Ambrosetti-Prodi type results for the discrete boundary value problems involving the singular $\phi$-Laplacian
Received:October 29, 2024  Revised:October 29, 2024
Key Words: singular $\phi$-Laplacian, discrete boundary value problem, existence, Ambrosetti-Prodi type results, lower and upper solutions, topological degree.  
Fund Project:
Author NameAffiliationAddress
Yanyun LI Li Northwest Normal University 730070
Man Xu Xu* Northwest Normal University 730070
Hits: 9
Download times: 0
Abstract:
      In this paper, we consider the discrete boundary value problem of the type $$\nabla(t_k^{N-1}\phi(\Delta u_k))+t_k^{N-1}f_k(t_k,u_k,\Delta u_k)=0,~(2\leq k\leq n-1),~~~\Delta u_1=0=\Delta u_{n-1},$$ where $\phi:(-a,a)\rightarrow\mathbb{R}$, $0
Citation:
DOI:
  View/Add Comment