.66×10−3 0 5

Lb
−
Arc (m = 5) 1.49×10−4 2.53×10−2 4.99×10−3 5.95×10−3 0 5

Lb
−
Arc (m = 6) 2.17×10−4 2.50×10−2 5.57×10−3 5.97×10−3 0 5

Lb
−
Arc (m = 7) 2.42×10−4 2.51×10−2 5.50×10−3 5.98×10−3 0 5

Table 3 The errors of quintic PH curves closest to q in Example 4.1

4.1. Quintic PH curve closest to a cubic Bézier curve

Number of nodes ∆ e0 e1 e2 e3 Number of iterations

Ld (m = 3) 0 7.92×10−2 0 1.05×10−2 6.01×10−3 6

Ld (m = 4) 6.59×10−5 7.75×10−2 3.63×10−3 6.33×10−3 4.59×10−3 5

Ld (m = 5) 3.38×10−4 7.65×10−2 7.50×10−3 7.70×10−3 2.70×10−3 6

Lb (m = 4) 1.09×10−4 7.69×10−2 4.66×10−3 1.62×10−2 5.77×10−3 5

Lb (m = 5) 5.41×10−4 7.49×10−2 9.49×10−3 6.47×10−3 1.38×10−3 5

Lb (m = 6) 1.93×10−4 7.70×10−3 5.25×10−3 5.87×10−3 4.98×10−3 5

Lb (m = 7) 2.76×10−4 7.67×10−3 5.87×10−3 5.91×10−3 4.04×10−3 5

G0 method in [3] 2.34×10−2 6.24×10−2 1.95×10−2 4.82×10−2 5

Ld
−
Arc (m = 3) 4.98×10−5 7.47×10−2 3.53×10−3 1.06×10−2 0 5

Ld
−
Arc (m = 4) 7.57×10−5 7.56×10−2 3.89×10−3 6.55×10−3 0 5

Ld
−
Arc (m = 5) 3.42×10−4 7.53×10−2 7.55×10−3 7.73×10−3 0 6

Lb
−
Arc (m = 4) 2.31×10−4 8.30×10−2 6.80×10−3 1.46×10−2 0 5

Lb
−
Arc (m = 5) 5.42×10−4 7.43×10−2 9.50×10−3 6.56×10−3 0 5

Lb
−
Arc (m = 6) 2.05×10−4 7.49×10−2 5.42×10−3 6.11×10−3 0 5

Lb
−
Arc (m = 7) 2.85×10−4 7.50×10−2 5.97×10−3 6.14×10−3 0 6

Table 4 The errors of quintic PH curves closest to q in Example 4.2

The following examples illustrate application of the method to cubic Bézier curves.

Example 4.1 Consider the C-shaped canonical-form cubic Bézier curve q defined by the

control points

c0 = 0, c1 = 0.3 + 0.5i, c2 = 0.8 + 0.7i, c3 = 1.
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Its arc length is l = 1.4304. Figure 1 compares the G0 PH quintics p closest to q obtained

by Gauss-Lobatto polygon, Gauss-Legendre polygon and the method in [3] respectively, where

Ld−Arc and Ld denote the G0 quintic PH curves obtained by Gauss-Legendre polygon with

and without prescribed arc length respectively, while Lb−Arc and Lb denote the G0 quintic PH

curves obtained by Gauss-Lobatto polygon with and without prescribed arc length respectively.

Table 3 illustrates various errors between the quintic PH curves p and cubic Bézier curve q. As

evident from the results, in cases where the arc length is not specified, all the approximations are

seen to closely approximate the given cubic curve, while Ld with m = 3, 4 and Lb with m = 6, 7

conform somewhat more closely since they have closer arc length. In cases where the arc length

L = l is specified, all the Ld−Arc and Lb−Arc approximate the original curve q very well.
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Figure 2 The quintic PH curves p closest to a cubic Bézier curve q in Example 4.2

This example demonstrates that for convex cubic segments, the Gauss-Lobatto and Gauss-

Legendre polygon can achieve the same good results with Bézier control polygon when without

arc length constraint, and since the edge number m has more choices, even better results can
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be achieved; when the arc length is constrained, both the arc length preserving and good ap-

proximate effect can be achieved. It should be noted that the Ld with m = 3 has the same

Gauss-Legendre polygon with q. This is coincident with Theorem 2.5.

