Necessary and Sufficient Conditions for Boundedness of Commutators of Bilinear Fractional Integral Operators on Morrey Spaces
Received:April 15, 2016  Revised:July 29, 2016
Key Words: fractional integral operator   Morrey spaces   commutators   ${\rm BMO}$   Lipschitz  
Fund Project:Supported by the National Natural Science Foundation of China (Grant Nos.11261055; 11661075).
Author NameAffiliation
Suixin HE School of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, P. R. China 
Jiang ZHOU School of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, P. R. China 
Hits: 2330
Download times: 2153
Abstract:
      In this paper, we obtain that $b\in {\rm BMO}(\mathbb{R}^n)$ if and only if the commutator $[b,I_{\alpha}]$ is bounded from the Morrey spaces $L^{p_1,\lambda_1}(\mathbb{R}^n)\times L^{p_2,\lambda_2}(\mathbb{R}^n)$ to $L^{q,\lambda}(\mathbb{R}^n)$, for some appropriate indices $p,q,\lambda,\mu$. Also we show that $b\in {\rm Lip}_{\beta}(\mathbb{R}^{n})$ if and only if the commutator $[b,I_{\alpha}]$ is bounded from the Morrey spaces $L^{p_1,\lambda_1}(\mathbb{R}^n)\times L^{p_2,\lambda_2}(\mathbb{R}^n)$ to $L^{q,\lambda}(\mathbb{R}^n)$, for some appropriate indices $p,q,\lambda,\mu$.
Citation:
DOI:10.3770/j.issn:2095-2651.2016.06.010
View Full Text  View/Add Comment