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Abstract We display sharp bounds for upper and lower spectrum of a Hermitizable tridiagonal

matrix. The representations are brought to light by exploiting the characteristic for eigenpairs

(eigenvalue and its corresponding eigenvector) of tridiagonal matrices, isospectral transforms and

sharp bounds for speed stability of birth-death processes.
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1. Introduction

Hermitizable matrix is a class of self-conjugate operators, as generalized by Chen [1, Defini-

tion 1] from Hermite matrices. Recall that a complex matrix A = (aij) is Hermitizable if there

exists a positive sequence µ = (µi : i ∈ E) such that

µiaij = µj āji, ∀ i, j ∈ E,

where a denotes the conjugate of a, E = {k : 0 ≤ k < N + 1} with N ≤ ∞. Thus the spectra of

A denoted by σ(A) in L2(µ) is real. For a general reversible transition matrix (or a Hermitizable

matrix) A, few results are known on the sharp bounds of its upper and bottom spectra (denoted

by λ+(A) and λ−(A), respectively). It is the purpose of this paper to consider the sharp upper

and lower bounds for λ+(A) and λ−(A), respectively.

Notice that a symmetric real matrix is a particular Hermitizable matrix. The upper and

bottom spectrum of such a matrix have many applications. For instance, they are closely related

to the rate of geometric ergodicity of discrete time Markov chains. Precisely, suppose π = (πi, i ∈
E) is the stationary distribution of the finite reversible transition matrix P = (pij)i,j∈E (i.e.,

πipij = πjpji). The spectra of P is denoted by σ(P ), then σ(P ) is contained in [−1, 1]. Moreover,

define

λ+(P ) = sup{λ ∈ σ(P ) \ {1}}, λ−(P ) = − inf{λ ∈ σ(P )}.
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Diaconis and Stroock [2, Proposition 3] proved that the geometric convergence rate of P is

determined by ρ := λ+(P ) ∨ λ−(P ), which only depends on the upper spectrum λ+(P ) and

bottom one λ−(P ). If P is nonnegative definite, then ρ = λ+(P ). If P has even period, then

−1 is an element of σ(P ), thus ρ = 1 (see [3, 4]). If P is irreducible with aperiodic period, [3, 5]

presented some results using probabilistic method (which is somehow results of ρ(P 2)).

To our knowledge, an effective method to obtain the bounds, for the spectra of a discrete

time Markov chain, is taking advantage of the well studied sharp bounds for convergence rate of

continuous time reversible Markov chain. On one hand, let Q = P − I, then Q is a generator of

some continuous time Markov chain, the spectral gap of Q equals to 1 − λ+(P ), which denotes

some convergence rate of the chain, its sharp bound is well studied [6], thus we obtain the

information of σ+(P ). On the other hand, when σ−(P ) 6= ∅, we need to study the part on

σ(P ) ∩ [−1, 0], which has an essential difference between continuous time and discrete time

Markov chains. To overcome the difficulty, one may study the operator −Q = I − P . However,

σ(Q) = −σ(−Q), we only also obtain the information of σ+(P ), rather than σ−(P ). Generally,

it is hard to get the information of σ−(P ). New skills are needed to solve the problem.

Fortunately, the celebrated Householder transformation makes a Hermitizable matrix A be

similar to a birth-death matrix [7,8] for N < ∞. Thus, the bounds for upper and bottom spectra

of tridiagonal matrix are essential for the general Hermitizable matrix. In what follows, suppose

N < ∞, we deal with the Hermitiazble tridiagonal matrix T . The characteristic for eigenpairs of

T is given in Theorem 3.2. By the skills of h-transform and sharp bounds for stability of birth-

death processes, the upper and lower bounds for λ+(T ) and λ−(T ) are presented in Theorem

3.3. Two numerical examples are investigated to verify the effectiveness of the results.

2. Preliminaries

Let T denote a Hermitizable tridiagonal matrix:

T =




−c0 b0

a1 −c1 b1 0

a2 −c2 b2
. . .