Example 4.2 Consider the S-shaped canonical-form cubic Bézier curve q defined by the control

points

c0 = 0, c1 = 0.4 + 0.5i, c2 = 0.7− 0.4i, c3 = 1

with the arc length l = 1.1586. Figure 2 compares the PH quintic p closest to the cubic Bézier

curve q obtained by Gauss-Lobatto polygon and Gauss-Legendre polygon with and without arc

length constraint. Table 4 illustrates various errors between p and q. Because of the stronger

curvature variation of the cubic curve q, the G0 PH quintic obtained by Bézier control polygon

in [3] is not close to the original curve, while our method works very well with small error and

close arc length. Moreover, even with specified arc length L = l, the approximation effect of the

curves p is still very good.
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Figure 3 The quintic PH curves p closest to a quintic Bézier curve q in Example 4.3
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This example demonstrates that for inflectional segments, the method by Gauss-Lobatto and

Gauss-Legendre polygon can achieve good approximation results.

Examples 4.1 and 4.2 highlight that the closest PH quintics offer good G0 approximants for

both convex and inflectional cubic segments.

4.2. Quintic PH curve closest to a quintic Bézier curve

The following examples illustrate applications of the method to quintic Bézier curves. Note

that quintic Bézier curves have twice as many free shape parameters as quintic PH curves, so

the quintic PH curve closest to a given quintic Bézier curve may not always be a reasonable

approximation.

Example 4.3 Consider the C-shaped canonical-form quintic Bézier curve q defined by the

control points

c̄0 = 0, c̄1 = 0.2 + 0.5i, c̄2 = 0.4 + 0.7i, c̄3 = 0.6 + 0.7i, c̄4 = 0.8 + 0.5i, c̄5 = 1.

Its arc length is l = 1.6298. Figure 3 compares the PH quintics p closest to q obtained by

Gauss-Lobatto polygon, Gauss-Legendre polygon and the method in [3], respectively. Table 5

illustrates various errors between the quintic PH curves p and quintic Bézier curve q.

The results demonstrate that comparied with the method in [3], the Ld with m = 4 and

Lb with m ≥ 5 are better approximants to the given curve q with smaller error and similar

arc length. Moreover, the Ld−Arc with m = 3, 4 and Lb−Arc with m ≥ 5 can achieve good

approximation effect with prescribed arc length L = l.

