The Stabilization and Idempotent Completion of a Left Triangulated Category |
Received:June 20, 2010 Revised:September 06, 2011 |
Key Words:
left triangulated category idempotent completion stabilization triangle-equivalence.
|
Fund Project:Supported by the National Natural Science Foundation of China (Grant No.11071040) and the Natural Science Foundation of Fujian Province (Grant No.2011J01004). |
|
Hits: 2993 |
Download times: 2448 |
Abstract: |
Let $({\mathscr {C}},\Omega,\Delta)$ be a left triangulated category with a fully faithful endofunctor $\Omega$. We show a triangle-equivalence $({S(\overline{\mathscr{C}})},{\widetilde{\overline {\Omega}}},{\widetilde{\overline{\Delta}}})$ $\cong$ $({\overline{S(\mathscr{C})}},{\overline{\widetilde {\Omega}}}, {\overline{\widetilde{\Delta}}})$, where $({S(\overline{\mathscr {C}})}, {\widetilde{\overline{\Omega}}},{\widetilde{\overline{\Delta}}})$ denotes the stabilization of the idempotent completion of $({\mathscr {C}},\Omega,\Delta)$ and $({\overline{S(\mathscr {C})}},{\overline{\widetilde {\Omega}}}, {\overline{\widetilde{\Delta}}})$ denotes the idempotent completion of the stabilization of $({\mathscr {C}},\Omega, \Delta)$. |
Citation: |
DOI:10.3770/j.issn:2095-2651.2012.02.006 |
View Full Text View/Add Comment |
|
|
|