. . .
. . .

0 aN−1 −cN−1 bN−1

aN −cN




, (2.1)

{ck}Nk=0 is real, {ak}Nk=1 and {bk}N−1

k=0
are complex but ak+1bk > 0, 0 ≤ k < N . T is determined

by three sequences {ak}Nk=1
, {−ck}Nk=0

and {bk}N−1

k=0
. For simplicity, we write the tridiagonal

matrix (2.1) by T ∼ (ak,−ck, bk). Suppose supk(−ck+|ak|+|bk|) = m, supk(ck+|ak|+|bk|) = m̂.

Let σ(T ) denote the spectra of T . λ+(T ) = sup{λ ∈ σ(T ) \ {m}} and λ−(T ) = − inf{λ ∈
σ(T ) \ {−m̂}} is the upper and lower spectra of T , respectively, i.e.,

σ(T ) \ {m, m̂} ⊂ [λ+(T ),−λ−(T )].
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Before giving the bounds for λ−(T ), λ+(T ), we need the following basis Lemma 2.1, see [6,

Corollary 3.3] for complete version and the bound is exact in some examples there.

Lemma 2.1 Let Q ∼ (ak,−ck, bk)k∈E be a birth-death Q-matrix satisfying

{bk}N−1

k=0
> 0, {ak}Nk=1 > 0, b0 = c0, ck = ak + bk, 1 ≤ k ≤ N − 1, cN > aN .

Make a convention that bN = cN − aN . Then λ−(−Q) has the estimate:

(4δQ)−1 ≤ (δQ1 )−1 ≤ λ−(−Q) ≤ (δ
′Q

1 )−1 ≤ (δQ)−1,

here δ♯, δ♯1 and δ
′♯
1 are three numbers related to the given matrix ♯ = Q:

δQ = sup
0≤n≤N

n∑

j=0

µj

N∑

k=n

1

µkbk
, (2.2)

δQ1 = sup
0≤i≤N

(√
ϕi

i∑

k=0

µk
√
ϕk +

1√
ϕ
i

N∑

k=i+1

µkϕ
3/2

)
, (2.3)

δ′Q1 = sup
0≤ℓ≤N

(
ϕℓµ[0, ℓ] +

1

ϕℓ

N∑

k=ℓ+1

µkϕ
2
k

)
∈ [δQ, 2δQ]. (2.4)

Where {µk}Nk=0
, µ[0, k] and {ϕk}Nk=0

are defined as follows:

µ0 = 1, µk = µk−1

bk−1

ak
, µ[0, k] :=

k∑

ℓ=0

µℓ, ϕk =

N∑

ℓ=k

1

µℓbℓ
, 0 ≤ k ≤ N.

3. Main results

Before presenting the bounds for λ±(T ) of a tridiagonal matrix T , we need to understand the

characteristic for eigenpairs of T , which are illustrated visually in Example 3.1 for some special

case and listed in Theorem 3.2 for general case.

Example 3.1 Given a real tridiagonal matrix of form (2.1),

T ∼ (aj ,−cj, bj) ∈ R
N×N ,

where aj ≡ a, bj ≡ b, and cj ≡ c are positive. Define the relevant matrix T− ∼ (aj , cj , bj). The

exact eigenpairs of T and T− are denoted by (λexact
k , gexactk ) and (λ−exact

k , g−exact

k ), respectively.

Then λ−exact

k = −λexact
N+1−k and g−exact

k (ℓ) = (−1)ℓ−1gexactN+1−k(ℓ).

Proof By [7, Example 20], the exact eigenpairs of T are defined by

λexact
k = 2

√
ab cos(

kπ

N + 1
)− c,

gexactk (ℓ) = (

√
a

b
)ℓ sin(

kℓπ

N + 1
), ℓ = 1, . . . , N.

