Commutators of Fractional Maximal Functions on Orlicz Spaces over Non-Homogeneous Metric Spaces
Received:November 21, 2023  Revised:June 20, 2024
Key Words: Non-homogeneous metric measure space   fractional maximal function   commutator   space $\widetilde{\mathrm{RBMO}}(\mu)$   Orlicz space  
Fund Project:Supported by the Science Foundation for Youths of Gansu Province (Grant No.22JR5RA173) and Master Foundation of Northwest Normal University (Grant No.2022KYZZ-S121).
Author NameAffiliation
Guanghui LU College of Mathematics and Statistics, Northwest Normal University, Gansu 730070, P. R. China 
Xuemei LI College of Mathematics and Statistics, Northwest Normal University, Gansu 730070, P. R. China 
Hits: 90
Download times: 73
Abstract:
      Let $(\mathcal{X},d,\mu)$ be a non-homogeneous metric measure space satisfying the geometrically doubling condition and the upper doubling condition. In this setting, the authors prove that the\\ commutator $M^{(\alpha)}_{b}$ formed by $b\in\widetilde{\mathrm{RBMO}}(\mu)$ and the fractional maximal function $M^{(\alpha)}$ is bounded from Lebesgue spaces $L^{p}(\mu)$ into spaces $L^{q}(\mu)$, where $\frac{1}{q}=\frac{1}{p}-\alpha$ for $\alpha\in(0,1)$ and $p\in(1,\frac{1}{\alpha})$. Furthermore, the boundedness of the $M^{(\alpha)}_{b}$ on Orlicz spaces $L^{\Phi}(\mu)$ is established.
Citation:
DOI:10.3770/j.issn:2095-2651.2024.06.007
View Full Text  View/Add Comment