欧见平,张福基.围长为3的点可迁图的3限制边连通度(英文)[J].数学研究及应用,2005,25(1):58~63
围长为3的点可迁图的3限制边连通度(英文)
3-Restricted Edge Connectivity of Vertex Transitive Graphs of Girth Three
投稿时间:2002-09-29  
DOI:10.3770/j.issn:1000-341X.2005.01.008
中文关键词:  点可迁图  3限制边连通度  限制断片
英文关键词:vertex-transitive graph  3-restricted edge connectivity  restricted fragment
基金项目:
作者单位
欧见平 五邑大学数理系,广东,江门,529020
漳州师院数学系,福建,漳州,363000 
张福基 厦门大学数学系,福建,厦门,361005 
摘要点击次数: 2447
全文下载次数: 1961
中文摘要:
      设G是阶至少为6的k正则连通图.如果G的围长等于3,那么它的3限制边连通度 λ3(G)≤3k-6.当G是3或者4正则连通点可迁图时等号成立,除非G是4正则图并且 λ3(G)=4.进一步,λ3(G)=4的充分必要条件是图G含有子图K4.
英文摘要:
      Let G be a k-regular connected graph of order at least six. If G has girth three, its 3-restricted edge connectivity λ3(G) ≤3k-6. The equality holds when G is a cubic or 4-regular connected vertex-transitive graph with the only exception that G is a 4-regular graph with λ3(G) = 4. Furthermore, λ3(G) = 4 if and only if G contains K4 as its subgraph.
查看全文  查看/发表评论  下载PDF阅读器