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Abstract In this paper, we study a subclass of close-to-convex harmonic mappings whose

analytic parts are starlike mappings. We derive some properties and characteristics for this

class, such as the bounds of Toeplitz determinants, bounds of Hankel determinants, Zalcman

functional and Bohr’s inequality.
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1. Introduction

Let A denote the class of functions h of the form

h(z) = z +

∞
∑

n=2

anz
n, (1.1)

which are analytic in the unit disk D := {z : |z| < 1}. Also, let G(β) be the subclass of A whose

members satisfy the inequality

Re(1 +
zh′′(z)

h′(z)
) < β, β > 1; z ∈ D. (1.2)

For convenience, we denote by G(3/2) =: G. The class G plays an important role in the geometry

function theory.

In 1995, Ponnusamy and Rajasekaran [1] proved that the class G(β) is starlike in D for

β ∈ (1, 3/2] (see also Singh and Singh [2]). In 2013, Obradović et al. [3] pointed out that the
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class G(β) is not univalent in D for β ∈ (3/2,+∞), but they did not give detailed proof about

the non-univalency of the class G(β). Later, Kargar et al. [4] proved that the class G(β) is not

univalent in D for β ∈ [2,+∞) through a counterexample. Recently, Wang et al. [5] gave a

counterexample to clarify the non-univalency of the class G(β) for β ∈ (3/2, 2). For more recent

results involving the class starlike functions, one can also refer to Kanas et al. [6], Maharana et

al. [7] and Wang et al. [8].

Let H denote the class of normalized and sense-preserving harmonic mappings f = h + g,

which are given by

f(z) = z +

∞
∑

n=2

anz
n +

∞
∑

n=1

bnzn. (1.3)

Lewy [9] once proved that f = h + g is locally univalent in D if and only if its Jacobian

Jf = |h′|2 − |g′|2 6= 0 in D. Note that the harmonic mapping f is sense-preserving if Jf > 0

or |h′| > |g′| in D, or its dilatation ωf = g′/h′ has the property |ωf | < 1 in D. Let SH be the

subclass of H consisting of univalent mappings. We observe that SH reduces to the familiar class

S of normalized univalent analytic functions, if their co-analytic parts g ≡ 0.

Let P denote the class of analytic functions p in D of the form

p(z) = 1 +

∞
∑

n=1

pnz
n (1.4)

such that Re(p(z)) > 0 in D.

We recall the following sufficient condition for close-to-convexity of harmonic mappings, which

was due to Abu-Muhanna and Ponnusamy [10] (see also [11, 12]).

Theorem 1.1 Let h and g be normalized analytic functions in D such that

Re(1 +
zh′′(z)

h′(z)
) <

3

2

and

g′(z) = λznh′(z), 0 < |λ| ≤
1

n+ 1
; n ∈ N := {1, 2, 3, . . .}.

Then the harmonic mapping f = h+ g is univalent and close-to-convex in D.

Motivated essentially by Theorem 1.1, we introduce and investigate the following subclass

F(β, λ, γ, n) of harmonic mappings.

Definition 1.2 A harmonic mapping f = h+ g ∈ H is said to be in the class F(β, λ, γ, n), if h

and g satisfy the conditions

Re(1 +
zh′′(z)

h′(z)
) < β, 1 < β ≤

3

2
, (1.5)

and

g′(z) = (λzn + γ)h′(z), λ, γ ∈ C with |γ| < 1, 0 < |γ|+ (n+ 1)|λ| ≤ 1; n ∈ N. (1.6)

In Section 2, we will show that the class F(β, λ, γ, n) is a subclass of close-to-convex harmonic

mappings. We also observe that the class F(β, λ, 0, n) was investigated by Wang et al. [5]. In
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this paper, we aim at deriving several new results for the class F(β, λ, γ, n).

Recently, the Toeplitz determinants and Hankel determinants of functions in the class S or its

subclasses have attracted many researchers’ attention [13]. Among them, the symmetric Toeplitz

determinant |Tq(n)| for subclasses of S with small values of n and q, is investigated by [14–17].

