房成龙.奇异积分算子交换子在变指数空间上的特征[J].数学研究及应用,2020,40(5):519~533 |
奇异积分算子交换子在变指数空间上的特征 |
Characterizations of Commutators of Singular Integral Operators on Variable Exponent Spaces |
投稿时间:2019-09-19 修订日期:2020-03-17 |
DOI:10.3770/j.issn:2095-2651.2020.05.008 |
中文关键词: 交换子 Lipschitz空间 Triebel-Lizorkin空间 变指数 奇异积分算子 |
英文关键词:commutator Lipschitz space Triebel-Lizorkin space variable exponent singular integral operator |
基金项目:新疆维吾尔自治地方自然科学基金(Grant Nos.2019D01C334; 2016D01C381); 国家自然科学基金(Grant No.11661075). |
|
摘要点击次数: 1036 |
全文下载次数: 517 |
中文摘要: |
这篇文章通过算子交换子在变指数Lebesgue空间, 变指数Triebel-Lizorkin空间的有界性去刻画了Lipschitz空间. 首先, 作者通过两个算子族刻画了Triebel-Lizorkin空间. 接着, 应用Triebel-Lizorkin空间等价刻画, 获得了b是Lipschitz函数的充要条件是奇异积分算子交换子从变指数Lebesgue空间到变指数Triebel-Lizorkin空间有界. 同时, 作者证明了Riesz位势算子交换子也有对应结果. |
英文摘要: |
The main purpose of this paper is to characterize the Lipschitz space by the boundedness of commutators on Lebesgue spaces and Triebel-Lizorkin spaces with variable exponent. Based on this main purpose, we first characterize the Triebel-Lizorkin spaces with variable exponent by two families of operators. Immediately after, applying the characterizations of Triebel-Lizorkin space with variable exponent, we obtain that $b\in\dot{\Lambda}_{\beta}$ if and only if the commutator of Calder\'{o}n-Zygmund singular integral operator is bounded, respectively, from $L^{p(\cdot)}(\mathbb{R}^{n})$ to $\dot{F}^{\beta,\infty}_{p(\cdot)},$ from $L^{p(\cdot)}(\mathbb{R}^{n})$ to $L^{q(\cdot)}(\mathbb{R}^{n})$ with $1/p(\cdot)-1/q(\cdot)=\beta/n.$ Moreover, we prove that the commutator of Riesz potential operator also has corresponding results. |
查看全文 查看/发表评论 下载PDF阅读器 |