Improved Local Wellposedness of Cauchy Problem for Generalized KdV-BO Equation
Received:December 04, 2006  Revised:October 28, 2007
Key Word: KdV-BO equation   Cauchy problem   local wellposedness.  
Fund ProjectL:the Natural Science Foundation of Zhejiang Province (No.Y6080388); the Science and Technology Research Foundation of Zhejiang Ocean University (Nos.X08M014; X08Z04).
Author NameAffiliation
ZHAO Xiang Qing Department of Mathematics, Zhejiang Ocean University, Zhejiang 316000, China 
GUO Ai School of Mathematical Sciences, South China University of Technology, Guangdong 510640, China 
Hits: 6028
Download times: 2312
Abstract:
      In this paper we prove that the Cauchy problem associated with the generalized KdV--BO equation $u_t u_{xxx} \lambda{\cal H}(u_{xx}) u^2u_x=0$, $x\in R$, $t\ge 0$ is locally wellposed in $\widehat{H^s_r} (R)$ for $\frac43 \frac 1 r$ and $s \ge s(r)=\frac 12-\frac 1{2r}$. In particular, for $r=2$, we reobtain the result in [3].
Citation:
DOI:10.3770/j.issn:1000-341X.2009.02.023
View Full Text  View/Add Comment  Download reader