Ambrosetti-Prodi type results for the discrete boundary value problems involving the singular $\phi$-Laplacian |
Received:October 29, 2024 Revised:October 29, 2024 |
Key Words:
singular $\phi$-Laplacian, discrete boundary value problem, existence, Ambrosetti-Prodi type results, lower and upper solutions, topological degree.
|
Fund Project: |
|
Hits: 9 |
Download times: 0 |
Abstract: |
In this paper, we consider the discrete boundary value problem of the type
$$\nabla(t_k^{N-1}\phi(\Delta u_k))+t_k^{N-1}f_k(t_k,u_k,\Delta u_k)=0,~(2\leq k\leq n-1),~~~\Delta u_1=0=\Delta u_{n-1},$$
where $\phi:(-a,a)\rightarrow\mathbb{R}$, $0 |
Citation: |
DOI: |
View/Add Comment |
|
|
|