Linear Prediction Theory and Markov Models of a Homogeneous Random Field with Discrete Parameters (II)
Received:February 16, 2004  
Key Words: linear prediction   predictor   predictor error   Markov property.  
Fund Project:
Author NameAffiliation
XU Ye-ji Dept. of Statistics, Fudan University, Shanghai 200433, China 
Hits: 3173
Download times: 1500
      Generally, the definations of the Markov type for homogeneous random field as follows: Let $H_X(T)$ be the closed linear manifold spanned by all $X(m,n), (m,n)\in T, T_0\subset T$. $(m',n')\bar{\in}T$, if $P_{H_X(T)}X(m',n')=P_{H_X(T_0)}X(m',n')$, then we say that $H_X(T)$ has the Morkov property for $H_X(T_0)$ at $X(m',n')$. In this paper, three types are posed and discussed: 1). $T = \{(m,n), -\infty
View Full Text  View/Add Comment  Download reader