Let h be given by (1.1). Then, the q-th Hankel determinant is defined for q ≥ 1 and n ≥ 0

by

Hq(n)(h) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1.7)

We easily find that

H2(2)(h) = a2a4 − a23.

The symmetric Toeplitz determinant Tq(n) for analytic functions h is defined as follows:

Tq(n)[h] :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1

an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (1.8)

where n, q ∈ N and a1 = 1. In particular, for functions in starlike and convex classes, T2(2)[h], T3(1)[h]

and T3(2)[h] were studied by Ali et al. [14].

The Zalcman conjecture was posed in the early 1970s by Zalcman that if h ∈ S, then

|a2n − a2n−1| ≤ (n− 1)2

for n ≥ 2. The Zalcman conjecture reduces to the celebrated Bieberbach conjecture |an| ≤ n for

h ∈ A. Ma [18] generalized the Zalcman functional as follows:

Jm,n(h) := aman − am+n−1

for m,n ∈ N\{1}, and conjectured that if h ∈ S, then for m,n ∈ N\{1},

|Jm,n(h)| ≤ (n− 1)(m− 1).

Particularly, we know that J2,3(h) = a2a3 − a4 and J3,3(h) = a23 − a5.

Let B be the class of analytic functions f in D such that |f(z)| < 1 for all z ∈ D, and let B0 =

{f ∈ B : f(0) = 0}. In 1914, Bohr [19] proved that if f ∈ B is of the form f(z) =
∑∞

n=0 anz
n,

then the majorant series Mf(r) =
∑∞

n=0 |an||z|
n of f satisfies

Mf0(r) =

∞
∑

n=1

|an||z|
n ≤ 1− |a0| = d(f(0), ∂f(D)) (1.9)

for all z ∈ D with |z| = r ≤ 1/3, where f0(z) = f(z) − f(0). Bohr actually obtained the

inequality (1.9) for |z| ≤ 1/6. Moreover, Wiener, Riesz and Schur, independently, established
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the Bohr inequality (1.9) for |z| ≤ 1/3 (known as Bohr radius for the class B) and proved that

1/3 is the best possible.

In this paper, we aim at determining the estimates for Toeplitz determinants, Hankel deter-

minants and Zalcman functional of the class F(β, λ, γ, n). Moreover, we will derive the Bohr’s

inequality for the class F(β, λ, 0, n).

2. Preliminary results

To prove our main results, we need the following lemmas.

Lemma 2.1 ([10]) Suppose that h ∈ G and satisfies the condition g′(z) = ω(z)h′(z) in D, where

ω : D → D is analytic, W (z) = z(1+ω(z)) is starlike in D. Then the harmonic mapping f = h+g

is close-to-convex and univalent in D.

The following lemma shows that the class F(β, λ, γ, n) is a subclass of close-to-convex har-

monic mappings.

Lemma 2.2 If f ∈ F(β, λ, γ, n), then f is a close-to-convex harmonic mapping.

Proof Assume that f ∈ F(β, λ, γ, n). Then

W (z) = z(1 + ω(z)) = z + zγ + λzn+1. (2.1)

It follows from (1.6) and (2.1) that

|
zW ′(z)

W (z)
− 1| = |

z + zγ + (n+ 1)zn+1λ− (z + zγ + λzn+1)

z + zγ + λzn+1
|

= |
λnzn+1

z + zβ + λzn+1
| = |

nλzn

1 + γ + λzn
|

<
n|λ|

1− |γ| − |λ|
≤ 1.

(2.2)

Thus, by Lemma 2.1 and Eq. (2.2), we deduce that the assertion of Lemma 2.2 is true. 2

Lemma 2.3 ([3]) If h = z +
∑∞

k=2 akz
k satisfies the condition (1.2) with 1 < β ≤ 3/2, then

|ak| ≤
2(β − 1)

(k − 1)k
, k ≥ 2 (2.3)

with the extremal function given by

h(z) =

∫ z

0

(1 − tk−1)
2(β−1)
k−1 dt, k ≥ 2. (2.4)

Lemma 2.4 ([20, p. 41]) For a function p ∈ P of the form (1.2), the sharp inequality |pn| ≤ 2

holds for each n ≥ 1. Equality holds for the function p(z) = (1 + z)/(1− z).

