郑秀敏,徐洪焱.几类亚纯函数q移动微差分多项式的零点与Nevanlinna亏量[J].数学研究及应用,2022,42(1):31~40 |
几类亚纯函数q移动微差分多项式的零点与Nevanlinna亏量 |
The Zeros and Nevanlinna Deficiencies for Some $q$-Shift Difference Differential Polynomials of Meromorphic Functions |
投稿时间:2020-10-19 修订日期:2021-04-07 |
DOI:10.3770/j.issn:2095-2651.2022.01.004 |
中文关键词: Nevanlinna理论 $q$移动微差分 零级 |
英文关键词:Nevanlinna theory $q$-shift difference differential zero order |
基金项目:国家自然科学基金(Grant Nos.1171035; 11561033), 江西省自然科学基金(Grant No.20181BAB201001), 江西省教育厅科技研究项目(Grant Nos.GJJ190876; GJJ202303; GJJ201813; GJJ191042). |
|
摘要点击次数: 759 |
全文下载次数: 595 |
中文摘要: |
文章主要讨论了几类亚纯函数的q移动微差分多项式的性质,得到了涉及$q$移动微差分多项式的零点的若干定理. 同时,文章还讨论几类$q$移动微差分单项式的Nevanlinna亏量,得到了关于$\delta(\infty,f)$, $\delta(\infty,f')$, $\delta(\infty,f(z)^nf(qz+c)^mf'(z))$, $\delta(\infty,f(qz+c)^mf'(z))$与$\delta(\infty, f(z)^nf(qz+c)^m)$之间的若干定理. |
英文摘要: |
The first purpose of this paper is to study the properties on some $q$-shift difference differential polynomials of meromorphic functions, some theorems about the zeros of some $q$-shift difference-differential polynomials with more general forms are obtained. The second purpose of this paper is to investigate the properties on the Nevanlinna deficiencies for $q$-shift difference differential monomials of meromorphic functions, we obtain some relations among $\delta(\infty,f)$, $\delta(\infty,f')$, $\delta(\infty,f(z)^nf(qz+c)^mf'(z))$, $\delta(\infty,f(qz+c)^mf'(z))$ and $\delta(\infty, f(z)^nf(qz+c)^m)$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|