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Abstract In this paper, the authors establish the boundedness of Hardy-Littlewood maximal

operators Mψ associated with ψ-rectangles on weighted Lebesgue spaces and on two kinds of

Lorentz spaces with variable exponent, as well as its corresponding Fefferman-Stein inequalities.

All of these generalize the corresponding results in classical case.

Keywords Hardy-Littlewood maximal operator; Lorentz space; variable exponent

MR(2020) Subject Classification 26A33; 42B35; 46E35

1. Introduction

In various function spaces, the boundedness of operators has always been one of the central

problems in harmonic analysis [1–4]. The boundedness of the classical Hardy-Littlewood maximal

operatorMHL on classical and variable Lebesgue spaces has been systematically discussed. With

the establishment of the boundedness of the maximal operator MHL on the space of variable

exponent Lebesgue spaces by the early scholars in the 21st century, the whole study on the space

of variable exponential functions has been developed rapidly, and plays a crucial role in financial

mathematics, image processing and PDE’s [5–8].

In the space of variable exponential functions, the study on Lorentz spaces is also a hot topic.

The variable exponent Lorentz spaces have been defined in two different ways: Lp(·),q(·)(R
d) (see

[9]) and Lp(·),q(·)(R
d) (see [10]), but both types of Lorentz spaces can go back to the spaces Lp(R

d)

in the case of p(·) = q(·) = p. In 2008, Ephremidze et al. [9] defined variable Lorentz spaces

Lp(·),q(·)(R
d) and showed that in the case of such space, the local log-condition of exponents was

no longer needed for the boundedness of the maximal, fractional and singular integral operators

in Lp(·),q(·)(R
d), instead the exponents p(·) and q(·) should only satisfy some log-type decay

conditions. Since the space Lp(·)(R
d) is not translation invariant, the use of non-increasing

rearrangements makes it difficult to generalize the constant indices in the definition of the classical

Lorentz spaces Lp,q(R
d) to the variable case Lp(·),q(·)(R

d) with p(·) and q(·) : R
d → (0,∞].

Therefore, in the Lorentz space introduced by Ephremidze et al. [9], both the exponents p(·)
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and q(·) are defined in (0,∞] instead of the whole R
d. In order to study the validity of the

Marcinkiewicz interpolation theorem in the frame of Lebesgue spaces with variable integrability,

Kempka et al. [10] carved out an equivalent definition of the classical Lorentz space without

using the notion of non-increasing rearrangement, and extended to variable case Lp(·),q(·)(R
d)

with p(·), q(·) : Rd → (0,∞] in 2014.

The study of maximal operators on Lorentz spaces with variable exponents has been a matter

of interest to scholars. The classical maximal operator only considers the integral averages over

squares, and if we take the integral averages over arbitrary rectangles, then the boundedness

of the maximal operator in Lebesgue space does not hold. In 2008, in order to extend the

convergence of the θ-means of the Fourier transform over cone-like sets, Weisz [11] introduced

the modified Hardy-Littlewood maximal operatorsMψ, defined on the ψ-rectangles, on the basis

of the cone-like set established by Gát [12] and the operator is bounded in the classical Lebesgue

space Lp(R
d) [11]. In 2016, Szarvas et al. [3] extended the conclusions to the function spaces

with variable exponents, and obtained the boundedness of Mψ on the variable Lebesgue space

Lp(·)(R
d).

Based on this, we aim to investigate the boundedness of Mψ, as well as the Fefferman-Stein

inequalities, on several function spaces. This paper is organized as follows.

In Section 2, we present some preliminaries, including the definition of (dyadic) ψ-rectangles

and Hardy-Littlewood maximal function associated with ψ-rectangles.

In Section 3, via the Calderón-Zygmund decomposition in the setting of ψ-rectangles, we

establish the weighted boundedness of Mψ on Lebesgue spaces (see Theorem 3.2 below). It is

worthy to mention that in this process, we show that for any ψ-rectangle I and n ∈ (0,∞),

there exists I ′ ∈ Iψ and m ∈ (1,∞) such that nI ⊂ I ′ ⊂ mI (see (3.7) and Remark 3.3 below),

which not only plays an important role in the proof of Theorem 3.2, but also has its independent

interest.

