Limiting Property of the Distribution Function of $L^p$ Function at Endpoints |
Received:March 15, 2015 Revised:July 08, 2015 |
Key Words:
Hardy-Littlewood maximal function limiting behavior distribution function
|
Fund Project:Supported by the National Natural Science Foundation of China (Grant Nos.11471309; 11271162; 11561062). |
|
Hits: 2896 |
Download times: 2609 |
Abstract: |
We consider the limiting property of the distribution function of $L^p$ function at endpoints $0$ and $\infty$ and prove that for $\lambda>0$ the following two equations $$\lim_{\lambda \to +\infty}\lambda^p m(\{x:|f(x)|>\lambda\})=0,~~\lim_{\lambda \to 0^+}\lambda^p m(\{x:|f(x)|>\lambda\})=0$$ hold for $f\in L^p(\mathbb{R}^n)$ with $1\leq p<\infty$. This result is naturally applied to many operators of type $(p,q)$ as well. |
Citation: |
DOI:10.3770/j.issn:2095-2651.2016.02.006 |
View Full Text View/Add Comment |