Parameterized Littlewood-Paley Operators and Their Commutators on Two-Weight Grand Homogeneous Variable Herz-Morrey Spaces
Received:May 08, 2024  Revised:September 02, 2024
Key Words: Grand homogeneous variable Herz-Morrey space   parameterized area integral   parameterized Littlewood-Paley $g_\delta^\ast$-function   commutator   space $\mathrm{BMO}(\mathbb{R}^n)$  
Fund Project:Supported by the National Natural Science Foundation of China (Grant No.12201500).
Author NameAffiliation
Xijuan CHEN College of Mathematics and Statistics, Northwest Normal University, Gansu 730070, P. R. China 
Wenwen TAO College of Mathematics and Statistics, Northwest Normal University, Gansu 730070, P. R. China 
Guanghui LU College of Mathematics and Statistics, Northwest Normal University, Gansu 730070, P. R. China 
Hits: 79
Download times: 52
Abstract:
      In this paper, the authors prove that the parameterized area integral $\mu_{\Omega,S}^\rho$ and the parameterized Littlewood-Paley $g^{\ast}_{\delta}$-function $\mu_{\Omega,\delta}^{\ast,\rho}$ are bounded on two-weight grand homogeneous variable Herz-Morrey spaces $M\dot{K}_{p),\theta,q(\cdot)}^{\alpha(\cdot),\lambda}(\omega_1,\omega_2)$, where $\theta>0$, $\lambda\in(2,\infty)$, $q(\cdot)\in{\mathbb{B}(\mathbb{R}^n)}$, $\alpha(\cdot)\in{L^{\infty}(\mathbb{R}^n)}$, $\omega_1\in A_p{_{\omega_1}}$ for $p_{\omega_1}\in[1,\infty]$ and $\omega_2$ is a weight. Furthermore, the authors prove that the commutators $[b,\mu_{\Omega,S}^{\rho}]$ which is formed by $b\in\mathrm{BMO}(\mathbb{R}^n)$ and the $\mu_{\Omega,S}^{\rho}$, and the $[b,\mu_{\Omega,\delta}^{*,\rho}]$ generated by $b\in\mathrm{BMO}(\mathbb{R}^n)$ and the $\mu_{\Omega,\delta}^{\ast,\rho}$ are bounded on $M\dot{K}_{p),\theta,q(\cdot)}^{\alpha(\cdot),\lambda}(\omega_1,\omega_2)$, respectively.
Citation:
DOI:10.3770/j.issn:2095-2651.2025.02.007
View Full Text  View/Add Comment