In Section 4, we exhibit the boundedness ofMψ on variable Lorentz spaces Lp(·),q(·)(R
d) (see

Theorem 4.4 below), as well as the corresponding Fefferman-Stein vector valued inequality (see

Theorem 4.7 below). Note that the variable Lorentz space Lp(·),p(·)(R
d) cannot go back to the

variable Lebesgue space Lp(·)(R
d) (see Remark 4.2 below).

In Section 5, we devote to study another variable exponent Lorentz space Lp(·),q(·)(R
d), which

covers the classical variable Lebesgue space as a special case, namely, Lp(·),p(·)(R
d) = Lp(·)(R

d).

In this section, we obtain the boundedness of Mψ on Lp(·),q(R
d) (see Theorem 5.4 below).

In Section 6, we briefly recall a more general maximal operatorMψ,δ which is comparable to

Mψ and hence all the results in Sections 3–5 are also valid for Mψ,δ.

Here and hereafter, we adopt the following notations. Let Z be the set of all integers and

N := {0, 1, 2, . . .}. Denote f ≤ Cg by f . g, where C is a positive constant independent of the

main parameters and may change from line to line; while f ∼ g means g . f . g. For any

Lebesgue measurable set E ⊂ R
n, we use |E| to denote its Lebesgue measure. For any rectangle

I ⊂ R
d and number r ∈ (0,∞), rI denotes a rectangle with the same center as I but r-times

side length. For any p(·), denote by p′(·) its conjugate index, namely, 1
p(x) +

1
p′(x) = 1 for any
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x ∈ R
d.

2. Preliminaries

Let ψ := (ψ1, . . . , ψd), where for any j ∈ {1, . . . , d},




ψj : (0,∞) → (0,∞),

ψj is strictly increasing and continuous function,

ψj(1) = 1,

lim
x→∞

ψj(x) = ∞,

lim
x→0+

ψj(x) = 0,

ψ1(x) := x,

(2.1)

and there exist cj,1, cj,2, ξ ∈ (1,∞) such that

cj,1ψj(x) ≤ ψj(ξx) ≤ cj,2ψj(x) for any x ∈ (0,∞) and j ∈ {1, . . . , d}. (2.2)

Since ψ1(x) := x, it is obvious that c1,1 = c1,2 = ξ. Also, for any x ∈ (0,∞) and j ∈ {1, . . . , d},

cnj,1ψj(x) ≤ ψj(ξ
nx) ≤ cnj,2ψj(x), ∀n ∈ N. (2.3)

Recall that Iψ consists of ψ-rectangles I = I1×· · ·× Id ⊂ R
d, whose sides are parallel to the

axes and for any j = 1, . . . , d, |Ij | = ψj(|I
1|). Particularly, when ψj = x > 0 with j = 1, . . . , d,

Iψ is the collection of cubes. For more details about ψ-rectangles [4]. Note that the Hardy-

Littlewood maximal function associated with ψ-rectangles is defined by setting, for any locally

integrable function f on R
d,

Mψf(x) := sup
Iψ∋I∋x

1

|I|

∫

I

|f(y)| dy, ∀x ∈ R
d,

see, for instance, [11]. Obviously, when ψ = (x, . . . , x) with x > 0, Mψ goes back to the classical

Hardy-Littlewood maximal function

MHLf(x) := sup
cube Q∋x

1

|Q|

∫

Q

|f(y)| dy, ∀x ∈ R
d.

Denote by ∆k =
⋃
l∈Zd

Ik(l) the set of dyadic ψ-rectangles [4]

Ik(l) = [l12
k, (l1 + 1)2k)× [l2ψ2(2

k), (l2 + 1)ψ2(2
k))× · · · × [ldψd(2

k), (ld + 1)ψd(2
k)),

where k ∈ Z. Define the maximal function as

Mψ
Nf(x) := sup

IψN∋I∋x

1

|I|

∫

I

|f(y)| dy, ∀x ∈ R
d and N ∈ N,

where IψN denotes those rectangles I ∈ Iψ for which |I1| ≤ 2N . Obviously, for any locally

integrable function f on R
d,

Mψ
Nf ↑Mψf. (2.4)
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3. The weighted boundedness of Mψ on Lebesgue spaces

The following Calderón-Zygmund decomposition comes from [4, Lemma 12] (see also [13,

Lemma 3.13]).

Lemma 3.1 ([4]) Let ψ be as in (2.1) and (2.2). Then for any locally integrable function f on

R
d, t ∈ (0,∞) and N ∈ N, there exists a sequence of disjoint ψ-rectangles Ij ⊂ ∆k with k ≤ N

such that

{Mψ
Nf > t} ⊂

⋃

j

3Ij

and for all j,

t ≤
C

|Ij |

∫

Ij

|f(y)| dy,

where C is a positive constant independent of f , t and N .

