On the Number of Solutions of Certain Equations over Finite Fields
Received:September 12, 2008  Revised:January 05, 2009
Key Words: Finite fields   solutions of equation   multiplicative character   inclusion-exclusion principle.  
Fund Project:Supported by the National Natural Science Foundation of China (Grant Nos.10971205; 10771100).
Author NameAffiliation
Zheng Jun ZHAO Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Jiangsu 211100, P. R. China 
Xi Wang CAO Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Jiangsu 211100, P. R. China
Department of Mathematics, LMIB of Ministry of Education, Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China 
Hits: 2765
Download times: 1989
Abstract:
      Let $\F_q$ be a finite field with $q=p^f$ elements, where $p$ is an odd prime. Let $N(a_1x_1^2 \cdots a_nx_n^2=bx_1\cdots x_s)$ denote the number of solutions $(x_1,\ldots,x_n)$ of the equation $a_1x_1^2 \cdots a_nx_n^2=bx_1\cdots x_s$ in $\F_q^n$, where $n>5$, $s5$, $3\leq s
Citation:
DOI:10.3770/j.issn:1000-341X.2010.06.002
View Full Text  View/Add Comment