A Note on Approximating Fixed Points of Pseudocontractive Mappings |
Received:August 04, 2006 Revised:October 12, 2006 |
Key Words:
pseudocontractive mapping fixed point uniformly Gateaux differentiable norm strong convergence.
|
Fund Project:the National Natural Science Foundation of China (No.10771050). |
|
Hits: 2967 |
Download times: 1804 |
Abstract: |
Let $K$ be a nonempty bounded closed convex subset of a real reflexive Banach space $E$ with a uniformly Gateaux differentiable norm. Let $T:K\rightarrow K$ be a uniformly continuous pseudocontractive mapping. Suppose every closed convex and bounded subset of $K$ has the fixed point property for nonexpansive mappings. Let $\{\lambda_n\}\subset (0,\frac{1}{2}]$ be a sequence satisfying the conditions: (i) $\lim_{n\rightarrow \infty}\lambda_n=0$; (ii) $\sum_{n=0}^{\infty}\lambda_n=\infty$. Let the sequence $\{x_n\}$ be generated from arbitrary $x_1\in K$ by $x_{n+1}=(1-\lambda_n)x_n+\lambda_nTx_n-\lambda_n(x_n-x_1)$, $n\geq 1$. Suppose $\lim_{n\rightarrow \infty}\|x_n-Tx_n\|=0$. Then $\{x_n\}$ converges strongly to a fixed point of $T$. |
Citation: |
DOI:10.3770/j.issn:1000-341X.2008.03.040 |
View Full Text View/Add Comment |