Number of nodes ∆ e0 e1 e2 e3 Number of iterations

Ld (m = 3) 0 3.82×10−2 0 8.84×10−3 1.26×10−2 5

Ld (m = 4) 4.71×10−4 3.36×10−2 9.70×10−3 8.06×10−3 3.50×10−3 5

Ld (m = 5) 4.01×10−4 3.44×10−2 8.17×10−3 9.39×10−3 1.30×10−2 5

Lb (m = 4) 7.01×10−4 3.20×10−2 1.18×10−2 1.08×10−2 1.04×10−2 5

Lb (m = 5) 2.71×10−4 3.51×10−2 6.72×10−3 7.81×10−3 3.98×10−3 5

Lb (m = 6) 3.75×10−4 3.44×10−2 7.32×10−3 7.86×10−3 3.96×10−3 5

Lb (m = 7) 4.18×10−4 3.44×10−2 7.23×10−3 7.87×10−3 4.19×10−3 5

G0 method in [3] 6.04×10−3 3.17×10−2 1.05×10−2 2.16×10−3 5

Ld
−
Arc (m = 3) 7.52×10−5 3.64×10−2 4.33×10−3 8.19×10−3 0 5

Ld
−
Arc (m = 4) 4.77×10−4 3.33×10−2 9.77×10−3 8.07×10−3 0 5

Ld
−
Arc (m = 5) 5.07×10−4 3.27×10−2 9.19×10−3 8.70×10−3 0 5

Lb
−
Arc (m = 4) 7.47×10−4 3.18×10−2 1.22×10−2 1.01×10−2 0 5

Lb
−
Arc (m = 5) 2.79×10−4 3.46×10−2 6.82×10−3 7.87×10−3 0 5

Lb
−
Arc (m = 6) 3.85×10−4 3.40×10−2 7.41×10−3 7.90×10−3 0 5

Lb
−
Arc (m = 7) 4.31×10−4 3.39×10−2 7.34×10−3 7.90×10−3 0 5

Table 5 The errors of quintic PH curves closest to q in Example 4.3
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Figure 4 The quintic PH curves p closest to a quintic Bézier curve q in Example 4.4

Example 4.4 Consider the S-shaped canonical-form quintic Bézier curve q defined by the

control points

c̄0 = 0, c̄1 = 0.2 + 0.5i, c̄2 = 0.4 + 0.7i, c̄3 = 0.6− 0.7i, c̄4 = 0.8− 0.5i, c̄5 = 1

with the arc length l = 1.6732. Figure 4 compares the PH quintics p closest to q obtained

by Gauss-Lobatto polygon, Gauss-Legendre polygon and the method in [3] respectively. Table

6 illustrates various errors between the quintic PH curves p and quintic Bézier curve q. For

this inflectional quintic curve q with a strong curvature variation, the results demonstrate that

comparied with the G0 method in [3], the Ld with m ≥ 4 and Lb with m ≥ 5 are closer to the

given curve q with smaller error and closer arc length, while all the Ld−Arc and Lb−Arc with

m ≥ 5 are better approximants with the arc length constraint L = l.
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Number of nodes ∆ e0 e1 e2 e3 Number of iterations

Ld (m = 3) 0 4.62×10−1 0 5.97×10−2 2.25×10−1 8

Ld (m = 4) 0 4.48×10−1 0 3.29×10−2 1.59×10−2 6

Ld (m = 5) 8.65×10−3 4.34×10−1 3.80×10−2 3.65×10−2 3.63×10−2 7

Lb (m = 4) 0 4.12×10−1 0 8.57×10−2 2.93×10−1 7

Lb (m = 5) 1.66×10−2 4.10×10−1 5.27×10−2 3.56×10−2 3.45×10−2 7

Lb (m = 6) 4.87×10−3 4.41×10−1 2.64×10−2 3.00×10−2 4.32×10−2 7

Lb (m = 7) 7.43×10−3 4.36×10−1 3.05×10−2 3.03×10−2 2.81×10−2 7

G0 method in [3] 4.89×10−1 2.86×10−1 1.21×10−1 2.66×10−1 8

Ld
−
Arc (m = 3) 9.27×10−3 3.77×10−1 4.81×10−2 4.86×10−2 0 6

Ld
−
Arc (m = 4) 4.81×10−5 4.43×10−1 3.10×10−3 3.37×10−2 0 7

Ld
−
Arc (m = 5) 8.92×10−3 4.22×10−1 3.86×10−2 3.67×10−2 0 7

Lb
−
Arc (m = 4) 1.70×10−2 1.20 5.84×10−2 2.34×10−1 0 7

Lb
−
Arc (m = 5) 1.69×10−2 3.99×10−1 5.30×10−2 3.67×10−2 0 6

Lb
−
Arc (m = 6) 5.24×10−3 4.26×10−1 2.74×10−2 3.16×10−2 0 7

Lb
−
Arc (m = 7) 7.61×10−3 4.27×10−1 3.08×10−2 3.17×10−2 0 7

Table 6 The errors of quintic PH curves closest to q in Example 4.4

Examples 4.3 and 4.4 highlight that the closest PH quintics offer better approximants to

convex quintic segments than to inflectional segments.