Lemma 2.5 ([21, Theorem 1]) Let p(z) ∈ P be of the form (1.2) and µ ∈ C. Then

|pn − µpkpn−k| ≤ 2max{1, |2µ− 1|}, 1 ≤ k ≤ n− 1. (2.5)

If |2µ−1| ≥ 1, then the inequality is sharp for the function p(z) = (1+z)/(1−z) or its rotations.
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If |2µ− 1| < 1, then the inequality is sharp for p(z) = (1 + zn)/(1− zn) or its rotations.

Lemma 2.6 ([22, Lemma 2.3]) Let p(z) ∈ P . If 0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B, then

|p3 − 2Bp1p2 +Dp31| ≤ 2.

Lemma 2.7 ([5]) Let f ∈ F(β, λ, 0, n). Then

L(β, λ, n, r) ≤ |f(z)| ≤ R(β, λ, n, r), (2.6)

where

L(β, λ, n, r) := r[|λ|(
r

n + 2
−

1

n+ 1
)rn −

r

2
+ 1]

and

R(β, λ, n, r) := r[|λ|(
r

n + 2
+

1

n+ 1
)rn +

r

2
+ 1].

The inequalities are sharp.

3. Toeplitz determinants for the class F(β, λ, γ, n)

In this section, we will give several estimates for Toeplitz determinants |Tq(n)[·]| of functions

in the class F(β, λ, γ, n).

Theorem 3.1 Let f ∈ F(β, λ, γ, n) be of the form (1.3). Then the coefficients ak (k ≥ 2) of h

satisfy (2.3) and the coefficients bk of g satisfy

|bk| ≤























|γ|, k = 1,

|γ| 2(β−1)
(k−1)k , k = 2, . . . , n,

|λ|
n+1 + |γ| 2(β−1)

n(n+1) , k = n+ 1,
|λ|
k

2(β−1)
(k−n−1) + |γ| 2(β−1)

(k−1)k , k ≥ n+ 2.

(3.1)

Proof By comparing the coefficients of each power of z on both sides of (1.6), we obtain

b1 = γ, 2b2 = 2γa2, . . . , kbk = kγak, k ≤ n (3.2)

and

(n+ 1)bn+1 = λ+ γ(n+ 1)an+1, . . . , (n+m)bn+m = λkam + γ(n+m)an+m, m ∈ N. (3.3)

Thus, by Lemma 2.3, (3.2) and (3.3), we conclude that the assertion of Theorem 3.1 holds. 2

Theorem 3.2 Let f ∈ F(β, λ, γ, n). Then

|T2(m)[h]| ≤
8(β − 1)(m2 + 1)

m2(m2 − 1)2
(3.4)
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and

|T2(m)[g]| ≤



































|γ|2 + [|γ|(β − 1)]2, m = 1,

|γ|2{[ 2(β−1)
(m−1)m ]2 + [ 2(β−1)

m(m+1) ]
2}, 2 ≤ m ≤ n− 1,

[|γ| 2(β−1)
(n−1)n ]

2 + [ |λ|
n+1 + |γ| 2(β−1)

n(n+1) ]
2, m = n,

[ |λ|
n+1 + |γ| 2(β−1)

n(n+1) ]
2 + [ 2(β−1)|λ|

n+2 + |γ| 2(β−1)
(n+1)(n+2) ]

2, m = n+ 1,

[ 2(β−1)|λ|
m(m−n−1) + |γ| 2(β−1)

(m−1)m ]2 + [ 2(β−1)|λ|
(m+1)(m−n) + |γ| 2(β−1)

m(m+1) ]
2, m ≥ n+ 2.

