A Refined Regularity Criterion for $3$D Liquid Crystal Equations Involving Horizontal Velocity
Received:October 18, 2020  Revised:June 26, 2021
Key Word: liquid crystal flow   regularity criterion   local strong solution  
Fund ProjectL:Supported by the National Natural Science Foundation of China (Grant Nos.11961032; 11971209) and the Natural Science Foundation of Jiangxi Province (Grant No.20191BAB201003).
Author NameAffiliation
Xiaoli CHEN School of Mathematics and Statistics, Jiangxi Normal University, Jiangxi 330022, P. R. China 
Xiujuan ZHA School of Mathematics and Statistics, Jiangxi Normal University, Jiangxi 330022, P. R. China 
Hits: 33
Download times: 39
Abstract:
      This note investigates the global regularity of $3$D liquid crystal equations in terms of the vertical derivative of $u_h$. More precisely, we prove that if the vertical derivative of the horizontal velocity component $u_h$ satisfies $\pa_3u_h\in L^p(0,T; \R^3)$ with $\frac{2}{p}+\frac{3}{q}\le \frac{3}{2}$, $2\le p\le \infty$, then the local strong solution $(u,d)$ can be smoothly extended beyond $t=T$.
Citation:
DOI:10.3770/j.issn:2095-2651.2021.06.005
View Full Text  View/Add Comment  Download reader