Costar Subcategories and Cotilting Subcategories with Respect to Cotorsion Triples |
Received:September 07, 2019 Revised:May 24, 2020 |
Key Words:
cotorsion triple $n$-$\mathcal{Y}$-cotilting subcategories self-orthogonal-$\mathcal{Y}$ $n$-quasi-injective $n$-costar subcategories
|
Fund Project:Supported by Research Project in Institutions of Higher Learning in Gansu Province (Grant No.2019B-224) and Innovation Fund Project of Colleges and Universities in Gansu Province (Grant No.2020A-277). |
|
Hits: 502 |
Download times: 319 |
Abstract: |
Let $\mathcal{A}$ be an abelian category, and $(\mathcal{X}, \mathcal{Z},\mathcal{Y})$ be a complete hereditary cotorsion triple. We introduce the definition of $n$-$\mathcal{Y}$-cotilting subcategories of $\mathcal{A}$, and give a characterization of $n$-$\mathcal{Y}$-cotilting subcategories, which is similar to Bazzoni characterization of $n$-cotilting modules. As an application, we prove that if $\mathcal{GP}$ is $n$-$\mathcal{GI}$-cotilting over a virtually Gorenstein ring $R$, then $R$ is an $n$-Gorenstein ring, where $\mathcal{GP}$ denotes the subcategory of Gorenstein projective $R$-modules and $\mathcal{GI}$ denotes the subcategory of Gorenstein injective $R$-modules. Furthermore, we investigate $n$-costar subcategories over arbitrary ring $R$, and the relationship between $n$-$\mathcal{I}$-cotilting subcategories with respect to cotorsion triple $(\mathcal{P}, R$-Mod, $\mathcal{I})$ and $n$-costar subcategories, where $\mathcal{P}$ denotes the subcategory of projective left $R$-modules and $\mathcal{I}$ denotes the subcategory of injective left $R$-modules. |
Citation: |
DOI:10.3770/j.issn:2095-2651.2020.06.002 |
View Full Text View/Add Comment Download reader |
|
|
|