Coefficient Related Problem Studies for New Subclass of Bi-Univalent Functions Defined by $(s,t)$-Derivative Operator and Quasi-Subordination
Received:July 30, 2020  Revised:January 05, 2021
Key Word: bi-univalent function   $(s,t)$-derivative   quasi-subordination   coefficient estimate   Fekete-Szeg\"{o} problem   Faber polynomial expansion  
Fund ProjectL:Supported by the Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No.2020MS01010) and the Higher-School Science Foundation of Inner Mongolia Autonomous Region (Grant No.NJZY19211).
Author NameAffiliation
En AO Collage of Mathematics and Computer Science, Chifeng University, Inner Mongolia 024000, P. R. China 
Shuhai LI Collage of Mathematics and Computer Science, Chifeng University, Inner Mongolia 024000, P. R. China 
Huo TANG Collage of Mathematics and Computer Science, Chifeng University, Inner Mongolia 024000, P. R. China 
Hits: 42
Download times: 56
Abstract:
      In this paper we introduce and investigate a new generalized class of bi-univalent functions defined by using $(s,t)$-derivative operator and quasi-subordination. We obtain the estimates of the first two coefficients $|a_2|, |a_3|$ and general coefficient $|a_n|~(n\ge4)$ by using Faber polynomial expansion for the new class and some of its subclasses. And then we solve Fekete-Szeg\"{o} probelm for the newly defined classes.
Citation:
DOI:10.3770/j.issn:2095-2651.2021.06.003
View Full Text  View/Add Comment  Download reader