Deleting Vertices and Interlacing of $A_\alpha$ Eigenvalues of a Graph
Received:September 06, 2021  Revised:December 23, 2021
Key Words: $A_{\alpha}$ eigenvalue   interlacing inequality   independence number   cover number   Hamiltonian properties   spanning tree  
Fund Project:Supported by the National Natural Science Foundation of China (Grant No.12171089) and the Natural Science Foundation of Fujian Province (Grant No.2021J02048).
Author NameAffiliation
Hongzhang CHEN School of Mathematics and Statistics, Minnan Normal University, Fujian 363000, P. R. China 
Jianxi LI School of Mathematics and Statistics, Minnan Normal University, Fujian 363000, P. R. China 
Hits: 149
Download times: 172
Abstract:
      Let $G$ be simple graph with vertex set $V$ and edge set $E$. In this paper, we establish an interlacing inequality between the $A_{\alpha}$ eigenvalues of $G$ and its subgraph $G-U$, where $U\subseteq V$. Moreover, as an application, this interlacing property can be used to deduce some $A_{\alpha}$ spectral conditions concerning the independence number, cover number, Hamiltonian property and spanning tree of a graph, respectively.
Citation:
DOI:10.3770/j.issn:2095-2651.2022.05.002
View Full Text  View/Add Comment  Download reader