Combining this with

cos(
kπ

N + 1
) = − cos(

(N + 1− k)π

N + 1
),
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sin(
kℓπ

N + 1
) = (−1)ℓ−1 sin(

ℓ(N + 1− k)π

N + 1
).

The exact eigenpirs of T− are

λ−exact

k = 2
√
ab cos(

kπ

N + 1
) + c = −λexact

N+1−k,

g−exact

k (ℓ) = (

√
a

b
)ℓ sin(

kℓπ

N + 1
) = (−1)ℓ−1gexactN+1−k(ℓ), ℓ = 1, . . . , N.

Thus (λexact
k , gexactk ) is an eigenpair of T iff (−λexact

k , diag(ν)gexactk ) is an eigenpair of T−, where

diag(ν) is a diagonal matrix having diagonal elements ν = {(−1)k}Nk=1 ∈ R
N . 2

The fact in Example 3.1 is still valid for any tridiagonal matrix.

Theorem 3.2 Given a tridiagonal matrix T ∼ (ak,−ck, bk)k∈E of form (2.1), define a tridiagonal

matrix T− ∼ (ak, ck, bk)k∈E . Then (g, λ) is an eigenpair of T iff (diag(u)g,−λ) is an eigenpair of

T−, where diag(u) is a diagonal matrix with diagonal elements (uk) : u0 = 1, uk = −uk−1, 1 ≤
k < N + 1.

Proof For T ∼ (ak,−ck, bk)
N
k=0, define T̃ ∼ (−ak,−ck,−bk) and diagonal matrix diag(u) with

elements u = (uk). Then

T = diag(u−1)T̃diag(u), i.e., T ≃ T̃ .

Thus, (g, λ) is an eigenpair of T iff (diag(u)g, λ) is an eigenpair of T̃ . Noticing that T− ∼
(ak, ck, bk)

N
k=0

, T− = −T̃ , we get (g, λ) is an eigenpair of T iff (diag(u)g,−λ) is an eigenpair of

T−. 2

Theorem 3.2 illustrates an important property for eigenpairs of T , especially the variation

principle of symbols for eigenvectors of T . Combining with the sharp bounds in Lemma 1.1, it

inspires us that we can use T and T− to estimate λ+(T ) and λ+(T
−) (i.e., λ−(T )), respectively.

For T ∼ (ak,−ck, bk), define m and m̂ as before:

m = sup
k∈E

(−ck + |ak|+ |bk|)+, m̂ = sup
k∈E

(ck + |ak|+ |bk|)+.

Here we make a convention that a0 = 0, bN = 0 in the definition of m and m̂. Set uk =

akbk−1, 1 ≤ k ≤ N , define two particular birth-death Q-matrices Q̃ ∼ (ãk,−c̃k, b̃k)
N
k=0

and

Q̂ ∼ (âk,−ĉk, b̂k)
N
k=0:





c̃k = ck +m, k ∈ E;

b̃0 = c̃0 > 0, b̃k = c̃k − uk/b̃k−1, 1 ≤ k < N ;

ãk = c̃k − b̃k−1, 1 ≤ k < N, ãN = uN/b̃N−1.

(3.1)





ĉk = −ck + m̂, k ∈ E;

b̂0 = ĉ0 > 0, b̂k = ĉk − uk/b̂k−1, 1 ≤ k < N ;

âk = ĉk − b̂k−1, 1 ≤ k < N, âN = uN/b̂N−1.

(3.2)

(3.1) and (3.2) are obtained by h-transform, which can be obtained immediately from Proposition

3.7 below. Then if needed, define another two particular Q-matrices Q̃\0 ∼ (ã
\0
k ,−c̃

\0
k , b̃

\0
k )Nk=1,
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Q̂\0 ∼ (â
\0
k ,−ĉ

\0
k , b̂

\0
k )Nk=1 by using Q̃ and Q̂, respectively:




c̃
\0
k = ãk + b̃k−1, k ∈ E \ {0};
b̃
\0
1 = c̃

\0
1 > 0, b̃

\0
k = c̃

\0
k − ãk−1b̃k−1/b̃

\0
k−1

, 2 ≤ k < N ;

ã
\0
k = c̃

\0
k − b̃

\0
k−1

, 2 ≤ k < N, ã
\0
N = ãN−1b̃N−1/b̃

\0
N−1

.

