On Quadratic Left Leibniz Algebras and Related Lie-Yamaguti Structures
Received:August 26, 2024  Revised:December 02, 2024
Key Words: Leibniz algebra   $T^*$-extension   Lie-Yamaguti algebra  
Fund Project:
Author NameAffiliation
A. Nourou ISSA D\'epartement de Math\'ematiques, Universit\'e d'Abomey-Calavi, 01 BP 4521 Cotonou 01, B\'enin 
Hits: 284
Download times: 177
Abstract:
      A left Leibniz algebra equipped with an invariant nondegenerate skew-symmetric bilinear form (i.e., a skew-symmetric quadratic Leibniz algebra) is constructed. The notion of $T^*$-extension of Lie-Yamaguti algebras is introduced and it is observed that the trivial extension of a Lie-Yamaguti algebra is a quadratic Lie-Yamaguti algebra. It is proved that every symmetric (resp., skew-symmetric) quadratic Leibniz algebra induces a quadratic (resp., symplectic) Lie-Yamaguti algebra.
Citation:
DOI:10.3770/j.issn:2095-2651.2025.02.002
View Full Text  View/Add Comment