(3.5)

Proof Suppose that f ∈ F(β, λ, γ, n). By Lemma 2.3, we get

|T2(m)[h]| = |a2m − a2m+1| ≤ |a2m|+ |a2m+1| ≤
8(β − 1)(m2 + 1)

m2(m2 − 1)2
. (3.6)

In view of (3.1), we obtain the assertion (3.5) of Theorem 3.2. 2

Theorem 3.3 Suppose that f ∈ F(β, λ, γ, 1) be of the form (1.3). Then

|b3 − δb22| ≤
2(β − 1)|λ|

3
+

|δ||λ|2

4
+ |γ|{

β − 1

3
+ |δ|[γ(β − 1)2 + |λ|(β − 1)]}. (3.7)

Proof Let f ∈ F(β, λ, γ, 1). In view of (3.2) and (3.3), we know that











b1 = γ,

b2 = 1
2λ+ γa2,

b3 = 2
3λa2 + γa3.

(3.8)

From (2.3) and (3.8), we obtain

|b3 − δb22| = |
2

3
λa2 + γa3 − δ(

1

2
λ+ γa2)

2|

≤ |
2

3
λa2 −

1

4
δλ2|+ |γ||a3 − δ(a22γ + λa2)|

≤
2(β − 1)|λ|

3
+

|δ||λ|

4
+ |γ|{

β − 1

3
+ |δ|[γ(β − 1)2 + |λ|(β − 1)]}. (3.9)

Therefore, we complete the proof of Theorem 3.3. 2

Theorem 3.4 Let f ∈ F(β, λ, γ, 1). Then

|T3(1)[h]| ≤
1

9
(4β3 + 7β2 − 26β + 24) (3.10)

and

|T3(1)[g]| ≤ [
1

3
(β − 1) + |γ|]{|γ|[|γ|+

1

3
(β − 1)] +

1

8
[1 + |γ|(4β − 5)]2}. (3.11)

Proof For f ∈ F(β, λ, γ, 1), we see that

p(z) =
1

β − 1
(β − 1−

zh′′(z)

h′(z)
) ∈ P , 1 < β ≤

3

2
; z ∈ D.

It follows that

n(n− 1)an = (1− β)

n−1
∑

k=1

kakpn−k, n ≥ 2. (3.12)
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From (3.12), we obtain






















a2 = 1
2 (1− β)p1,

a3 = 1
6 (1− β)[(1 − β)p21 + p2],

a4 = 1
24 (1 − β)[(1− β)2p31 + 3(1− β)p1p2 + 2p3],

a5 = 1
120 (1 − β)[(1 − β)3p41 + 6(1− β)2p21p2 + 8(1− β)p1p3 + 3(1− β)p22 + 6p4].

(3.13)

By virtue of Lemmas 2.4, 2.5 and (3.13), we get

|T3(1)[h]| =|1− 2a22 + 2a22a3 − a23|

≤1 + 2|a22|+ |a3||a3 − 2a22|

≤1 +
1

2
(1− β)2p21 +

1

36
(1− β)2|p2 − (β − 1)p21||p2 + 2(β − 1)p21|

≤
1

9
(4β3 + 7β2 − 26β + 24). (3.14)

In view of Lemmas 2.4, 2.5, (3.8) and (3.13), we get

|T3(1)[g]| =|(b1 − b3)[(b1 + b3)b1 − 2b22]|

≤|γ +
1

3
λ(β − 1)p1 +

1

6
(β − 1)[(1− β)p21 + p2]γ|×

|γ{γ +
1

3
λ(1 − β)p1 +

1

6
γ(1− β)[(1 − β)p21 + p2]} − 2[

1

2
λ+

1

2
(1− β)γ p1]

2|

≤[
1

3
(β − 1) + |γ|]{|γ|[|γ|+

1

3
(β − 1)] +

1

8
[1 + |γ|(4β − 5)]2}. (3.15)

The proof of Theorem 3.4 is thus completed. 2

Theorem 3.5 Let f ∈ F(β, λ, 0, 2). Then

|T3(2)[h]| ≤
35

108
(β − 1)3(2β2 − 4β + 7) (3.16)

and

|T3(2)[g]| = |2b23b4| ≤
1

243
(β − 1). (3.17)

Proof Suppose that f ∈ F(β, λ, 0, 2). It follows that

T3(2)[h] = (a2 − a4)(a
2
2 − 2a23 + a2a4).

