Existence of Positive Solutions for Singular One-Dimensional $P$-Laplace BVP of the Second-Order Difference Systems
Received:December 15, 2011  Revised:October 12, 2012
Key Word: multiple solutions   singular   existence   discrete boundary value problem.  
Fund ProjectL:Supported by the XJZDXK of China (Grant No.XJZDXK2011004) and the National Natural Science Foundation of China (Grant No.10971021).
Author NameAffiliation
Weimin HU School of Mathematics and Statistics, Ili Normal University, Xinjiang 835000, P. R. China 
Guli Bahaer School of Mathematics and Statistics, Ili Normal University, Xinjiang 835000, P. R. China 
Daqing JIANG School of Mathematics and Statistics, Northeast Normal University, Jilin 130024, P. R. China 
Hits: 2957
Download times: 1944
Abstract:
      In this paper we establish the existence of single and multiple positive solutions to the following singular discrete boundary value problem $$\left\{\begin{array}{l}\Delta[\phi (\Delta x(i-1))]+ q_{1}(i)f_{1}(i,x(i),y(i))=0, ~~i\in \{1,2,\ldots,T\}\\\Delta[\phi (\Delta y(i-1))]+ q_{2}(i)f_{2}(i,x(i),y(i))=0,\\x(0)=x(T+1)=y(0)=y(T+1)=0,\end{array}\right.\tag 1.1$$ where $\phi(s)=|s|^{p-2}s$, $p>1$ and the nonlinear terms $f_{k}(i,x,y)~(k=1,2)$ may be singular at $(x,y)=(0,0)$.
Citation:
DOI:10.3770/j.issn:2095-2651.2013.02.006
View Full Text  View/Add Comment  Download reader