刘合超.关于乘积Sombor指数的极值(分子)树[J].数学研究及应用,2023,43(2):139~149
关于乘积Sombor指数的极值(分子)树
Extremal (Molecular) Trees with Respect to Multiplicative Sombor Indices
投稿时间:2022-03-14  修订日期:2022-06-26
DOI:10.3770/j.issn:2095-2651.2023.02.002
中文关键词:    分子树  乘积Sombor指数  极值
英文关键词:tree  molecular tree  multiplicative Sombor index  extremal value
基金项目:国家自然科学基金(11971180);广东省自然科学基金(Grant No.2019A1515012052), 广东省普通高校特色创新项目(Grant No.2022KTSCX225), 广东省教育科研项目(Grant No.2021GXJK159).
作者单位
刘合超 华南师范大学数学科学学院, 广东 广州 510631 
摘要点击次数: 323
全文下载次数: 252
中文摘要:
      拓扑指数是一类可以用来预测化合物的物理化学性质的数值不变量, 其并被广泛用于量子化学、分子生物学和其他研究领域. 对于一个顶点集为$V(G)$、边集为$E(G)$的(分子)图$G$, 其Sombor指数定义为$SO(G)=\sum\limits_{uv\in E(G)}\sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)}$, 其中$d_{G}(u)$表示顶点$u$在$G$中的度. 相应地, 乘积Sombor指数定义为$\prod\nolimits_{SO}(G)= \prod\limits_{uv\in E(G)}\sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)}$. 分子树是最大度$\Delta\leq 4$的树. 在本文中, 我们首先确定了乘积Sombor指数最大的分子树, 然后我们确定了乘积Sombor指数的前十三小的(分子)树.
英文摘要:
      Topological indices are a class of numerical invariants that can be used to predict the physicochemical properties of compounds and are widely used in quantum chemistry, molecular biology and other research field. For a (molecular) graph $G$ with vertex set $V(G)$ and edge set $E(G)$, the Sombor index is defined as ${\rm SO}(G)=\sum_{uv\in E(G)}\sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)}$, where $d_{G}(u)$ denotes the degree of vertex $u$ in $G$. Accordingly, the multiplicative Sombor index is defined as $\prod_{{\rm SO}}(G)= \prod_{uv\in E(G)}\sqrt{d_{G}^{2}(u)+d_{G}^{2}(v)}$. A molecular tree is a tree with maximum degree $\Delta\leq 4$. In this paper, we first determine the maximum molecular trees with respect to multiplicative Sombor index. Then we determine the first thirteen minimum (molecular) trees with respect to multiplicative Sombor index.
查看全文  查看/发表评论  下载PDF阅读器