In view of (3.13), Lemmas 2.4 and 2.6, we find that

|a2 − a4| ≤
1

2
|(1 − β)p1|+

1

24
|(1− β)[(1 − β)2p31 + 3(1− β)p1p2 + 2p3]|

≤
7

6
(β − 1). (3.18)

Next, we shall maximize |a22 − 2a23 + a2a4|. With the help of (3.13), Lemmas 2.4 and 2.5, we get

|a22 − 2a23 + a2a4| =
(β − 1)2

144
| − 5(β − 1)2p41 + 36p21 + 7(β − 1)p21p2 − 8p22 + 6p1p3|

≤
(β − 1)2

144
[5(β − 1)2|p1|

4 + 36|p1|
2 + 8|p2||p2 −

7

8
(β − 1)p21|+ 6|p1||p3|]

≤
5

18
(β − 1)2(2β2 − 4β + 7). (3.19)
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Therefore, combining (3.18) with (3.19), we obtain the inequality (3.16). By noting that for

f ∈ F(β, λ, 0, 2), we have
{

b3 = 1
3λa1,

b4 = 1
2λa2.

(3.20)

By means of Lemma 2.4, we get the assertion (3.17). 2

4. Hankel determinants for the class F(β, λ, γ, 2)

In this section, we will give the upper bound for the second order Hankel determinants

|H2(2)[·]| of functions in the class F(β, λ, γ, 2).

Theorem 4.1 Let f ∈ F(β, λ, γ, 2). Then

|H2(2)[h]| ≤
5

18
(β − 1)2 (4.1)

and

|H2(2)[g]| ≤
5

18
|γ|2(β − 1)2 +

2

27
(|γ| − |γ|2)(β − 1) +

1

81
(1− |γ|)2. (4.2)

Proof By means of Lemmas 2.4, 2.5 and (3.13), we have

|a2a4 − a23| =| −
1

144
p41(1− β)4 +

1

144
p21p2(1− β)3 +

1

24
p1p3(1 − β)2 −

1

36
p22(1− β)2|

=| −
(β − 1)2

144
[(β − 1)2p41 + (β − 1)p21p2 − 6p1p3 + 4p22]|

=| −
(β − 1)2

144
{4(p2 −

1

2
(β − 1)p21)

2 − 6p1[p3 −
5

6
(β − 1)p1p2]}|

≤
5

18
(β − 1)2. (4.3)

In view of (3.2) and (3.3), we know that











b2 = γa2,

b3 = γa3 +
λ
3 ,

b4 = γa4 +
1
2a2λ.

(4.4)

By virtue of Lemmas 2.4, 2.5, (3.8), (4.3) and (4.4), we obtain

|b2b4 − b23| =|a2γ(
1

2
λa2 + a4γ)− (

1

3
λ+ a3γ)

2|

≤|a2a4γ
2 − a3γ

2|+ |
1

2
λγa22 −

2

3
λγa3 −

1

9
|

≤
5

18
|γ|2(β − 1)2 +

|λ|

18
|3γ{

3

4
(1− β)2p21 −

2

3
(1− β)[(1 − β)p21 + p2]} − 2λ|

≤
5

18
|γ|2(β − 1)2 +

2

27
(|γ| − |γ|2)(β − 1) +

1

81
(1 − |γ|)2. (4.5)

Therefore, we deduce that the assertion of Theorem 4.1 holds. 2
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5. Zalcman functional for the class F(β, λ, 0, 1)

We note that

|J2,2(h)| = |H2(1)[h]| = |a3 − a22|

and

|J2,2(g)| = |b3 − b22|

from the class F(β, λ, 0, 1) were considered by Wang et al. [5]. In what follows, we will give the

estimates of Zalcman functional |J3,3|(·) for the class F(β, λ, 0, 1).