The weighted boundedness of Mψ on Lebesgue spaces is follows; see [14, Lemma 1] for its

classical case.

Theorem 3.2 Let p ∈ (1,∞] and φ be a non-negative function on R
d. Then there exists a

positive constant C such that for any locally integrable function f ,
∫

Rd

(Mψf)(x)pφ(x) dx ≤ C

∫

Rd

|f(x)|p(Mψφ)(x) dx, ∀ p ∈ (1,∞] (3.1)

and ∫

{x∈Rd:Mψf(x)>t}

φ(x) dx ≤
C

t

∫

Rd

|f(x)|(Mψφ)(x) dx (3.2)

hold true.

Proof Without loss of generality, we may assume f is nonnegative. By (2.4), it suffices to show

for any N ∈ (0,∞),
∫

Rd

(Mψ
Nf)(x)

pφ(x) dx .

∫

Rd

|f(x)|p(Mψφ)(x) dx, ∀ p ∈ (1,∞] (3.3)

and ∫

{x∈Rd:Mψ

N
f(x)>t}

φ(x) dx .
1

t

∫

Rd

|f(x)|(Mψφ)(x) dx, (3.4)

which, together with the Fatou lemma and Levi monotonic convergence theorem, imply when

p ∈ (1,∞],
∫

Rd

(Mψf)(x)pφ(x) dx =

∫

Rd

lim
N→∞

(Mψ
Nf)(x)

pφ(x) dx

≤ lim inf
N→∞

∫

Rd

(Mψ
Nf)(x)

pφ(x) dx

.

∫

Rd

|f(x)|p(Mψφ)(x) dx,

and when p = 1,
∫

{x∈Rd:Mψf(x)>t}

φ(x) dx =

∫

Rd

φ(x)χ{x∈Rd:Mψf(x)>t}(x) dx
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=

∫

Rd

φ(x) lim
N→∞

χ{x∈Rd:Mψ

N
f(x)>t}(x) dx

≤ lim inf
N→∞

∫

Rd

φ(x)χ{x∈Rd:Mψ

N
f(x)>t}(x) dx

. lim inf
N→∞

∫

{x∈Rd:Mψ

N
f(x)>t}

φ(x) dx

.
1

t

∫

Rd

|f(x)|(Mψφ)(x) dx

as desired in (3.1) and (3.2).

Note that from the Marcinkiewicz interpolation theorem (see, for instance, [15, Theorem

1.3.2]), (3.3) follows immediately from (3.4) and

Mψ
N : L∞(Rd,Mψφ(x)dx) −→ L∞(Rd, φ(x)dx). (3.5)

To verify (3.4), according to Lemma 3.1, for any t > 0 there exists a sequence of disjoint

ψ-rectangles {Ij}j ⊂ ∆k satisfying

{x ∈ R
d : Mψ

Nf(x) > t} ⊂
⋃

j

3Ij and t .
1

|Ij |

∫

Ij

|f(y)| dy. (3.6)

Note that Ij ∈ ∆kj ⊂ Iψ, but 3Ij ∈ Iψ does not necessarily hold true.

We claim that there exists m ∈ (1,∞) such that for all j,

3Ij ⊂ I ′j ⊂ mIj , (3.7)

where I ′j is also a ψ-rectangle which has the same center with Ij . Assume the above claim holds

true for the moment, define the sets Ej as follows:





E1 = {x ∈ R
d : Mψ

Nf(x) > t} ∩ 3I1,

E2 = {x ∈ R
d : Mψ

Nf(x) > t} ∩ 3I2 \ E1,
...

Ej = {x ∈ R
d : Mψ

Nf(x) > t} ∩ 3Ij \ (∪
j−1
k=1Ek), ∀ j ≥ 2 ∩N.

This implies {Ej}j is disjoint and for any j, Ej ⊂ 3Ij ⊂ I ′j . Furthermore,

{x ∈ R
d : Mψ

Nf(xj) > t} =
⋃

j

Ej .

