Permutation Polynomials of $x^{1+\frac{q-1}{m}}+ax$ |
Received:November 10, 2021 Revised:November 25, 2022 |
Key Words:
polynomial permutation polynomial finite field
|
Fund Project:Supported by the National Natural Science Foundation of China (Grant No.12171163) and the Guangdong Basic and Applied Basic Research Foundation (Grant No.2020A1515111090). |
|
Hits: 448 |
Download times: 382 |
Abstract: |
Let $m$ be a positive integer and $F_{q^r}$ be a finite field with the characteristic of $p$. We prove that if $p>m^2-m$ and $q\equiv 1\pmod{m}$, the polynomial $x^{1+\frac{q-1}{m}}+ax~(a\neq0)$ is not a permutation polynomial over $F_{q^r}~(r\geq2)$. And we verify that if $q\equiv 1\pmod{7}$ and $p\neq 2, 3$, then the polynomial $x^{1+\frac{q-1}{7}}+ax~(a\neq0)$ is not a permutation polynomial over $F_{q^r}~(r\geq2)$. |
Citation: |
DOI:10.3770/j.issn:2095-2651.2023.02.005 |
View Full Text View/Add Comment |