Theorem 5.1 Let f ∈ F(β, λ, 0, 1). Then

|J3,3(h)| ≤
1

360
(β − 1)(17β + 19) (5.1)

and

|J3,3(g)| ≤
1

45
(β − 1)(5β − 2). (5.2)

Proof We find from (3.13) that

J3,3(h) =
1

360
(β − 1)[7(β − 1)3p41 − 2(β − 1)2p21p2 + (β − 1)p22 − 24(β − 1)p1p3 + 18p4]

=
1

360
(β − 1)

{7

4
(β − 1)[p2 − 2(β − 1)p21]

2 −
3

4
(β − 1)p2[p2 − 2(β − 1)p21]−

7

4
(β − 1)p1[p3 − 2(β − 1)p1p2] + 18[p4 −

89

72
(β − 1)p1p3]

}

. (5.3)

By using Lemmas 2.4 and 2.5, we obtain the bound for the Zalcman functional J3,3(h). Moreover,

in view of (3.2) and (3.3), we know that
{

b4 = 3
4λa3,

b5 = 4
5λa4.

(5.4)

Then, from (3.8), (5.4), Lemmas 2.4 and 2.6, we get

|J3,3(g)| = |b23 − b5| ≤ |(
2

3
λa2)

2|+
4

5
|λa4| ≤

1

45
(β − 1)(5β − 2). (5.5)

Thus, we complete the proof of Theorem 5.1. 2

6. Bohr inequality for the class F(β, λ, 0, n)

In this section, we will derive the Bohr inequality for the class F(β, λ, 0, n).

Theorem 6.1 Let f ∈ F(β, λ, 0, n) with 1 ≤ β < 3/2 and 0 ≤ λ < 1/(n + 1). Then the

inequality

|z|+

∞
∑

n=2

(|an|+ |bn|)|z|
n ≤ d(f(0), ∂f(D)) (6.1)

holds for |z| = r ≤ rf , where rf is the smallest root in (0, 1) of

Fn(r) := R(β, λ, n, r)− L(β, λ, n, 1) = 0,
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where R(β, λ, n, r) and L(β, λ, n, 1) are given in Lemma 2.7. The radius rf is sharp.

Proof By Lemma 2.7, the Euclidean distance between f(0) and the boundary of f(D) shows

that

d(f(0), ∂f(D)) = lim inf
|z|→1

|f(z)− f(0)| ≥ L(β, λ, n, 1). (6.2)

We note that rf is the root of the equation R(β, λ, n, r) = L(β, λ, n, 1) in (0, 1). The existence of

the root is ensured by the relationship R(β, λ, n, 1) > L(β, λ, n, 1) with (2.6). For 0 < r ≤ rf , it

is evident that R(β, λ, n, r) ≤ L(β, λ, n, 1). In view of Theorem 3.1 and Eq. (6.2) for |z| = r ≤ rf ,

we have

|z|+

∞
∑

n=2

(|an|+ |bn|)|z|
n ≤ rf + (|a2|+ |b2|)r

2
f +

∞
∑

n=3

(|an|+ |bn|)r
n
f

= R(β, λ, n, rf ) ≤ L(β, λ, n, 1) ≤ d(f(0), ∂f(D)).

To show that the sharpness of the radius rf , we consider the function f = fβ,λ,0,n, which is

defined in Lemma 2.7. By noting that fβ,λ,0,n belongs to F(β, λ, 0, n), since the left side of the

growth inequality in Lemma 2.7 holds for f = fβ,λ,0,n or its rotations, we have

d(f(0), ∂f(D)) = L(β, λ, n, 1).

Therefore, the function f = fβ,λ,0,n for |z| = rf gives

|z|+
∞
∑

n=2

(|an|+ |bn|)|z|
n = rf + (|a2|+ |b2|)r

2
f +

∞
∑

n=3

(|an|+ |bn|)r
n
f

= R(β, λ, n, rf ) = L(β, λ, n, 1) = d(f(0), ∂f(D)),

which reveals that the radius rf is the best possible. 2
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