Also (3.6) tells
∫

Ij

f(x)(Mψφ)(x) dx ≥

∫

Ij

f(x)
[ 1

|I ′j |

∫

I′j

φ(y) dy
]
dx

≥

∫

Ij

f(x)
[ 1

|mIj |

∫

Ej

φ(y) dy
]
dx

&
[ ∫

Ej

φ(y) dy
]
·

1

|Ij |

∫

Ij

f(x) dx

& t

∫

Ej

φ(y) dy.
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From the above two formulae and the facts that {Ij}j and {Ej}j are disjoint, we deduce that
∫

{x∈Rd:Mψ

N
f(x)>t}

φ(y) dy =

∫
⋃
j Ej

φ(y) dy =
∑

j

∫

Ej

φ(y) dy .
∑

j

1

t

∫

Ij

f(x)(Mψφ)(x) dx

∼
1

t

∫

∪jIj

f(x)(Mψφ)(x) dx .
1

t

∫

Rd

f(x)(Mψφ)(x) dx

as desired in (3.4).

What remains is to show (3.7). Let n1 be the smallest integer for which

3 ≤ min(ci,1; i = 2, . . . , d)n1 .

Observe that the left-hand side of (2.3) implies for any j,

3ψi(|I
1
j |) ≤ cn1

i,1ψi(|I
1
j |) ≤ ψi(ξ

n1 |I1j |).

Let l = max{3, ξn1}. Choose the smallest integer n2 and a ψ-rectangle I ′j such that

l+ 1 ≤ ξn2 and l|I1j | ≤ |(I ′j)
1| ≤ (l + 1)|I1j |.

By ψi strictly increasing and the right-hand side of (2.3),

ψi((l + 1)|I1j |) ≤ ψi(ξ
n2 |I1j |) ≤ cn2

i,2ψi(|I
1
j |) for all i = 2, . . . , d.

Let m = max{l+ 1, cn2
2,2, c

n2
3,2, . . . , c

n2

d,2}. Since |(3Ij)
i| = 3|Iij | (i = 1, . . . , d) and Ij , I

′
j ∈ Iψ, we

have

3|Iij | = 3ψi(|I
1
j |) ≤ ψi(ξ

n1 |I1j |) ≤ ψi(l|I
1
j |) ≤ ψi(|(I

′
j)

1|) = |(I ′j)
i|,

which implies 3Ij ⊂ I ′j . Also

|(I ′j)
i| ≤ ψi((l + 1)|I1j |) ≤ cn2

i,2ψi(|I
1
j |) ≤ mψi(|I

1
j |)

and hence I ′j ⊂ mIj . Altogether, the above two formulae yield the claim (3.7) and hence complete

the proof of (3.4).

Now it turns to show (3.5) is valid. Notice that if there exists some x0 ∈ R
d satisfying

(Mψφ)(x0) = 0, then φ = 0 almost everywhere in R
d and there is nothing to show. So it suffices

to assume Mψφ > 0 and (Mψφ)(x) <∞ for almost every x ∈ R
d. Denote dµ(x) = (Mψφ)(x)dx

and dν(x) = φ(x)dx. If α ≥ ‖f‖L∞(Rd, µ), then
∫

{x∈Rd:|f(x)|>α}

Mψφ(x) dx = 0,

which, together withMψφ(x) > 0, implies |{x ∈ R
d : |f(x)| > α}| = 0, namely, |f(x)| ≤ α for al-

most every x ∈ R
d. Hence (Mψf)(x) ≤ α for almost every x ∈ R

d and further ‖Mψf‖L∞(Rd, ν) ≤

α. Combining this with (2.4), we obtain

‖Mψ
Nf‖L∞(Rd, ν) ≤ ‖Mψf‖L∞(Rd, ν) ≤ ‖f‖L∞(Rd, µ),

which is exactly (3.5) and hence complete the proof of Theorem 3.2. 2

Remark 3.3 Note that (3.7) is still valid in a general case. Precisely, for any n ∈ (0,∞),
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there exists m ∈ (1,∞) such that nI ⊂ I ′ ⊂ mI holds true. This follows immediately from an

argument similar to that used in the proof of (3.7), where we only need to replace 3 by any n.

4. The boundedness of Mψ on Lp(·),q(·)(R
d)

In this section, we establish the boundedness of modified maximal operator Mψ on variable

Lorentz spaces Lp(·),q(·)(R
d). Recall that P(Rd) denotes the class of all measurable functions

p(·) : Rd → (0,∞] such that

0 < p− := ess inf
x∈Rd

p(x) ≤ p+ := ess sup
x∈Rd

p(x) ≤ ∞.