(3.3)





ĉ
\0
k = âk + b̂k−1, k ∈ E \ {0};
b̂
\0
1 = ĉ

\0
1 > 0, b̂

\0
k = ĉ

\0
k − âk−1b̂k−1/b̂

\0
k−1

, 2 ≤ k < N ;

â
\0
k = ĉ

\0
k − b̂

\0
k−1

, 2 ≤ k < N, â
\0
N = âN−1b̂N−1/b̂

\0
N−1

.

(3.4)

Then three numbers defined in (2.2)–(2.4) related to Q̃, Q̃\0, Q̂, and Q̂\0 are denoted by

(δ♯, δ♯1, δ′♯1 ) when the matrix ♯ is some Q-matrix. The sharp bounds for λ−(T ) and λ+(T ) in

this paper are presented in Theorem 3.3.

Theorem 3.3 Suppose T ∼ (ak,−ck, bk)k∈E is a Hermitizable tridiagonal matrix of form (2.1),

define m and m̂ as before. Let σ(T ) denote all the eigenvalues of T , and set λ+(T ) = sup{λ ∈
σ(T ) \ {m}}, λ−(T ) = − inf{λ ∈ σ(T ) \ {m̂}}, the estimates for λ+(T ) and λ−(T ) are presented

as follows:

(4δ♯)−1 ≤ (δ♯1)
−1 ≤ m− λ+(T ) ≤ (δ′♯1 )

−1 ≤ (δ♯)−1,

(4δ♮)−1 ≤ (δ♮1)
−1 ≤ m̂− λ−(T ) ≤ (δ′♮1 )

−1 ≤ (δ♮)−1,

where ♯ and ♮ are two Q-matrices corresponding to the following four cases.

(1) If for every k ∈ E, −ck+ |ak|+ |bk| ≡ m, ck+ |ak|+ |bk| ≡ m̂, then ♯ = Q̃\0 and ♮ = Q̂\0.

(2) If for every k ∈ E, −ck + |ak| + |bk| ≡ m, but ck + |ak| + |bk| 6≡ m̂, then ♯ = Q̃\0 and

♮ = Q̂.

(3) If for every k ∈ E, ck + |ak|+ |bk| ≡ m̂, but ck+ |ak|+ |bk| 6≡ m, then ♯ = Q̃ and ♮ = Q̂\0.

(4) If there exist k, ℓ ∈ E, such that −ck + |ak|+ |bk| 6= m and cℓ + |aℓ|+ |bℓ| 6= m̂, then we

use matrices ♯ = Q̃ and ♮ = Q̂.

Before proving Theorem 3.3, let us compute two examples to illustrate the power of the

bounds first. The following example is the continuation of Example 3.1.

Example 3.4 (Example 3.1 Continued) For a = 2, b = 1, c = 3 and a = 1, b = 2, c = 3

(see [7, Example 20]) tested the algorithms there. For the two cases, we have

λ+(T ) = 3− 2
√
2 cos

π

N + 1
, λ−(T ) = 3− 2

√
2 cos

Nπ

N + 1
,

N
−λ+(T ) −λ−(T )

Lower Exact Upper Lower Exact Upper

50 0.1716 0.1769 0.3333 5.6667 5.8231 5.8284

100 0.1729 0.1769 0.3333 5.6667 5.8271 5.8284

1000 0.1716 0.1716 0.3333 5.6667 5.8284 5.8284

Table 1 Estimates in Theorem 3.3 for λ+(T ) and λ
−
(T )
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the estimates in Theorem 3.3 for λ+(T ) and λ−(T ) are presented in Table 1, where m = 1 for

T ∼ (ak,−ck, bk), and m̂ = 6 for T− ∼ (ak, ck, bk).