Example 4.5 In this final example, a quintic PH curve is modified by perturbing a single

control point so that the perturbed curve is no longer a PH curve, as shown in Figure 5(a).

We then determine the G0 quintic PH curve closest to the modified curve by Gauss-Legendre

and Gauss-Lobatto polygon respectively. Figure 5 compares the Ld and Lb with different edge

number m and the one by the method in [3]. Table 7 illustrates various errors between the

quintic PH curves p and quintic Bézier curve q.

The result demonstrates that for this case, our method with Gauss-Legendre and Gauss-

Lobatto polygon can still obtain better approximation with smaller error and closer arc length

than the method by Bézier control polygon.

Remark 4.6 The problems are investigated empirically for Examples 4.1–4.5 by starting the

Newton-Raphson iterations from points satisfying the constraints and yielding smaller objective

functions. It was found that when the procedure converges in a reasonable number of iterations,

the resulting values correspond to a unique solution. Moreover, as evident from Tables 3–7 for

all the examples, the initial values of the optimization variables proposed in our method yield

rapid convergence (with between 5 and 8 iterations) to the unique solution.

It is noteworthy that [3] emphasized that the Bézier control polygon tends to exaggerate the

behavior of the curve, so e0 > e2. However, in all the above examples, e1 > e2 does not always

hold, which means that both the Gauss-Legendre and Gauss-Lobatto polygon do not exaggerate

the shape of the curve. Moreover, the approximate effect of the PH quintic curve does not get

better as the edge number m of Gauss-Legendre or Gauss-Lobatto polygon increases.
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Figure 5 A quintic PH curve (red) modified by displacement of a single control point (blue) in (a); the

PH quintics closest to the modified curve in Example 4.5

Number of nodes ∆ e0 e1 e2 e3 Number of iterations

Ld (m = 3) 0 4.72×10−2 0 8.01×10−3 1.60×10−2 5

Ld (m = 4) 2.87×10−4 4.70×10−2 7.58×10−3 6.62×10−3 2.60×10−3 5

Ld (m = 5) 2.70×10−4 4.64×10−2 6.71×10−3 6.81×10−3 3.82×10−3 5

Lb (m = 4) 5.50×10−4 4.76×10−2 1.05×10−2 1.05×10−2 1.71×10−2 5

Lb (m = 5) 2.76×10−4 4.53×10−2 6.78×10−3 6.60×10−3 6.63×10−3 5

Lb (m = 6) 2.54×10−4 4.66×10−2 6.02×10−3 6.46×10−3 1.05×10−3 5

Lb (m = 7) 3.00×10−4 4.64×10−2 6.12×10−3 6.47×10−3 6.91×10−3 5

G0 method in [3] 8.73×10−3 3.82×10−2 1.39×10−2 2.18×10−2 6

Table 7 The errors of quintic PH curves closest to q in Example 4.5

5. Conclusion

Bézier control polygon is not appropriate to control a Pythagorean-hodograph curve since

it has redundant degrees of freedom, so the Gauss-Legendre and Gauss-Lobatto polygon are

used instead in this context to construct PH curves. These two kinds of polygons for a planar

polynomial curve both have the end point interpolation property and their lengths can be viewed

as the approximations of the arc length of the polynomial curve. Therefore, the Gauss-Legendre

and Gauss-Lobatto polygon can be used to develop simple PH curve manipulation algorithms.

By expressing the sum of squared differences between the vertices of the Gauss-Legendre or

Gauss-Lobatto polygon of a given planar Bézier curve and those of a quintic PH curve in terms

of the complex coefficients, the task of identifying the PH curve with or without prescribed arc

length that is G0 closest to the Bézier curve can be formulated as a constrained polynomial

optimization problem. By Lagrange multiplier method and the Newton-Raphson iterations,
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examples of the approximation of cubic and quintic Bézier curves by quintic PH curves are

presented. Better approximations can be achieved for flat curves or curves with severe curvature

variation than that with Bézier control polygon. Moreover, the methodology can be readily

adapted to higher degree PH curves.
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