The New Upper Bounds of Some Ruzsa Numbers $R_m$ |
Received:November 05, 2008 Revised:May 16, 2009 |
Key Words:
Erd\H{o}s-Tur\'{a}n conjecture additive bases Ruzsa numbers.
|
Fund Project:Supported by the National Natural Science Foundation of China (Grant Nos.10901002; 10771103). |
|
Hits: 1746 |
Download times: 1459 |
Abstract: |
For $A\subseteq {\mathbf{Z}}_m$ and $n\in {\mathbf{Z}}_m$, let $\sigma_A(n)$ be the number of solutions of equation $n=x y, x,y\in A$. Given a positive integer $m$, let $R_m$ be the least positive integer $r$ such that there exists a set $A\subseteq {\mathbf{Z}}_m$ with $A A={\mathbf{Z}}_m$ and $\sigma_A(n)\leq r$. Recently, Chen Yonggao proved that all $R_m\leq 288$. In this paper, we obtain new upper bounds of some special type $R_{kp^2}$. |
Citation: |
DOI:10.3770/j.issn:1000-341X.2010.03.021 |
View Full Text View/Add Comment |