For any given p(·) ∈ P(Rd), the variable Lebesgue space Lp(·)(R
d) is known as the set of all

measurable functions f such that

̺p(·)(f) :=

∫

Rd\Rd
∞

|f(x)|p(x) dx+ ‖f‖L∞(Rd
∞

) <∞,

equipped with the quasi-norm

‖f‖Lp(·)(Rd) = inf{λ > 0 : ̺p(·)(f/λ) ≤ 1}

(see [16]), where Rd∞ := {x ∈ R
d : p(x) = ∞}. Clearly, when p(·) = p, Lp(·)(R

d) goes back to the

classical Lebesgue space Lp(R
d).

Different from P(Rd), we follow [9, Chapter 2] to use P(0,∞) to denote the collection of all

measurable functions p(·) : (0,∞) → (0,∞]. For any p(·) ∈ P(0,∞), define

p̃− := ess inf
0<t<∞

p(t) and p̃+ := ess sup
0<t<∞

p(t).

For any a ∈ [0,∞), set Pa = {p(·) ∈ P(0,∞) : a < p̃− ≤ p̃+ < ∞} and P(0,∞) to be the

collection of all p(·) ∈ L∞(0,∞) such that

p(0) := lim
t→0

p(t) and p∞ := lim
t→∞

p(t)

exist and satisfy {
|p(t)− p(0)| ≤ C

−lnt , when t ∈ (0, 1/2];

|p(t)− p∞| ≤ C
ln(e+t) , when t ∈ (0,∞),

where the positive constant C is independent of t. Similarly, define

Pa(0,∞) := P(0,∞) ∩ Pa(0,∞).

Recall that the non-increasing rearrangement of a measurable function f on R
d is defined by

setting

f∗(t) = inf{s > 0 : |{x ∈ R
d : |f(x)| > s}| ≤ t}, ∀ t ∈ (0,∞). (4.1)

It is well known that [15, Page 54]

(f + g)∗(t) ≤ f∗(
t

2
) + g∗(

t

2
), ∀ t ∈ (0,∞). (4.2)

The following definition of variable exponent Lorentz space comes from [9, Definition 2.3].
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Definition 4.1 ([9]) Let p(·) and q(·) ∈ P0(0,∞). Then the variable exponent Lorentz space

Lp(·),q(·)(R
d) is defined to be the set of all measurable functions f on R

d such that

ℑp(·),q(·)(f) :=

∫ ∞

0

t
q(t)
p(t)

−1|f∗(t)|q(t) dt <∞,

equipped with the norm

‖f‖Lp(·),q(·)(Rd) = inf{λ > 0 : ℑp(·),q(·)(f/λ) ≤ 1} = ‖t
1
p(t)

− 1
q(t) f∗(t)‖Lq(·)(0,∞).

Remark 4.2 The spaces Lp(·),q(·)(R
d) coincide with usual Lorentz spaces Lp,q(R

d) if p(·) = p

and q(·) = q are constants. However, it is well-known that when p(·) ∈ P(0,∞),

Lp(·),p(·)(R
d) 6= Lp(·)(R

d).

See [10, Remark 2.6] for more details.

For any p(·) and q(·) ∈ P0(0,∞) and any measurable function f on R
d, define

‖f‖∗Lp(·),q(·)(Rd) := ‖t
1
p(t)

− 1
q(t) f∗∗(t)‖Lq(·)(0,∞),

where for any t ∈ (0,∞),

f∗∗(t) =
1

t

∫ t

0

f∗(s) ds.

Clearly, f∗ ≤ f∗∗ shows ‖f‖Lp(·),q(·)(Rd) ≤ ‖f‖∗Lp(·),q(·)(Rd). Also, [9, Theorem 2.4] tells the

following lemma.

Lemma 4.3 ([9]) Let p(·) ∈ P0(0,∞) and q(·) ∈ P1(0,∞). Then there exists a positive constant

C such that for any measurable function f on R
d,

‖f‖∗Lp(·),q(·)(Rd) ≤ C‖f‖Lp(·),q(·)(Rd)

holds if and only if p(0) > 1 and p∞ > 1.

Theorem 4.4 Let p(·) and q(·) ∈ P1(0,∞). Then Mψ is bounded on Lp(·),q(·)(R
d).

