A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for $P_m\times P_n, P_m\times C_n$ and $C_m\times C_n$
Received:September 12, 2006  Revised:October 28, 2007
Key Words: total coloring   adjacent-vertex-distinguishing total coloring   adjacent-vertex-distinguishing total chromatic number.  
Fund Project:the National Natural Science Foundation of China (No.10771091); the Science and Research Project of the Education Department of Gansu Province (No.0501-02).
Author NameAffiliation
CHEN Xiang En College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, China 
ZHANG Zhong Fu College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, China
Institute of Applied Mathematics, Lanzhou Jiaotong University, Gansu 730070, China 
SUN Yi Rong College of Mathematics and Information Science, Northwest Normal University, Gansu 730070, China 
Hits: 8352
Download times: 2166
Abstract:
      Let $G$ be a simple graph. Let $f$ be a mapping from $V(G) \cup E(G)$ to $\{1, 2,\ldots, k\}$. Let $C_f(v)=\{f(v)\}\cup \{f (vw)|w\in V(G), vw\in E(G)\}$ for every $v\in V(G)$. If $f$ is a $k$-proper-total-coloring, and for $u, v\in V(G), uv\in E(G)$, we have $C_f(u)\neq C_f(v)$, then $f$ is called a $k$-adjacent-vertex-distinguishing total coloring ($k$-$AVDTC$ for short). Let $\chi_{at} (G)= \min\{k|G$ have a $k$-adjacent-vertex-distinguishing total coloring$\}$. Then $\chi_{at} (G)$ is called the adjacent-vertex-distinguishing total chromatic number ($AVDTC$ number for short). The $AVDTC$ numbers for $P_m\times P_n, P_m\times C_n$ and $C_m\times C_n$ are obtained in this paper.
Citation:
DOI:10.3770/j.issn:1000-341X.2008.04.006
View Full Text  View/Add Comment