The Existence of Nodal Solutions for the Half-Quasilinear $p$-Laplacian Problems |
Received:January 05, 2016 Revised:November 23, 2016 |
Key Words:
Bifurcation Half-Quasilinear problems Nodal solutions $p$-Laplacian
|
Fund Project:Supported by the National Natural Science Foundation of China (Grant No.11561038) and the Natural Science Foundation of Gausu Province (Grant No.145RJZA087). |
|
Hits: 2846 |
Download times: 2139 |
Abstract: |
In this paper, we study the existence of nodal solutions for the following problem: $$\align &-(\varphi_{p}(x'))'=\alpha(t) \varphi_{p}(x^{+})+\beta(t)\varphi_{p}(x^{-}) +ra(t)f(x),\,\,00$ for $s\neq0$, and $f_{0}, f_{\infty}\not\in (0,\infty)$, where $$f_{0}= \lim_{|s|\rightarrow0} f(s)/\varphi_{p}(s),~~f_{\infty}=\lim_{|s|\rightarrow+\infty} f(s)/\varphi_{p}(s).$$ We use bifurcation techniques and the approximation of connected components to prove our main results. |
Citation: |
DOI:10.3770/j.issn:2095-2651.2017.02.013 |
View Full Text View/Add Comment |