Proof Note that it suffices to show for any locally integrable function f on R
d,

(Mψf)∗(t) . f∗∗(t), ∀ t ∈ (0,∞). (4.3)

Assume for the moment that (4.3) holds true, then by Definition 4.1 and Lemma 4.3,

‖Mψf‖Lp(·),q(·)(Rd) = ‖t
1
p(t)

− 1
q(t) (Mψf)∗(t)‖Lq(·)(0,∞)

. ‖t
1
p(t)

− 1
q(t) f∗∗(t)‖Lq(·)(0,∞)

. ‖f‖Lp(·),q(·)(Rd)

as desired.

Now we focus on proving (4.3). Without loss of generality, we may suppose f∗∗(t) < ∞ for

any t ∈ (0,∞), otherwise there is nothing to show. By [11, Theorem 1], we know that Mψ is

weak-type (1, 1), namely, for any f ∈ L1(R
d) and t ∈ (0,∞),

|{x ∈ R
d : (Mψf)(x) > t}| .

‖f‖L1(Rd)

t
,
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which, together with (4.1) implies, for any t ∈ (0,∞),

t(Mψf)∗(t) . ‖f‖L1(Rd). (4.4)

For such f ∈ L1(R
d), [17, Theorem 6.2 in Chapter 2] tells for any ε and t ∈ (0,∞), there exist

functions gt ∈ L1(R
d) and ht ∈ L∞(Rd) such that

f = gt + ht and ‖gt‖L1(Rd) + t‖ht‖L∞(Rd) ≤ tf∗∗(t) + ε,

which, together with (4.2), (4.4) and the obvious fact that Mψ is bounded from L∞(Rd) to

L∞(Rd), implies for any s ∈ (0,∞),

(Mψf)∗(s) ≤ (Mψgt)
∗(
s

2
) + (Mψht)

∗(
s

2
) .

‖gt‖L1(Rd)

s
+ ‖ht‖L∞(Rd)

=
1

s
(‖gt‖L1(Rd) + s‖ht‖L∞(Rd)) . f∗∗(s) +

ε

s
.

Letting ε→ 0, we obtain (4.3) and hence complete the proof of Theorem 4.4. 2

Given a nonnegative function w on R
d and a set E ⊂ R

d, let

w(E) :=

∫

E

w(x) dx.

The weighted Lebesgue space Lp(R
d;w) is defined to be the collection of all measurable functions

f such that

‖f‖Lp(Rd;w) :=
(∫

Rd

|f(x)|pw(x) dx
)1/p

<∞.

We refer the readers to [15] for more details about Lp(R
d;w).

Let B be a collection of open sets in R
d. Recall that the maximal operator associated with

B is defined by setting

MBf(x) := sup
B∋B∋x

1

|B|

∫

B

|f(y)| dy, ∀x ∈
⋃

B∈B

B.

See, for instance, [18, Page 28]. A nonnegative function w belongs to Ap,B for some p ∈ (1,∞),

if there exists a positive constant C such that for every B ∈ B,
( 1

|B|

∫

B

w(x) dx
)( 1

|B|

∫

B

w(x)−
1
p−1 dx

)p−1

≤ C,

while p = 1, w ∈ A1,B means MBw ≤ Cw(x) for almost every x ∈ R
d with C independent of x.

Now we recall the definition of Muckenhoupt basis from [18, Definition 3.1].

Definition 4.5 ([18]) A collection of open sets B in R
d is called a Muckenhoupt basis if for any

p ∈ (1,∞) and w ∈ Ap,B, there exists a positive constant C such that
∫

Rd

(MBf(x))
pw(x) dx ≤ C

∫

Rd

|f(x)|pw(x) dx

holds for every f ∈ Lp(R
d;w).

Given a Banach function space X, for every p ∈ (0,∞), the scale of spaces Xp is defined as

X
p := {f measurable in R

d : |f |p ∈ X}
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with the quasi-norm ‖f‖Xp = ‖|f |p‖
1
p

X
. For more details about Xp (see [18, Page 67]).

The following lemma is a special case of [18, Corollary 4.8] in setting of Muckenhoupt basis

B = Iψ.

Lemma 4.6 ([18]) Let F be a family of pairs (f, g) with non-negative and measurable functions

which are not identically zero. Suppose that for some p0 ∈ [1,∞) and every w0 ∈ Ap0,Iψ ,
∫

Rd

f(x)p0w0(x) dx .

