Involutions Fixing $RP(2^m)\sqcup P(2^m,\,2n-1)$ |
Received:May 06, 2007 Revised:March 08, 2008 |
Key Words:
involution fixed point set characteristic class Bordism class.
|
Fund Project:the National Natural Science Foundation of China (No.10371029); the Natural Science Foundation of Hebei Province (No.103144). |
|
Hits: 3440 |
Download times: 1821 |
Abstract: |
Let $(M^{2^m 4n k-2},T)$ be a smooth closed manifold with a smooth involution $T$ whose fixed point set is $RP(2^m)\sqcup P(2^m,\,2n-1)~(m>3,\,n>0)$. For $2n\geq2^m$, $(M^{2^m 4n k-2},\,T)$ is bordant to $(P(2^m,\,RP(2n)),\,T_{0})$. |
Citation: |
DOI:10.3770/j.issn:1000-341X.2009.03.020 |
View Full Text View/Add Comment |
|
|
|