The next example is a modification of [9, Example 7].

Example 3.5 Let {βn}Nn=0 be a given arbitrarily real sequence,

bn = n4eiβn , an+1 = (n(n+ 1))2e−iβn , cn = |an|+ |bn|, 1 ≤ n ≤ N − 1,

a1 = 1, b0 = 1, c0 = 1, cN = |aN |.

Here m = 0 for T ∼ (an,−cn, bn) and 0 is a trivial eigenvalue of T , thus λ+(T ) is an eigenvalue

of T adjacent to 0. For T− ∼ (an, cn, bn), m̂ = 2(aN−1+bN−1), λ−(T ) is the maximal eigenvalue

of T−. The estimates in Theorem 3.3 for λ+(T ) and λ−(T ) are presented in Tables 2 and 3.

N Lower1 Lower2 Exact Upper1 Upper2

10 0.41236 1.2365 1.3008 1.4549 1.6494

25 0.40585 1.1737 1.2218 1.4020 1.6234

Table 2 Estimates in Theorem 3.3 for λ+(T )

N Lower1 Lower2 Exact Upper1 Upper2

10 973.73 2582.8 2870.8 3178.1 3894.9

25 65722 177810 202340 234750 262890

Table 3 Estimates in Theorem 3.3 for λ
−
(T )

Here the Lower1 and Lower2 denote (4δ♯)−1 and (δ♯1)
−1, respectively. Upper1 and Upper2 denote

(δ
′♯
1 )

−1 and (δ♯)−1, respectively.

When N = ∞, [9, Example 7] proved that both Spec(Tmin) and Spec(Tmax) are discrete. The

estimates in Theorem 3.3 are valid for infinite tridiagonal matrices with discrete spectrum.

Remark 3.6 (1) When N = ∞, the bounds for Hermitizable tridiagonal matrix with discrete

spectrum can be obtained by some modifications.

(2) Similar results can be obtained for Block tridiagonal matrices.

(3) For Hermitizable matrices, combining with Householder transform, the bounds can be

obtained.

To prove Theorem 3.3, we present the h-transform in [8, Theorem 18] and prove it here for

reader’s convenience. Here the idea of h-transformation is taken from the manuscript “The case

having negative spectrum of P” written by Mufa CHEN.

Proposition 3.7 Suppose T ∼ (ak,−ck, bk)k∈E is a Hermitizable tridiagonal matrix of form

(2.1). Set

Q̃ = diag(h)−1(T −mI) diag(h), (3.5)

where m = supk∈E(−ck + |ak|+ |bk|)+, h = (hk)k∈E with h0 = 1 is the solution to

((T −mI)h)(k) = 0, k ∈ E \ {N}. (3.6)
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Then the explicit representation of Q̃ is the birth-death Q-matrix Q̃ ∼ (ãk,−c̃k, b̃k)
N
k=0

given in

(3.1) satisfying c̃N ≥ ãN .

Proof First, we prove hk 6= 0 k ∈ E. By (3.6), we have h1 = c0+m
b0

, combining with m =

supk∈E(−ck + |ak|+ |bk|)+, we have |h1| ≥ |h0| = 1 > 0 and by induction

|hk+1| = |ck +m

bk
hk −

ak
bk

hk−1| ≥ |ck +m

bk
hk| − |ak

bk
hk−1|

≥ |ak|+ |bk|
|bk|

|hk| −
|ak|
|bk|

|hk−1| ≥
|ak|+ |bk|

|bk|
|hk| −

|ak|
|bk|

|hk| = |hk| > 0.

Next, we prove the explicit representation of Q̃ in (3.5) is the one in (3.1) and

ãk > 0 (1 ≤ k ≤ N), b̃k > 0 (0 ≤ k ≤ N − 1), c̃N ≥ ãN .