∫

Rd

g(x)p0w0(x) dx, ∀ (f, g) ∈ F , (4.5)

where the implict positive constant is independent of (f, g). If X is a Banach function space such

that Mψ is bounded on the associate dual space of X, then for any p ∈ (1,∞), there exists a

positive constant C such that

‖f‖Xp ≤ C‖g‖Xp, ∀ (f, g) ∈ F .

Furthermore, for any q ∈ (1,∞) and {(fi, gi)}i∈N ⊂ F ,

∥∥∥
(∑

i∈N

f qi

)1/q∥∥∥
Xp

≤ C
∥∥∥
(∑

i∈N

gqi

)1/q∥∥∥
Xp
.

Further, we give the following Fefferman-Stein vector valued inequality for Mψ.

Theorem 4.7 Suppose that for some p0 ∈ [1,∞) the family F is such that for all w0 ∈ Ap0,Iψ , in-

equality (4.5) holds. Let p(·) and q(·) ∈ P1(0,∞). For any r ∈ (1,∞), there exists a positive con-

stant C such that for any locally integrable function sequence {fi}i∈N with {(Mψfi, |fi|)}i∈N ⊂ F ,

∥∥∥
(∑

i∈N

(Mψ(fi))
r
)1/r∥∥∥

Lp(·),q(·)(Rd)
≤ C

∥∥∥
(∑

i∈N

|fi|
r
)1/r∥∥∥

Lp(·),q(·)(Rd)
.

Proof Denote by I the set of all rectangles in R
d whose sides are parallel to the coordinate

axes. By [18, Page 29], I constitutes a Muckenhoupt basis in R
d. Clearly, Iψ ⊂ I and hence

Mψ .MI . Then Definition 4.5 implies for any p ∈ (1,∞), w ∈ Ap,Iψ and f ∈ Lp(R
d;w),

∫

Rd

(Mψf)(x)pw(x) dx .

∫

Rd

(MIf)(x)
pw(x) dx

.

∫

Rd

|f(x)|pw(x) dx <∞,

which means Iψ constitutes a Muckenhoupt basis. We choose the family F consisting of pairs

of the form {(Mψf, |f |)}.

Choose s0 ∈ (0, 1) such that s0p(·) and s0q(·) ∈ P1(0,∞), then by [9, Theorem 2.8], we know

that Ls0p(·),s0q(·)(R
d) is a Banach function space. According to [9, Lemma 2.7],

(Ls0p(·),s0q(·)(R
d))′ = Ls0p′(·),s0q′(·)(R

d).

By an argument similar to that used in [19, Page 241], it is not hard to verify that if follows at

once that s0p
′(·) and s0q

′(·) ∈ P1(0,∞). Then Mψ is bounded on the associated dual space of

Ls0p(·),s0q(·)(R
d). Combining this with Lemma 4.6 and the fact that {(Mψfi, |fi|)}i∈N ⊂ F , we
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arrive at
∥∥∥
(∑

i∈N

(Mψ(fi))
r
)1/r∥∥∥

(Ls0p(·),s0q(·)(R
d))

1
s0

.
∥∥∥
(∑

i∈N

|fi|
r
)1/r∥∥∥

(Ls0p(·),s0q(·)(R
d))

1
s0

,

which together with

(Ls0p(·),s0q(·)(R
d))

1
s0 = Lp(·),q(·)(R

d)

(see [20, Lemma 2.3]), implies the desired result and hence completes the proof of Theorem 4.7. 2

5. The boundedness of Mψ on Lp(·),q(R
d)

In this section, we focus on another kind of variable exponent Lorentz space, denoted by

Lp(·),q(·)(R
d), which was introduced in [10] and studied intensively in [21–24]. Note that

Lp(·),p(·)(R
d) = Lp(·)(R

d)

with p(·) ∈ P(Rd), which is different from Lp(·),p(·)(R
d) as mentioned in Remark 4.2.

First we focus on one special case that q(·) is constant, namely Lp(·),q(R
d) (see, for instance,

[10, Definition 2.2]).

Definition 5.1 ([10]) Let p(·) ∈ P(Rd). Then the variable Lorentz space Lp(·),q(R
d) is defined

to be the set of all measurable functions f such that

∞ > ‖f‖Lp(·),q(Rd) :=

{
(
∫∞

0
λq‖χ{x∈Rd:|f(x)|>λ}‖

q
Lp(·)(Rd)

dλ)1/q , if q <∞,

sup0<λ<∞ λ‖χ{x∈Rd:|f(x)|>λ}‖Lp(·)(Rd), if q = ∞.

