Lie Weak Amenability of Triangular Banach Algebra |
Received:November 02, 2016 Revised:May 17, 2017 |
Key Words:
triangular Banach algebra weak amenability Lie derivation
|
Fund Project:Supported by the National Natural Science Foundation of China (Grant Nos.11171244; 11601010). |
|
Hits: 2583 |
Download times: 1871 |
Abstract: |
Let $\mathcal {A}$ and $\mathcal B$ be unital Banach algebra and $\mathcal M$ be Banach $\mathcal A, \mathcal B$-module. Then $\mathcal T=\big( \begin{smallmatrix} \mathcal {A} & \mathcal M \\ & \mathcal {B} \end{smallmatrix}\big)$ becomes a triangular Banach algebra when equipped with the Banach space norm $\|\big( \begin{smallmatrix} a & m \\ & b \end{smallmatrix} \big)\|=\|a\|_{\mathcal A}+\|m\|_{\mathcal M}+\|b\|_{\mathcal B}$. A Banach algebra $\mathcal T$ is said to be Lie $n$-weakly amenable if all Lie derivations from $\mathcal T$ into its $n^{\text{th}}$ dual space ${\mathcal T}^{(n)}$ are standard. In this paper we investigate Lie $n$-weak amenability of a triangular Banach algebra $\mathcal T$ in relation to that of the algebras $\mathcal A, \mathcal B$ and their action on the module $\mathcal M$. |
Citation: |
DOI:10.3770/j.issn:2095-2651.2017.05.010 |
View Full Text View/Add Comment |