Algebraic Properties of Little-Hankel Operators on Cutoff Harmonic Bergman Space
Received:October 13, 2021  Revised:January 12, 2022
Key Word: little-Hankel operator   cutoff Harmonic Bergman space   commutator   finite rank   semi-commutator  
Fund ProjectL:Supported by the National Natural Science Foundation of China (Grant No.11761006), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No.2021MS01002), Program for Young Talents of Chifeng University (Grant No.CFXYYT2201).
Author NameAffiliation
Jingyu YANG College of Mathematics and Computer Science, Chifeng University, Inner Mogolia 024000, P. R. China 
Yufeng LU School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China 
Huo TANG College of Mathematics and Computer Science, Chifeng University, Inner Mogolia 024000, P. R. China 
Hits: 59
Download times: 60
Abstract:
      In this paper, we study the finite rank product, commutators and semi-commutators of little-Hankel operators with quasihomogeneous symbols on the cutoff harmonic Bergman space $b_{n}^{2}$. We obtain the conclusions that the commutator and semi-commutator of little-Hankel operators with qusihomogeneous symbols are finite rank operators.
Citation:
DOI:10.3770/j.issn:2095-2651.2022.04.005
View Full Text  View/Add Comment  Download reader