Indeed, by (3.5), we have

c̃k = ck +m, ãk =
hk−1

hk
ak, b̃k =

hk+1

hk
bk. (3.7)

Recall hk+1 = ck+m
bk

hk − ak

bk
hk−1, 1 ≤ k ≤ N − 1, thus

ak
hk−1

hk
= c̃k − bk

hk+1

hk
(i.e., ãk = c̃k − b̃k), 1 ≤ k ≤ N − 1.

By h1 = c0+m
b0

, we have b̃0 = h1

h0

b0 = c0 +m = c̃0 > 0. Notice that uk := ãkb̃k−1 = akbk−1 > 0,

k ≥ 1 from (3.7), thus ã1 = a1b0
b̃0

> 0. Recall that |hk+1| ≥ |hk|, thus |ãk| = |hk−1

hk
ak| ≤ |ak|.

Furthermore,

b̃1 = c̃1 − |ã1| ≥ |a1|+ |b1| − |a1| = |b1| > 0.

By induction

ãk =
akbk−1

b̃k−1

> 0, b̃k = c̃k − |ãk| > 0, 1 ≤ k ≤ N − 1.

Besides, 0 < ãN = aNbN−1

b̃N−1

≤ |aN | ≤ m+ cN = c̃N . 2

The shift m in the proof of h-transform guarantees the Q̃ obtained in Proposition 3.7 is an

irreducible birth-death Q-matrix, which is given by Chen [1]. If −ck + |ak| + |bk| ≡ m, then

ãk = |ak| b̃k = |bk|, ãN = c̃N . Thus 0 is a trivial eigenvalue of Q̃ and m is an eigenvalue of T .

Proof of Theorem 3.3 Step 1. For Case (4), apply Proposition 3.7 to the tridiagonal matrices

T − mI ∼ (ak,−ck − m, bk)k∈E and T− − m̂I ∼ (ak, ck − m̂, bk)k∈E , respectively. Then the

explicit representation of Q̃ and Q̂ are listed in (3.1) and (3.2) with ãN < c̃N , âN < ĉN . Thus

T − mI (resp., T− − m̂I ) has the same spectrum as the birth-death Q-matrix Q̃ (resp., Q̂).

Combining this with Lemma 2.1 and Theorem 3.2, we complete the proof.

Step 2. To prove Cases (1)–(3). It suffices to prove that when a birth-death Q-matrix

Q̃∼(ãk,−c̃k, b̃k)k∈E satisfies that

b̃0 = c̃0, ãk + b̃k = c̃k (1 ≤ k ≤ N − 1), c̃N = ãN ,
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then Q̃ has the same nontrivial eigenvalues as the birth-death Q-matrix Q̃\0 ∼ (ã
\0
k ,−c̃

\0
k , b̃

\0
k )Nk=1

defined in (3.3). Indeed, take

M=




µ̃0 µ̃1 µ̃2 · · · µ̃N

µ̃1 µ̃2 · · · µ̃N

µ̃2 · · · µ̃N

. . .
...

0 µ̃N




,

where µ̃0 = 1, µ̃n = µ̃n−1
b̃n−1

ãn
, 1 ≤ n ≤ N . Then Q̃′ = MQ̃M−1:

Q̃′=




0 0 0

b̃0 −(ã1 + b̃0) ã1

b̃1 −(ã2 + b̃1) ã2
. . .

. . .
. . .

b̃N−2 −(ãN−1 + b̃N−2) ãN−1

b̃N−1 −(ãN + b̃N−1)




.

By deleting the first line and column of Q̃′, we get the Q-matrix Q̃′
1 ∼ (̃bk,−(ãk + b̃k−1), ãk)

N
k=1.

Now, the spectra of Q ignoring the trivial eigenvalue 0 coincides with the spectra of Q̃′
1. Then

applying h transform to the matrix Q̃′
1, we obtain the results. 2
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