Local Lie $n$-Derivations of Reflexive Algebras
Received:October 09, 2022  Revised:January 08, 2023
Key Words: derivation   local Lie derivation   reflexive algebra   subspace lattice  
Fund Project:Supported by the National Natural Science Foundation of China (Grant No.11871021).
Author NameAffiliation
Jiankui LI School of Mathematics, East China University of Science and Technology, Shanghai 200237, P. R. China 
Bo YU School of Mathematics, East China University of Science and Technology, Shanghai 200237, P. R. China 
Hits: 405
Download times: 332
Abstract:
      Let $\mathcal{L}$ be a subspace lattice on a Banach space $X$ such that $X_{-} \neq X$ and $(0)_{+} \neq(0)$. We prove that every local Lie $n$-derivation from $\operatorname{Alg}\mathcal{L}$ into $B(X)$ is a Lie $n$-derivation.
Citation:
DOI:10.3770/j.issn:2095-2651.2023.05.007
View Full Text  View/Add Comment