Remark 5.2 It is well-known that Lp(·),q(R
d) = Lp,q(R

d) when p(·) = p ∈ (0,∞), and

L∞,q(R
d) = L∞(Rd) when p(·) = ∞ and q ∈ (0,∞) (see [10, Page 942]).

The following lemma comes from [10, Theorem 4.1 and Remark 4.2].

Lemma 5.3 ([10]) Let q ∈ (0,∞] and θ ∈ (0, 1). Assume p(·) and p̃(·) ∈ P(Rd) satisfying

p+ <∞ and 1
p̃(·) =

1−θ
p(·) . Then

(Lp(·)(R
d), L∞(Rd))θ,q = Lp̃(·),q(R

d).

Recall that p(·) ∈ P(Rd) is said to be locally log-Hölder continuous (denoted as p(·) ∈

LH0(R
d)), if there exists a constant C such that

|p(x) − p(y)| ≤
C

log(e + 1/|x− y|)
, ∀x, y ∈ R

d,

while p(·) ∈ P(Rd) is said to be log-Hölder continuous at infinity (denoted as p(·) ∈ LH∞(Rd)),

if there exist constants C and p∞ such that

|p(x)− p∞| ≤
C

log(e + |x|)
, ∀x ∈ R

d.

Let LH(Rd) := LH0(R
d) ∩ LH∞(Rd).

Theorem 5.4 Let q ∈ (0,∞] and p(·) ∈ P(Rd) such that 1/p(·) ∈ LH(Rd) and p− > 1. Then
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Mψ is bounded from Lp(·),q(R
d) to Lp(·),q(R

d).

Proof By Lemma 5.3, we know that

Lp(·),q(R
d) = (L p(·)

1−θ

(Rd), L∞(Rd))θ,q with θ ∈ (0, 1).

This, together with the boundedness of Mψ on L p(·)
1−θ

(Rd) (see [3, Theorem 5.1]) and the trivial

boundedness of Mψ on L∞(Rd), we immediately conclude that Mψ is bounded on Lp(·),q(R
d)

and complete the proof of Theorem 5.4. 2

We mention that the variable Lorentz space Lp(·),q(·)(R
d) with two variable exponents is

introduced in [10, Definition 2.3] precisely for any p(·) and q(·) ∈ P(Rd) satisfying 0 < p− ≤

p+ ≤ ∞ and 0 < q− ≤ q+ ≤ ∞. Then the variable Lorentz space Lp(·),q(·)(R
d) is defined to be

the collection of all measurable functions f such that

‖f‖Lp(·),q(·)(Rd) := inf{λ > 0 : ̺ℓq(·)(Lp(·))(2
kχ{x∈Rd:|f(x)/λ|>2k}) ≤ 1} <∞,

where

̺ℓq(·)(Lp(·))((fk)k) :=
∑

k∈Z

inf{λ > 0 : ̺p(·)(
fk

λ
1/q(·)
k

) ≤ 1}

with the convention λ1/∞ = 1; see also [10, 25].

Remark 5.5 We mention that the boundedness of the classical Hardy-Littlewood maximal

function on Lp(·), q(·)(R
d) is still an open problem. And we only discuss the case, when q(·) = q

is a constant function.

6. A more general maximal operator Mψ,δ

Let δ = (δ1, . . . , δd) with δ1 = 1 and δj ≥ 1. Recall the cone-like set with respect to the first

dimension is defined as

Ωdψ,δ := {y = (y1, . . . , yd) ∈ R
d
+ : δ−1

j ψj(y1) ≤ yj ≤ δjψj(y1) with j ∈ {1, . . . , d}}.

When we say rectangle I ∈ Iψ,δ, it means (|I1|, . . . , |Id|) ∈ Ωdψ,δ with their sides parallel to the

axes. If δ = 1, then Iψ,δ = Iψ . This cone-like set was first introduced and investigated by

Gát [12] in 2007.

Recall that the Hardy-Littlewood maximal function on a cone-like set is defined by setting

Mψ,δf(x) := sup
Iψ,δ∋I∋x

1

|I|

∫

I

|f(y)| dy, ∀x ∈ R
d.

If δ = 1, then we denote the maximal function by Mψf . Moreover, Weisz proved in [11, Page

45] that Mψ,δf ∼Mψf , which implies that the boundedness for Mψ obtained in Sections 3–5 is

also valid for Mψ,δ.
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