On Essential Spectra of $2\times 2$ Operator Matrices |
Received:January 04, 2006 Revised:July 02, 2006 |
Key Words:
essential spectrum $2\times 2$ operator matrices.
|
Fund Project:the National Natural Science Foundation of China (No.10726043). |
|
Hits: 3204 |
Download times: 2556 |
Abstract: |
Let $M_X=\left(\begin{array} {cc} A & C\\X& B \end{array}\right)$ be a $2\times 2$ operator matrix acting on the Hilbert space ${\cal H}\oplus{\cal K}$. For given $A\in B(H)$, $B\in B(K)$ and $C\in B(K,H)$ the set $\bigcup_{X\in B({\cal H,\cal K})}\sigma_e(M_X)$ is determined, where $\sigma_e(T)$ denotes the essential spectrum. |
Citation: |
DOI:10.3770/j.issn:1000-341X.2008.02.016 |
View Full Text View/Add Comment |